Содержание

Как выглядит транзистор фото

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (

GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! "Нет" – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в "стенку", то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – "сборщик" (глагол Collect – "собирать"). Вывод базы помечают как B, от слова

Base (от англ. Base – "основной"). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – "эмитент" или "источник выбросов". В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (

GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! "Нет" – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в "стенку", то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой

C, это от слова Collector – "сборщик" (глагол Collect – "собирать"). Вывод базы помечают как B, от слова Base (от англ. Base – "основной"). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – "эмитент" или "источник выбросов". В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

Обсудить статью ТРАНЗИСТОРЫ

Простое акустическое реле на пьезоэлементе.

СХЕМА ЖУЧКА ДЛЯ ПРОСЛУШКИ

Простейшая схема радиожучка на одном транзисторе, для работы в паре с ФМ приёмником.

Что такое транзистор, виды транзисторов и их обозначение

Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы.

Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор.

Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

На схемах транзисторы обозначают, как показано на рис. 1,а. Здесь короткая черточка с линией-выводом от середины символизирует базу, две наклонные линии, проведенные к ней под углом 60°, — эмиттер и коллектор.

 Рис. 1. Внешний вид транзисторов, обозначение транзисторов на принципиальных схемах.

Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (рис. 1,а), то это означает, эмиттер имеет электропроводность типа р, а база — типа п; если же стрелка направлена в противоположную сторону (рис. 1,6), электропроводность эмиттера и базы — обратная (соответственно пир).

Поскольку, как уже отмечалось, электропроводность коллектора та же, что и эмиттера, стрелку на символе коллектора не изображают. Знать электропроводность эмиттера, базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы.

Транзистор, база которого имеет проводимость типа п, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа P, — формулой n-p-n. В первом случае на базу и коллектор следует подавать отрицательное (по отношению к эмиттеру) напряжение, во втором — положительное.

Для наглядности условное обозначение транзистора обычно помещают в кружок, символизирующий его корпус. Корпус нередко изготовляют из металла и соединяют с одним из выводов транзистора. На схемах это показывают точкой в месте пересечения лиши-вывода с символом корпуса (у транзистора, изображенного на рис. 1,в, с корпусом соединен вывод коллектора).

Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (рис. 1,г). С целью повышения информативности схем рядом с позиционным обозначением транзистора обычно указывают его тип.

Линии-выводы, идущие от символов эмиттера и коллектора, проводят в одном из двух направлений: перпендикулярно или параллельно линии-выводу базы (рис. 1,д). Излом этой линии допускается лишь на некотором расстоянии от символа корпуса (рис. 1,е).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а кружок-корпус заменяют овалом (рис. 1,ж).

В некоторых случаях ГОСТ 2.730—73 допускает изображать транзисторы и без символа корпуса, например при изображении бескорпуоных транзисторов ИЛ|Ц когда на схеме необходимо показать транзисторы, входящие в так называемые транзисторные сборки или матрицы (их выпускают в тех же корпусах, что и интегральные микросхемы).

 Рис. 2. Транзисторные сборки.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельных приборов, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (в этом случае на поле схемы помещают такую, например, запись: VT1—VT4 К1НТ251), либо берут код аналоговых микросхем DA и указывают принадлежность транзисторов к матрице в позиционном обозначении (рис. 2,а).

У выводов таких транзисторов, как правило, приводят условные номера, присвоенные выводам корпуса, в котором выполнена сборка. Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 1,6 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (рис. 3,а). При повороте условного обозначения положение этого знака должно оставаться неизменным.

 Рис. 3. Лавинный транзистор.

Иначе построено обозначение так называемого однопереходного транзистора. У него один р-п переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3,6). Об электропроводности базы судят по символу эмиттера (все сказанное ранее о транзисторах с двумя р-п переходами полностью применимо и к однрпереход-ному транзистору).

На обозначение однопереходного транзистора похоже условное обозначение довольно большой группы транзисторов с р-п переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n-или p-типа.

Сопротивлением канала управляет третий электрод — затвор, соединенный с его средней частью р-п переходом. Канал полевого транзистора изображают так же, как и базу биполярного транзистора, но помещают в средней части кружка-корпуса , символы истока и стока присоединяют к нему с одной стороны, затвора — с другой.

Чтобы не вводить каких-либо знаков для различения символов истока и стока, затвор изображают на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора.

В условном обозначении полевого транзистора с изолированным затворам (его изображают в виде черточки, параллельной символу канала, с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока: если она направлена к символу канала, то это значит, что изображен транзистор с каналом п-типа, а если в противоположную сторону, — с каналом р-типа (рис. 4,а, б).

Рис. 4. Изображение полевых транзисторов на принципиальных схемах.

Аналогично указывают тип электропроводности канала и при наличии вывода от кристалла-подложки (рис. 4,в), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три короткие штриха (рис. 4,г, д). Если подложка соединена с одним из электродов (обычно с истоком), это соединение показывают внутри символа без точки (рис. 4, е).

В палевом транзисторе может быть несколько затворов. Изображают их в этом случае короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (рис. 4,ж).

Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (рис. 4,з), который может быть соединен с одним из электродов или иметь самостоятельный вывод (рис. 4,ы).

Из транзисторов, управляемых внешними факторами, в настоящее время находят применение фототранзисторы. В качестве примера на рис. 5 показаны условные обозначения фототранзжггоров с выводом базы и без него.

Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с символом излучателя света (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта заменяют знаком оптической связи — двумя параллельными стрелками.

Рис. 5. Изображение на принципиальных схемах фототранзисторов.

Для примера на рис. 5,а изображена одна из оптопар сдвоенного оптрона К249КП1, о чем говорит позиционное обозначение U1.1. Аналогично строят условное графическое обозначение оптрона с составным транзистором (рис. 5,6).

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.730-73

ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ
В СХЕМАХ.
ПРИБОРЫ
ПОЛУПРОВОДНИКОВЫЕ

Unified system for design documentation.
Graphical symbols in diagrams.
Semiconductor devices

ГОСТ
2.730-73

Дата введения 1974-07-01

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.

(Измененная редакция, Изм. № 3).

2. Обозначения элементов полупроводниковых приборов приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. (Исключен, Изм. № 2).

2. Электроды:

база с одним выводом

база с двумя выводами

Р -эмиттер с N -областью

N -эмиттер с Р-областью

несколько Р-эмиттеров с N -областью

несколько N -эмиттеров с Р-областью

коллектор с базой

несколько коллекторов, например, четыре коллектора на базе

3. Области: область между проводниковыми слоями с различной электропроводностью. Переход от Р-области к N -области и наоборот

область собственной электропроводности ( I -область):

l) между областями с электропроводностью разного типа  PIN или NIP

2) между областями с электропроводностью одного типа  PIP или NIN

3) между коллектором и областью с противоположной электропроводностью  PIN или NIP

4) между коллектором и областью с электропроводностью того же типа  PIP или NIN

4. Канал проводимости для полевых транзисторов: обогащенного типа

обедненного типа

5. Переход PN

6. Переход NP

7. Р-канал на подложке N -типа, обогащенный тип

8. N -канал на подложке Р-типа, обедненный тип

9. Затвор изолированный

10. Исток и сток

Примечание . Линия истока должна быть изображена на продолжении линии затвора, например:

11. Выводы полупроводниковых приборов:

электрически, не соединенные с корпусом

электрически соединенные с корпусом

12. Вывод корпуса внешний. Допускается в месте присоединения к корпусу помещать точку

(Измененная редакция, Изм. № 2, 3).

3, 4. (Исключены, Изм. № 1).

5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Таблица 4

Наименование

Обозначение

1. Эффект туннельный

а) прямой

б) обращенный

2. Эффект лавинного пробоя:

а) односторонний

б) двухсторонний 3-8. (Исключены, Изм. № 2).

9. Эффект Шоттки

6. Примеры построения обозначений полупроводниковых диодов приведены в табл. 5.

Таблица 5

Наименование

Обозначение

1. Диод

Общее обозначение

2. Диод туннельный

3. Диод обращенный

4. Стабилитрон (диод лавинный выпрямительный)

а) односторонний

б) двухсторонний

5. Диод теплоэлектрический

6. Варикап (диод емкостный)

7. Диод двунаправленный

8. Модуль с несколькими (например, тремя) одинаковыми диодами с общим анодным и самостоятельными катодными выводами

8a. Модуль с несколькими одинаковыми диодами с общим катодным и самостоятельными анодными выводами

9. Диод Шотки

10. Диод светоизлучающий

7. Обозначения тиристоров приведены в табл. 6.

Таблица 6

Наименование

Обозначение

1. Тиристор диодный, запираемый в обратном направлении

2. Тиристор диодный, проводящий в обратном направлении

3. Тиристор диодный симметричный

4. Тиристор триодный. Общее обозначение

5. Тиристор триодный, запираемый в обратном направлении с управлением: по аноду

по катоду

6. Тиристор триодный выключаемый: общее обозначение

запираемый в обратном направлении, с управлением по аноду

запираемый в обратном направлении, с управлением по катоду

7. Тиристор триодный, проводящий в обратном направлении:

общее обозначение

с управлением по аноду

с управлением по катоду

8. Тиристор триодный симметричный (двунаправленный) - триак

9. Тиристор тетроидный, запираемый в обратном направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.

8. Примеры построения обозначений транзисторов с Р- N -переходами приведены в табл. 7.

Таблица 7

Наименование

Обозначение

1. Транзистор

а) типа PNP

б) типа NPN с выводом от внутреннего экрана

2. Транзистор типа NPN, коллектор соединен с корпусом

3. Транзистор лавинный типа NPN

4. Транзистор однопереходный с N-базой

5. Транзистор однопереходный с Р-базой

6. Транзистор двухбазовый типа NPN

7. Транзистор двухбазовый типа PNIP с выводом от i-области

8. Транзистор двухразовый типа P NIN с выводом от I -области

9. Транзистор многоэмиттерный типа NPN

Примечание. При выполнении схем допускается:

а) выполнять обозначения транзисторов в зеркальном изображении, например,

б) изображать корпус транзистора.

Таблица 8

Наименование

Обозначение

1. Транзистор полевой с каналом типа N

2. Транзистор полевой с каналом типа Р

3. Транзистор полевой с изолированным затвором баз вывода от подложки:

а) обогащенного типа с Р-каналом

б) обогащенного типа с N-каналом

в) обедненного типа с Р-каналом

г) обедненного типа с N-каналом

4. Транзистор полевой с изолированным затвором обогащенного типа с N-каналом, с внутренним соединением истока и подложки

5. Транзистор полевой с изолированным затвором с выводом от подложки обогащенного типа с Р-каналом

6. Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки

7. Транзистор полевой с затвором Шоттки

8. Транзистор полевой с двумя затворами Шоттки

Примечание . Допускается изображать корпус транзисторов.

10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл. 9.

Таблица 9

Наименование

Обозначение

1. Фоторезистор:

а) общее обозначение

б) дифференциальный

2. Фотодиод

З. Фототиристор

4. Фототранзистор:

а) типа PNP

б) типа NPN

5. Фотоэлемент

6. Фотобатарея

Таблица 10

Наименование

Обозначение

1. Оптрон диодный

2. Оптрон тиристорный

3. Оптрон резисторный

4. Прибор оптоэлектронный с фотодиодом и усилителем:

а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором:

а) с выводом от базы

б) без вывода от базы

Примечания:

1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по ГОСТ 2.721-74,

например:

2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:

12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл. 11.

Таблица 11

Наименование

Обозначение

1. Датчик Холла

Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника

2. Резистор магниточувствительный

3. Магнитный разветвитель

13. Примеры изображения типовых схем на полупроводниковых диодах приведены в табл. 12.

Таблица 12

Наименование

Обозначение

1. Однофазная мостовая выпрямительная схема:

а) развернутое изображение

б) упрощенное изображение (условное графическое обозначение)

Примечание. К выводам 1-2 подключается напряжение переменного тока; выводы 3-4 - выпрямленное напряжение; вывод 3 имеет положительную полярность. Цифры 1, 2, 3 и 4 указаны для пояснения.

Пример применения условного графического обозначения на схеме

2. Трехфазная мостовая выпрямительная схема

3. Диодная матрица (фрагмент)

Примечание. Если все диоды в узлах матрицы включены идентично, то допускается применять упрощенный способ изображения. При этом на схеме должны быть приведены пояснения о способе включения диодов

14. Условные графические обозначения полупроводниковых приборов для схем, выполнение которых при помощи печатающих устройств ЭВМ предусмотрено стандартами Единой системы конструкторской документации, приведены в табл. 13.

Таблица 13

Наименование

Обозначение

Отпечатанное обозначение

1. Диод

2. Транзистор типа PNР

3. Транзистор типа NPN

4. Транзистор типа PNIP с выводом от I -области

5. Многоэмиттерный транзистор типа NPN

Примечание к пп. 2-5. Звездочкой отмечают вывод базы, знаком «больше» или «меньше» - вывод эмиттера.

15. Размеры (в модульной сетке) основных условных графических обозначений даны в приложении 2.

(Измененная редакция, Изм. № 4).

Приложение 1. (Исключено, Изм. № 4).

Наименование

Обозначение

1. Диод

2.. Тиристор диодный

3. Тиристор триодный

4. Транзистор

5. Транзистор полевой

6. Транзистор полевой с изолированным затвором

(Введено дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1 РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР

РАЗРАБОТЧИКИ

В. Р. Верченко, Ю. И. Степанов, Э. Я. Акопян, Ю. П. Широкий, В. П. Пармешин, И. К. Виноградова

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 № 2002

3 Соответствует СТ СЭВ 661-88

4 ВЗАМЕН ГОСТ 2.730-68, ГОСТ 2.747-68 в части пп. 33 и 34 таблицы

5 ПЕРЕИЗДАНИЕ (январь 1995 г.) с Изменениями № 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91)

Обозначения на плате e. Условные обозначения в различных электрических схемах. Как научиться читать принципиальные схемы

Если вы только начали разбираться в радиотехнике, я расскажу о том в этой статье, как же обозначаются радиодетали на схеме, как называются на ней, и какой имеют внешний вид .

Тут узнаете как обозначается транзистор,диод,конденсатор,микросхема,реле и т.д

Прошу жмать на подробнее.

Как обозначается биполярный транзистор

Все транзисторы имеют три вывода, и если он биполярный, то и бывет двух типов, как видно из изображения пнп-переход и нпн-переход. А три вывода имеют названия э-эмиттер, к-коллектор и б-база. Где какой вывод на самом транзисторе ищется по справочнику, или же введите в поиск название транзистор+выводы.

Внешний вид имеет транзистор следующий,и это лишь малая часть их внешнего вида,существующих номиналов полно.

Как обозначается полярный транзистор

Тут уже три вывода имеют следующие название,это з-затвор, и-исток, с-сток

Но а внешний вид визуально мало отличается,а точнее может иметь такой же цоколь.Вопрос как же узнать какой он, а это уже из справочников или интернета по обозначению написанном на цоколе.

Как обозначается конденсатор

Конденсаторы бывают как полярные так и неполярные.

Отличие их обозначение в том,что на полярном указывается один из выводов значком "+".И емкость измеряется в микрофарадах"мкф".

И имеют такой внешний вид,стоит учитывать,что если конденсатор полярный,то на цоколе с одной из сторон ножек обозначается вывод,только уже в основном знаком "-".

Как обозначается диод и светодиод

Обозначение светодиода и диода на схеме отличается тем,что светодиод заключенчек и выходящими двух стрелок. Но роль у них разная-диод служит для выпрямления тока,и светодиод уже для испускания света.

И имеют такой внешний вид светодиоды.

И такой вид обычные выпрямительные и импульсные диоды например:

Как обозначается микросхема.

Микросхемы представляют собой уменьшенную схему,выполняющую ту или иную функцию,при этом могут иметь большое число транзисторов.

И такой внешний вид имеют они.

Обозначение реле

О них думаю впервую очередь слышали автомобилисты, особенно водители жигулей.

Так как когда не было инжекторов и транзисторы не получили широкое распространение, в автомобиле фары,прикуриватель,стартер, да все в ней почти включалось и управлялось через реле.

Такая самая простая схема реле.

Тут все просто,на электромагнитную катушку подается ток определенного напряжения,и та в свою очередь замыкает или размыкает участок цепи.

На этом статья заканчивается.

Если есть желание какие хотите увидеть радиодетали в следующей статье,пишите в комментарии.

Полярность цилиндрической батарейки Условное графическое обозначение
и условное графическое обозначение. батарейки на схеме в соответствии с ГОСТ.

Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.

Примеры использования обозначения батареек в схемах.

Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс. ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.

Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.

Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.

При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.

Подключение батареек к пульту дистанционного управления телевизором.

Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.


Параллельное включение батареек.

Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.

Первый транзистор

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников - это германий и кремний, а также соединение галлия и мышьяка - арсенид галлия (GaAs ).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте .

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Н ет»! "Н ет" – значит p-n -p (П-Н -П ).

Ну, а если идём, и не упираемся в "стенку", то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База ), Э (Эмиттер ), К (Коллектор ). На зарубежных схемах вывод коллектора помечают буквой C , это от слова Collector - "сборщик" (глагол Collect - "собирать"). Вывод базы помечают как B , от слова Base (от англ. Base - "основной"). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E , от слова Emitter - "эмитент" или "источник выбросов". В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q . В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T . Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента - VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Конденсатор.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор - это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр - это ёмкость .

Единица ёмкости - микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица - пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше - в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов - подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный - он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов - не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости - от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 - 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом - 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.

Резистор.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных - СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.


Резисторы различают по сопротивлению и мощности. Сопротивление, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более - до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них - медь, железо, алюминий и другие металлы - хорошо проводят электрический ток - это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Диоды.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс - к аноду, минус - к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Стабилитроны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Транзисторы.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор - усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое - за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база - эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор - эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

 

Обозначения в радиоэлектронике. Условные графические и буквенные обозначения электрорадиоэлементов. Примеры построения обозначений транзисторов

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Обозначение радиоэлементов. Фото и названия

ОбозначениеНазваниеФотоОписание
ЗаземлениеЗащитное заземление - обеспечивает защиту людей от поражений электрическим током в электроустановках.
Батарейка - гальванический элемент в котором происходит преобразование химической энергии в электрическую энергию.
Солнечная батарея служит для преобразования солнечной энергии в электрическую энергию.
Вольтметр - измерительный прибор для определения напряжения или ЭДС в электрических цепях.
Амперметр - прибор для измерения силы тока, шкалу градуируют в микроамперах или в амперах.
Выключатель - коммутационный аппарат, предназначенный для включения и отключения отдельных цепей или электрооборудования.
Тактовая кнопка - коммутационный механизм, замыкающий электрическую цепь пока есть давление на толкатель.
Лампы накаливания общего назначения, предназначены для внутреннего и наружного освещения.
Мотор (двигатель) - устройство, преобразующее электроэнергию в механическую работу (вращение).
Пьезодинамики (пьезоизлучатели) используют в технике для оповещения какого-либо происшествия или события.
Резистор - пассивный элемент электрических цепей, обладающий определенным значением электрического сопротивления.
Переменный резистор предназначен для плавного изменения тока, посредством изменения собственного сопротивления.
ФоторезисторФоторезистор – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей (освещения).
ТермисторТерморезисторы или термисторы - полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Предохранитель - электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения.
Конденсатор служит для накопления заряда и энергии электрического поля. Конденсатор быстро заряжается и разряжается.
Диод обладает различной проводимостью. Назначение диода - проводить электрический ток в одном направлении.
Светодиод (LED) - полупроводниковый прибор, создающий оптическое излучение при пропускании электричества.
Фотодиод - приемник оптического излучения, преобразующий свет в электрический заряд за счет процесса в p-n-переходе.
Тиристор - это полупроводниковый ключ, т.е. прибор, назначение которого состоит в замыкании и размыкании цепи.
Назначение стабилитрона - стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи.
Транзистор - полупроводниковый прибор, предназначенный для усиления электрического тока и управления им.
Фототранзистором называют полупроводниковый транзистор, чувствительный к облучающему его световому потоку (освещению).

xn--18-6kcdusowgbt1a4b.xn--p1ai

Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор - это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр - это ёмкость.

Единица ёмкости - микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица - пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше - в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов - подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный - он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов - не полярные. Другая разновидность конденсаторов - электролитические (полярные). Такие конденсаторы выпускают большой ёмкости - от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 - 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом - 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно - от 240 до 10 пФ.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных - СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более - до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них - медь, железо, алюминий и другие металлы - хорошо проводят электрический ток - это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс - к аноду, минус - к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну - это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор - усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое - за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база - эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор - эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»


П О П У Л Я Р Н О Е:

>>
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 29 094 просм.

www.mastervintik.ru

РАДИОЭЛЕМЕНТЫ

В данном справочном материале приводится внешний вид, наименование и маркировка основных зарубежных радиодеталей - микросхем различных типов, разъёмов, кварцевых резонаторов, катушек индуктивности и так далее. Информация действительно полезная, так как многие хорошо знакомы с отечественными деталями, но с импортными не очень, а ведь именно они ставятся во все современные схемы. Минимальное знание английсого приветствуется, так как все надписи не по русски. Для удобства детали объединены по группам. На первую букву в описании не обращайте внимания, пример: f_Fuse_5_20Glass - означает предохранитель 5х20 миллиметров стеклянный.

Что касается обозначения всех указанных радиоэлементов на электрических принципиальных схемах - смотрите справочную информацию по этому вопросу в другой статье.

Форум по деталям

Обсудить статью РАДИОЭЛЕМЕНТЫ

radioskot.ru

Графические и буквенные обозначения радиодеталей на схемах

AMамплитудная модуляция
АПЧавтоматическая подстройка частоты
АПЧГавтоматическая подстройка частоты гетеродина
АПЧФавтоматическая подстройка частоты и фазы
АРУавтоматическая регулировка усиления
АРЯавтоматическая регулировка яркости
АСакустическая система
АФУантенно-фидерное устройство
АЦПаналого-цифровой преобразователь
АЧХамплитудно-частотная характеристика
БГИМСбольшая гибридная интегральная микросхема
БДУбеспроводное дистанционное управление
БИСбольшая интегральная схема
БОСблок обработки сигналов
БПблок питания
БРблок развертки
БРКблок радиоканала
БСблок сведения
БТКблокинг-трансформатор кадровый
БТСблокинг-трансформатор строчный
БУблок управления
БЦблок цветности
БЦИблок цветности интегральный (с применением микросхем)
ВДвидеодетектор
ВИМвремя-импульсная модуляция
ВУвидеоусилитель; входное (выходное) устройство
ВЧвысокая частота
Ггетеродин
ГВголовка воспроизводящая
ГВЧгенератор высокой частоты
ГВЧгипервысокая частота
ГЗгенератор запуска; головка записывающая
ГИРгетеродинный индикатор резонанса
ГИСгибридная интегральная схема
ГКРгенератор кадровой развертки
ГКЧгенератор качающейся частоты
ГМВгенератор метровых волн
ГПДгенератор плавного диапазона
ГОгенератор огибающей
ГСгенератор сигналов
ГСРгенератор строчной развертки
гссгенератор стандартных сигналов
гггенератор тактовой частоты
ГУголовка универсальная
ГУНгенератор, управляемый напряжением
Ддетектор
двдлинные волны
дддробный детектор
днделитель напряжения
дмделитель мощности
дмвдециметровые волны
ДУдистанционное управление
ДШПФдинамический шумопонижающий фильтр
ЕАССединая автоматизированная сеть связи
ЕСКДединая система конструкторской документации
зггенератор звуковой частоты; задающий генератор
зсзамедляющая система; звуковой сигнал; звукосниматель
ЗЧзвуковая частота
Иинтегратор
икмимпульсно-кодовая модуляция
ИКУизмеритель квазипикового уровня
имсинтегральная микросхема
иниизмеритель линейных искажений
инчинфранизкая частота
ионисточник образцового напряжения
иписточник питания
ичхизмеритель частотных характеристик
ккоммутатор
КБВкоэффициент бегущей волны
КВкороткие волны
квчкрайне высокая частота
кзвканал записи-воспроизведения
КИМкодо-импульсная модуляции
кккатушки кадровые отклоняющей системы
кмкодирующая матрица
кнчкрайне низкая частота
кпдкоэффициент полезного действия
КСкатушки строчные отклоняющей системы
ксвкоэффициент стоячей волны
ксвнкоэффициент стоячей волны напряжения
КТконтрольная точка
КФкатушка фокусирующая
ЛБВлампа бегущей волны
лзлиния задержки
ловлампа обратной волны
лпдлавинно-пролетный диод
лпптлампово-полупроводниковый телевизор
ммодулятор
MAмагнитная антенна
MBметровые волны
мдпструктура металл-диэлектрик-полупроводник
МОПструктура металл-окисел-полупроводник
мсмикросхема
МУмикрофонный усилитель
нинелинейные искажения
нчнизкая частота
ОБобщая база (включение транзистора по схеме с общей базой)
овчочень высокая частота
оиобщий исток (включение транзистора *по схеме с общим истоком)
окобщий коллектор (включение транзистора по схеме с обшим коллектором)
ончочень низкая частота
оосотрицательная обратная связь
ОСотклоняющая система
ОУоперационный усилитель
ОЭобший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВповерхностные акустические волны
пдсприставка двухречевого сопровождения
ПДУпульт дистанционного управления
пкнпреобразователь код-напряжение
пнкпреобразователь напряжение-код
пнчпреобразователь напряжение частота
посположительная обратная связь
ППУпомехоподавляющее устройство
пчпромежуточная частота; преобразователь частоты
пткпереключатель телевизионных каналов
птсполный телевизионный сигнал
ПТУпромышленная телевизионная установка
ПУпредварительный усили^егіь
ПУВпредварительный усилитель воспроизведения
ПУЗпредварительный усилитель записи
ПФполосовой фильтр; пьезофильтр
пхпередаточная характеристика
пцтсполный цветовой телевизионный сигнал
РЛСрегулятор линейности строк; радиолокационная станция
РПрегистр памяти
РПЧГручная подстройка частоты гетеродина
РРСрегулятор размера строк
PCрегистр сдвиговый; регулятор сведения
РФрежекторный или заграждающий фильтр
РЭАрадиоэлектронная аппаратура
СБДУсистема беспроводного дистанционного управления
СБИСсверхбольшая интегральная схема
СВсредние волны
свпсенсорный выбор программ
СВЧсверхвысокая частота
сгсигнал-генератор
сдвсверхдлинные волны
СДУсветодинамическая установка; система дистанционного управления
СКселектор каналов
СКВселектор каналов всеволновый
ск-дселектор каналов дециметровых волн
СК-Мселектор каналов метровых волн
СМсмеситель
енчсверхнизкая частота
СПсигнал сетчатого поля
сссинхросигнал
ссистрочный синхронизирующий импульс
СУселектор-усилитель
счсредняя частота
ТВтропосферные радиоволны; телевидение
твстрансформатор выходной строчный
твзтрансформатор выходной канала звука
твктрансформатор выходной кадровый
ТИТтелевизионная испытательная таблица
ТКЕтемпературный коэффициент емкости
ткитемпературный коэффициент индуктивности
ткмптемпературный коэффициент начальной магнитной проницаемости
ткнстемпературный коэффициент напряжения стабилизации
ткстемпературный коэффициент сопротивления
тстрансформатор сетевой
тцтелевизионный центр
тцптаблица цветных полос
ТУтехнические условия
Уусилитель
УВусилитель воспроизведения
УВСусилитель видеосигнала
УВХустройство выборки-хранения
УВЧусилитель сигналов высокой частоты
УВЧультравысокая частота
УЗусилитель записи
УЗЧусилитель сигналов звуковой частоты
УКВультракороткие волны
УЛПТунифицированный ламповополупроводниковый телевизор
УЛЛЦТунифицированный лампово полупроводниковый цветной телевизор
УЛТунифицированный ламповый телевизор
УМЗЧусилитель мощности сигналов звуковой частоты
УНТунифицированный телевизор
УНЧусилитель сигналов низкой частоты
УНУуправляемый напряжением усилитель.
УПТусилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧусилитель сигналов промежуточной частоты
УПЧЗусилитель сигналов промежуточной частоты звук?
УПЧИусилитель сигналов промежуточной частоты изображения
УРЧусилитель сигналов радиочастоты
УСустройство сопряжения; устройство сравнения
УСВЧусилитель сигналов сверхвысокой частоты
УССусилитель строчных синхроимпульсов
УСУуниверсальное сенсорное устройство
УУустройство (узел) управления
УЭускоряющий (управляющий) электрод
УЭИТуниверсальная электронная испытательная таблица
ФАПЧфазовая автоматическая подстройка частоты
ФВЧфильтр верхних частот
ФДфазовый детектор; фотодиод
ФИМфазо-импульсная модуляция
ФМфазовая модуляция
ФНЧфильтр низких частот
ФПЧфильтр промежуточной частоты
ФПЧЗфильтр промежуточной частоты звука
ФПЧИфильтр промежуточной частоты изображения
ФСИфильтр сосредоточенной избирательности
ФССфильтр сосредоточенной селекции
ФТфототранзистор
ФЧХфазо-частотная характеристика
ЦАПцифро-аналоговый преобразователь
ЦВМцифровая вычислительная машина
ЦМУцветомузыкальная установка
ЦТцентральное телевидение
ЧДчастотный детектор
ЧИМчастотно-импульсная модуляция
чмчастотная модуляция
шимширотно-импульсная модуляция
шсшумовой сигнал
эвэлектрон-вольт (е В)
ЭВМ.электронная вычислительная машина
эдсэлектродвижущая сила
экэлектронный коммутатор
ЭЛТэлектронно-лучевая трубка
ЭМИэлектронный музыкальный инструмент
эмосэлектромеханическая обратная связь
ЭМФэлектромеханический фильтр
ЭПУэлектропроигрывающее устройство
ЭЦВМэлектронная цифровая вычислительная машина

www.radioelementy.ru

Радиодетали - это... Что такое Радиодетали?

Радиодетали Обозначение радиодеталей на схемах

Радиодетали - просторечное название электронных компонентов, применяемых для изготовления устройств (приборов) цифровой и аналоговой электроники.

На появление названия повлиял тот исторический факт, что в начале XX века первым повсеместно распространнёным, и при этом технически сложным для неспециалиста электронным устройством, стало радио. Изначально термин радиодетали означал электронные компоненты, применяемые для производства радиоприёмников; затем обиходное, с некоторой долей иронии, название распространилось и на остальные радиоэлектронные компоненты и устройства, уже не имеющие прямой связи с радио.

Классификация

Электронные компоненты делятся, по способу действия в электрической цепи, на активные и пассивные.

Пассивные

Базовыми элементами, имеющиеся практически во всех электронных схемах радиоэлектронной аппаратуры (РЭА), являются:

С использованием электромагнитной индукции

На базе электромагнитов:

Кроме того, для создания цепи используются всевозможные соединители и разъединители цепи - ключи; для защиты от перенапряжения и короткого замыкания - предохранители; для восприятия человеком сигнала - лампочки и динамики (динамическая головка громкоговорителя), для формирования сигнала - микрофон и видеокамера; для приёма аналогового сигнала, передающегося по эфиру, приёмнику нужна Антенна, а для работы вне сети электрического тока - аккумуляторы.

Активные
Вакуумные приборы

С развитием электроники появились вакуумные электронные приборы:

Полупроводниковые приборы

В дальнейшем получили распространение полупроводниковые приборы:

и более сложные комплексы на их основе - интегральные микросхемы

По способу монтажа

Технологически, по способу монтажа, радиодетали можно разделить на:

См. также

Ссылки

dic.academic.ru

обозначения на схеме. Как читать обозначения радиодеталей на схеме?

Технологии 4 июня 2016

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных - резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Видео по теме

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Обозначения конденсаторов на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго - в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах - в виде треугольника, а у его вершины - черта, перпендикулярная высоте.

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой "Б" обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.

Если вы только начали разбираться в радиотехнике, я расскажу о том в этой статье, как же обозначаются радиодетали на схеме, как называются на ней, и какой имеют внешний вид .

Тут узнаете как обозначается транзистор,диод,конденсатор,микросхема,реле и т.д

Прошу жмать на подробнее.

Как обозначается биполярный транзистор

Все транзисторы имеют три вывода, и если он биполярный, то и бывет двух типов, как видно из изображения пнп-переход и нпн-переход. А три вывода имеют названия э-эмиттер, к-коллектор и б-база. Где какой вывод на самом транзисторе ищется по справочнику, или же введите в поиск название транзистор+выводы.

Внешний вид имеет транзистор следующий,и это лишь малая часть их внешнего вида,существующих номиналов полно.

Как обозначается полярный транзистор

Тут уже три вывода имеют следующие название,это з-затвор, и-исток, с-сток

Но а внешний вид визуально мало отличается,а точнее может иметь такой же цоколь.Вопрос как же узнать какой он, а это уже из справочников или интернета по обозначению написанном на цоколе.

Как обозначается конденсатор

Конденсаторы бывают как полярные так и неполярные.

Отличие их обозначение в том,что на полярном указывается один из выводов значком "+".И емкость измеряется в микрофарадах"мкф".

И имеют такой внешний вид,стоит учитывать,что если конденсатор полярный,то на цоколе с одной из сторон ножек обозначается вывод,только уже в основном знаком "-".

Как обозначается диод и светодиод

Обозначение светодиода и диода на схеме отличается тем,что светодиод заключенчек и выходящими двух стрелок. Но роль у них разная-диод служит для выпрямления тока,и светодиод уже для испускания света.

И имеют такой внешний вид светодиоды.

И такой вид обычные выпрямительные и импульсные диоды например:

Как обозначается микросхема.

Микросхемы представляют собой уменьшенную схему,выполняющую ту или иную функцию,при этом могут иметь большое число транзисторов.

И такой внешний вид имеют они.

Обозначение реле

О них думаю впервую очередь слышали автомобилисты, особенно водители жигулей.

Так как когда не было инжекторов и транзисторы не получили широкое распространение, в автомобиле фары,прикуриватель,стартер, да все в ней почти включалось и управлялось через реле.

Такая самая простая схема реле.

Тут все просто,на электромагнитную катушку подается ток определенного напряжения,и та в свою очередь замыкает или размыкает участок цепи.

На этом статья заканчивается.

Если есть желание какие хотите увидеть радиодетали в следующей статье,пишите в комментарии.

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид и схематическое обозначение радиодеталей

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора ниже и обозначение постоянного и переменного на схеме.

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

2.Транзистор и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн перехода npn

Э это эммитер , К это коллектор , а Б это база .Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка


Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С - сток, И - исток, З - затвор


И напоследок о транзисторах как же они выглядат на самом деле


Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора

Микросхемы , внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

Первый транзистор

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников - это германий и кремний, а также соединение галлия и мышьяка - арсенид галлия (GaAs ).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте .

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Н ет»! "Н ет" – значит p-n -p (П-Н -П ).

Ну, а если идём, и не упираемся в "стенку", то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База ), Э (Эмиттер ), К (Коллектор ). На зарубежных схемах вывод коллектора помечают буквой C , это от слова Collector - "сборщик" (глагол Collect - "собирать"). Вывод базы помечают как B , от слова Base (от англ. Base - "основной"). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E , от слова Emitter - "эмитент" или "источник выбросов". В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q . В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T . Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента - VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Транзисторы.



Трафарет Visio Транзисторы.

Каждой фигурой трафарета Транзисторы, представлены несколько условных обозначений схожих по функциональным особенностям транзисторов. Изменить условное обозначение, можно в контекстном меню фигуры:


Контекстное меню фигуры условного обозначения транзистора.

 

Некоторые примеры условных обозначений транзисторов, полученных изменение комбинаций команд в контекстном меню фигур:
1. Транзистор биполярный.

Транзистор биполярный PNP.
Транзистор биполярный NPN.
Транзистор биполярный NPN, коллектор соединен с корпусом.
Транзистор лавинный типа NPN.

 2. Транзистор однопереходный.

Транзистор однопереходный с P-базой.
Транзистор однопереходный с N-базой.

 3. Транзистор двухбазовый.

Транзистор двухбазовый типа PNP.
Транзистор двухбазовый типа NPN.
Транзистор двухбазовый типа PNIP с выводом от i-области.
Транзистор двухразовый типа PNIN с выводом от i-области.

 4. Транзистор полевой.

Транзистор полевой с каналом типа N.
Транзистор полевой с каналом типа P.

5. Транзистор полевой с изолированным затвором.

Транзистор полевой с изолированным затвором обедненного типа с N-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обедненного типа с Р-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обедненного типа с N-каналом.
Транзистор полевой с изолированным затвором обедненного типа с Р-каналом.
Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом.

6. Транзистор полевой с двумя изолированными затворами.

Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки.
Транзистор полевой с двумя изолированными затворами обедненного типа с N-каналом с выводом от подложки.
Транзистор полевой с двумя изолированными затворами обогащенного типа с Р-каналом с выводом от подложки.

7. Транзистор биполярный с изолированным затвором.

Транзистор биполярный с изолированным затвором обедненного типа с N-каналом.
Транзистор биполярный с изолированным затвором обедненного типа с Р-каналом.
Транзистор биполярный с изолированным затвором обогащенного типа с Р-каналом.

 

Дополнительно, в контекстном меню фигуры условного обозначения транзистора, можно поменять местами вывода как вертикально так и горизонтально, скрыть или показать маркировку выводов, скрыть символ корпуса.

Пример изменения условного обозначения полевого транзистора, видео:

 


Основы работы с транзисторами

Основы работы с транзисторами

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

ТРАНЗИСТОРЫ

Райан В. 2002 - 09

ФАЙЛ PDF - НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТНОЙ ВЕРСИИ РАБОЧАЯ ТАБЛИЦА НА ОСНОВЕ УПРАЖНЕНИЯ НИЖЕ

Транзисторы

можно рассматривать как разновидность переключателя, так как может много электронных компонентов.Они используются в различных схемах и вы обнаружите, что схема, построенная в школе, Технологический отдел не содержит хотя бы одного транзистора. Они есть центральный в электронике и бывает двух основных типов; НПН и ПНП. Большинство схемы обычно используют NPN. Существуют сотни работающих транзисторов. при разных напряжениях, но все они попадают в эти две категории.

ДВА ПРИМЕРА РАЗЛИЧНЫЕ ФОРМЫ ТРАНЗИСТОРА

Транзисторы производятся разной формы, но у них есть три отведения (ножки).
BASE - вывод, отвечающий за активацию транзистора.
КОЛЛЕКТОР - положительный вывод.
EMITTER - отрицательный провод.
На схеме ниже показан символ транзистора NPN . Они не всегда располагайте так, как показано на схемах слева и справа, хотя вкладка на типе, показанном слева, обычно находится рядом с эмиттер.

Выводы на транзистор не всегда может быть в таком расположении. При покупке транзистор, в направлениях обычно четко указывается, какой вывод является БАЗА, ЭМИТТЕР или КОЛЛЕКТОР.

ПРОСТОЕ ИСПОЛЬЗОВАНИЕ ТРАНЗИСТОРА

ДИАГРАММА 'A'

ДИАГРАММА 'B'

На схеме A показан NPN-транзистор, который часто используется как переключатель.Небольшой ток или напряжение на база позволяет большему напряжению проходить через два других вывода (с коллектора на эмиттер ).

Схема, показанная на диаграмме B , основана на транзисторе NPN. При нажатии переключателя ток проходит через резистор в база транзистора. Затем транзистор позволяет току течет с +9 вольт на 0вс, и лампа загорается.

Транзистор должен получить напряжение на своей базе и до тех пор, пока это случается лампа не горит.

Резистор присутствует для защиты транзистора, так как они могут быть повреждены легко из-за слишком высокого напряжения / тока. Транзисторы необходимы компонент во многих схемах и иногда используется для усиления сигнала.

НАЖМИТЕ ЗДЕСЬ, чтобы узнать больше ТРАНЗИСТОРЫ (ПАРЫ ДАРЛИНГТОНА)

НАЖМИТЕ ЗДЕСЬ ДЛЯ ИНДЕКСА ЭЛЕКТРОНИКИ СТРАНИЦА

Как работают транзисторы (NPN и MOSFET)

Транзистор - это простой компонент, который можно использовать для создания множества интересных проектов.В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .

Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

Но транзистор также можно частично включить, что полезно для создания усилителей.

Как работают транзисторы (тип NPN)

Начнем с классического транзистора NPN. Имеет три ножки:

  • База (b)
  • Коллектор (c)
  • Излучатель (e)

Если вы включите его, через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не может течь.

В приведенном ниже примере схемы транзистор выключен.Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.

Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.

Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.

Поскольку у большинства из нас нет батареи 0,7 В, как нам включить транзистор?

Легко! Часть транзистора база-эмиттер работает как диод.Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения. Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.

Таким образом, вы автоматически получите около 0,7 В, добавив резистор.

Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.

Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:

Выбор значений компонентов

Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Существует связь между величинами двух токов. Это называется коэффициентом усиления транзистора.

Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.

Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, у вас может быть 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.

Резистор какого сопротивления нужен для R1, чтобы ток протекал 0,1 мА?

Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.

Вы можете использовать закон Ома, чтобы найти номинал резистора:

Треугольник закона Ома

Значит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.

R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.

Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):

Как выбрать транзистор

NPN-транзистор является наиболее распространенным из биполярных транзисторов (BJT) .Но есть еще один, называемый PNP-транзистором, который работает точно так же, только все токи имеют противоположное направление.

При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).

БЕСПЛАТНЫЙ бонус: Загрузите основные электронные компоненты [PDF] - мини-книгу с примерами, которые научат вас, как работают основные компоненты электроники.

Как работает МОП-транзистор

MOSFET-транзистор - еще один очень распространенный тип транзисторов. Он также имеет три контакта:

  • Затвор (g)
  • Источник (и)
  • Сток (d)
Символ MOSFET (N-канал)

MOSFET работает аналогично NPN-транзистору, но с одним важным отличием:

В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.

В MOSFET-транзисторе напряжение между затвором и истоком определяет, какой ток может протекать от стока к истоку.

Пример: как включить полевой МОП-транзистор

Ниже приведен пример схемы включения полевого МОП-транзистора.

Значение R1 не имеет решающего значения, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.

Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).

Пороговое напряжение полевого МОП-транзистора - это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.

Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.

Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у вас может быть ток с током 1А, если вы захотите. Но то, что вы к нему подключаете, определяет фактический ток.

Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).

В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.

Как выключить полевой МОП-транзистор?

Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там до тех пор, пока оно не разрядится.

Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.

Как выбрать МОП-транзистор

В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel MOSFET работают одинаково, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.

Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 - два обычных.

При выборе полевого МОП-транзистора следует учитывать две вещи:

  • Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
  • Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от того, что вы делаете. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем вам транзистор?

Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к батарее?

Преимущество транзистора в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большими током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.

Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:

Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.

Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.

Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.

Транзистор как усилитель

Транзистор - это еще и то, что заставляет работать усилители. Вместо того, чтобы иметь только два состояния (ВКЛ / ВЫКЛ), он также может быть где угодно между «полностью включен» и «полностью выключен».

Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.

Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.

Изменяющееся входное напряжение приводит к изменению тока в динамике, что создает звук.

Усилитель с общим эмиттером

Обычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.

Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем базовым настройкам усилителя BJT.

Вопросы?

Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.

транзисторов - learn.sparkfun.com

Добавлено в избранное Любимый 77

Введение

Транзисторы вращают мир электроники.Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).

В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.

описано в этом учебном пособии

После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы. Мы не будем слишком углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .

Это руководство разделено на несколько разделов, охватывающих:

Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET).В этом уроке мы сфокусируемся на BJT , потому что его немного легче понять. Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить фокус - получить твердое представление о NPN - будет легче понять PNP (или даже MOSFET), сравнив, чем он отличается от NPN.

и nbsp

и nbsp

Рекомендуемая литература

Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти уроки:

  • Напряжение, ток, сопротивление и закон Ома - Введение в основы электроники.
  • Основы электричества - Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
  • Electric Power - Одно из основных применений транзисторов - усиление - увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличивать ток или напряжение, узнайте почему в этом руководстве.
  • Диоды - Транзистор - это полупроводниковый прибор, похожий на диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, во многом поможет раскрыть принцип работы транзистора.

Хотите изучить транзисторы?

Мы вас прикрыли!

Комплект запчастей для начинающих SparkFun

В наличии КОМПЛЕКТ-13973

Комплект деталей для начинающих SparkFun - это небольшой контейнер с часто используемыми деталями, который дает вам все основные компоненты, которые вы…

12

Символы, булавки и конструкция

Транзисторы - это в основном трехконтактные устройства.На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:

Единственное различие между NPN и PNP - это направление стрелки на эмиттере. Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:

NPN:

N ot P ointing i N

Обратная логика, но работает!

Конструкция транзистора

Транзисторы полагаются на полупроводники, чтобы творить чудеса.Полупроводник - это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника - насколько легко он позволяет электронам течь - зависит от таких переменных, как температура или наличие большего или меньшего количества электронов. Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.

Транзистор как два диода

Транзисторы являются своего рода продолжением другого полупроводникового компонента: диодов.В некотором смысле транзисторы - это всего лишь два диода со связанными вместе катодами (или анодами):

Диод, соединяющий базу с эмиттером, здесь важен; он совпадает с направлением стрелки на схематическом символе и показывает , в каком направлении должен проходить ток через транзистор.

Изображение диодов - хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает).Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.

(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)

Структура и работа транзистора

Транзисторы построены путем объединения трех разных слоев полупроводникового материала.В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легирование»), а в других электроны удалены (допирование «дырками» - отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного). Транзисторы создаются путем наложения n поверх p поверх n или p поверх n поверх p .

Упрощенная схема структуры NPN. Заметили происхождение каких-либо аббревиатур?

Помахав рукой, мы можем сказать, что электронов могут легко перетекать из n областей в p областей , если у них есть небольшая сила (напряжение), толкающая их. Но переход от области p к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора - та часть, которая делает нашу модель с двумя диодами устаревшей - это тот факт, что электронов могут легко течь от базы p-типа к коллектору n-типа, пока база- эмиттерный переход смещен в прямом направлении (это означает, что база находится под более высоким напряжением, чем эмиттер).

Транзистор NPN предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру). Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большинство испускаемых электронов «собираются» коллектором, который отправляет их в следующую часть цепи.

PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении - от эмиттера к коллектору.Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.

Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше ...


Расширение аналогии с водой

Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, уже привыкли к аналогиям с водой.Мы говорим, что ток аналогичен скорости потока воды, напряжение - это давление, проталкивающее воду по трубе, а сопротивление - это ширина трубы.

Неудивительно, что аналогия с водой может быть распространена и на транзисторы: транзистор похож на водяной клапан - механизм, который мы можем использовать для управления скоростью потока .

Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.

1) Вкл - короткое замыкание

Клапан можно полностью открыть, позволяя воде свободно течь - проходить, как если бы клапана даже не было.

Аналогичным образом, при определенных обстоятельствах, транзистор может выглядеть как короткое замыкание между контактами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.

2) Выкл. - обрыв цепи

Когда он закрыт, клапан может полностью перекрыть поток воды.

Таким же образом можно использовать транзистор для создания разомкнутой цепи между выводами коллектора и эмиттера.

3) Линейное управление потоком

С некоторой точной настройкой клапан может быть отрегулирован для точного управления расходом до некоторой точки между полностью открытым и закрытым.

Транзистор может делать то же самое - линейно управлять током через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).

Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .

Усилительная мощность

Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное количество силы, которое вы можете приложить для поворота этой ручки, может создать силу в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрических сигналов, превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.


Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.


Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение - Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка - Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный - Ток от коллектора к эмиттеру на пропорционален току, протекающему в базу.
  • Reverse-Active - Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно взглянуть на напряжения на каждом из трех контактов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена NPN-транзисторам . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщения

Насыщенность - это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» в транзисторе смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому должен быть V BC . Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, на самом деле V BE должно быть больше порогового напряжения , чтобы войти в режим насыщения.Есть много сокращений для этого падения напряжения - V th , V γ и V d несколько - и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как напряжение насыщения CE, В CE (насыщение) - напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор находился в режиме насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки: выключен, - нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжение эмиттера и коллектора.Оба V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим - это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для коэффициента усиления (коэффициент усиления) транзистора - β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 ... даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Например, если у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель с активным режимом. V BE = V th и I C = βI B .

А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут в устройство , а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α - коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше, чем I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Так, если, например, я C равен 100 мА, то я E равен 101 мА.

Реверс Активный

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в обратном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN - у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.

Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
В E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Задний ход Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, - это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!


Приложения I: переключатели

Одно из самых фундаментальных применений транзистора - использовать его для управления потоком энергии к другой части схемы - используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными блоками для построения схем; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом штыре. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки - ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем нижнего уровня , потому что переключатель - наш транзистор - находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Как и в схеме NPN, база - это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер имеет высокий уровень, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC - 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы
!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор - это просто пара соединенных между собой диодов. Мы смещаем в прямом направлении диод база-эмиттер, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток, но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор или НЕ вентиль:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это фундаментальная конфигурация транзистора, называемая общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с двумя входами :

2-входной логический элемент И на транзисторах.

Если какой-либо из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, вот логический элемент ИЛИ с двумя входами :

Затвор ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост - это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса - движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется Н-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение)
0 1 1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0 0 Остановлено (торможение)

Генераторы

Генератор - это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы - отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала - R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Включенный Q2 позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.

Может быть трудно с головой окунуться. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора равна примерно 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонна схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Приложения II: Усилители

Некоторые из наиболее мощных применений транзисторов включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и вырабатывают более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете понять более сложные усилители.

Общие конфигурации

Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

Общий эмиттер

Общий эмиттер - одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор - выходом.

Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

Общий коллектор (эмиттерный повторитель)

Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

Эта схема действительно имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательное влияние схемы нагрузки на схему, управляющую ею.

Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

Общая база

Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор - выходом. База общая для обоих.

Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).

Схема с общей базой лучше всего работает как буфер тока . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

Резюме

Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

9090
Общий эмиттер Общий коллектор Общая база
Коэффициент усиления напряжения Средний Низкий Высокий
Коэффициент усиления по току Средний Высокий Низкое сопротивление Средний Высокий Низкий
Выходной импеданс Средний Низкий Высокий

Многокаскадные усилители

Мы могли бы продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

Дарлингтон

Усилитель Дарлингтона соединяет один общий коллектор с другим, создавая усилитель с высоким коэффициентом усиления по току .

Выходное напряжение примерно равно входному напряжению (минус 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 - более 10 000!

Пара Дарлингтона - отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

Дифференциальный усилитель

Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

Вот основа дифференциального усилителя:

Эта схема также называется длиннохвостой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

Двухтактный усилитель

Двухтактный усилитель - полезный «заключительный каскад» во многих многокаскадных усилителях. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных схемах (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.

Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный - отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

Собираем их вместе (операционный усилитель)

Давайте посмотрим на классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

  • Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
  • Q11 и Q12 являются частью второго этапа. Q11 - это общий коллектор, а Q12 - это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на конечный каскад.
  • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) - это двухтактный ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
  • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие схемы транзисторов, вы на правильном пути!


Покупка транзисторов

Теперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor's Kit, чтобы воплотить в жизнь полученные вами новые знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах.

Наши рекомендации:

N-канальный полевой МОП-транзистор 60 В, 30 А

В наличии COM-10213

Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET - это то, что вам нужно.Это ве…

4

Пакет дополнений SparkFun Inventor's Kit - v4.0

На пенсии КОМПЛЕКТ-14310

С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены…

На пенсии

Ресурсы и дальнейшее развитие

Если вы хотите глубже изучить транзисторы, мы бы порекомендовали несколько ресурсов:

  • Начало работы в электронике Форрест Мимс - Мимс - мастер объяснения электроники простым для понимания и применимым образом.Обязательно посмотрите эту книгу, если вы хотите более подробно познакомиться с транзисторами.
  • LTSpice и Falstad Circuit - это бесплатные программные инструменты, которые вы можете использовать для моделирования цепей. Цифровые эксперименты со схемами - отличный способ научиться. Вы получаете все эксперименты, без боли макетирования или страха взорвать материал. Попробуйте собрать воедино то, о чем мы говорили!
  • 2N3904 Техническое описание - Еще один способ узнать о транзисторах - это изучить их техническое описание.2N3904 - действительно распространенный транзистор, который мы используем постоянно (а 2N3906 - его брат по PNP). Ознакомьтесь с таблицей данных, чтобы узнать, узнаете ли вы какие-нибудь знакомые характеристики.

Кроме того, наш собственный технический директор Пит снял серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах:

.

Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар!

Идем дальше

Или, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:

  • Интегральные схемы - Что вы получите, если объедините тысячи транзисторов и поместите их в черный ящик? IC!
  • Регистры сдвига - регистры сдвига - одна из наиболее распространенных интегральных схем. Узнайте, как с помощью транзистора мигать десятки светодиодов всего за несколько входов.
  • Руководство по подключению мини-полевого транзистора
  • - это действительно простой щиток Arduino, который использует 8 полевых МОП-транзисторов для управления 8 сильноточными выходами.Это хороший пример использования транзистора в качестве переключателя из реальной жизни.
  • Проектирование печатных плат с EAGLE - Выведите свои новые навыки работы с транзисторами на новый уровень. Сделайте из них печатную плату! В этом руководстве объясняется, как использовать бесплатное программное обеспечение (Eagle) для проектирования печатных плат.
  • Как паять. Если вы разрабатываете печатную плату, вам также нужно знать, как паять. Узнайте, как паять через отверстия в этом руководстве.

Или посмотрите некоторые из этих сообщений в блоге, чтобы найти идеи:

на транзисторах! Руководство для учителей, урок 4


Использование транзисторов: давайте перейдем к транзисторам!

Обзор

На этом уроке студенты строят две схемы и исследуют, как работают транзисторы.

Цели

• Наблюдать за работой транзистора в простой схеме

• Чтобы понять усиление - небольшой ток на входе транзистора управляет большим током на его выходе.

Фон

Когда Bell Labs представила транзистор в июне 1948 года, представитель с гордостью объявил: «Этот цилиндрический объект ... может усиливать электрические сигналы ... Он полностью состоит из холодных твердых веществ.«

Холодное твердое вещество, благодаря которому возможен транзистор, - это полупроводник, класс материалов, включающий кремний и германий. Полупроводники обычно очень плохо проводят электричество. Но с добавлением крошечных количеств других элементов, которые являются носителями электрического тока, они могут стать хорошими проводниками.

Первым транзистором, изобретенным в 1947 году, был точечный транзистор. Уильям Шокли усовершенствовал эту конструкцию со своим переходным транзистором, трехслойным сэндвичем из различных типов полупроводников.

Схема иллюстрирует базовую конструкцию переходного транзистора NPN. Два слоя полупроводника N-типа, эмиттер и коллектор, образуют сэндвич со слоем полупроводника P-типа, называемым базой. Полупроводники P- и N-типа сделаны с разными примесями, и название указывает на доминирующий тип носителя заряда.

Интерфейс между слоями, называемый P-N переходом, позволяет транзистору функционировать либо как изолятор, либо как проводник.Если коллектор и эмиттер подключены к батарее, электрические заряды на P-N переходах образуют электрический барьер, и между эмиттером и коллектором ток не течет. Транзистор действует как изолятор или выключатель.

Когда на базу подается положительное напряжение, электроны вытягиваются из переходов, и они больше не действуют как барьеры. Теперь электроны могут течь от эмиттера через базу к коллектору. Транзистор действует как проводник или включенный переключатель.(Если напряжение, приложенное к базе отрицательное, транзистор снова отключается.)

Транзисторы не создают электрический ток, они только управляют подводимым к ним электрическим током. Входной ток на базе управляет выходным током, протекающим между эмиттером и коллектором. Транзистор может включаться или выключаться при включении или выключении тока базы. Если базовый ток меняется, то меняется и выходной ток, именно так транзистор работает как усилитель. Это похоже на то, как вы управляете потоком воды из крана.Легким движением руки вы можете включить или выключить воду или отрегулировать поток между струйкой и стремительным потоком.

Наиболее ранние коммерческие транзисторы были переходными транзисторами, и именно они используются в описании деятельности на следующих двух страницах. Тем не менее, наиболее распространенный современный транзистор, который миллионами используется в компьютерных микросхемах, - это полевой транзистор на основе оксида металла и полупроводника (MOS). Транзистор развивался с момента его изобретения, но принцип малого тока, управляющего большим, - это тот же эффект, который Бардин, Браттейн и Шокли впервые обнаружили в 1947 году.

Задействовать

Как объясняется в Transistorized !, изобретение как транзистора, так и вакуумной лампы возникло из-за необходимости усиления слабого электрического тока. Начните с демонстрации слабого тока, который учащиеся могут распознать и испытать. Подключите цепь, используя провод, батарею 9 В, светодиод, резистор и микроамперметр для измерения тока. Попросите учащихся отметить, что происходит, когда они сначала замыкают цепь, соединяя выводы вместе (относительно большой ток и светодиоды), а затем, держа провода в руках (очень слабый ток, и светодиод не горит).Безопасность: Сила тока в этой цепи достаточно мала для безопасного выполнения этого действия, но предупредите учащихся, чтобы они не пытались выполнять это действие с другими проводами или источниками питания.

Попросите учащихся предложить свои идеи о том, что такое усилитель и как усилить ток. Обратите внимание на то, что большинство электронных устройств работают от небольшого тока, который усиливается.

Изучить

Попросите учащихся выполнить задание, чтобы увидеть, как транзисторы усиливают ток.

Оценить

После задания обсудите результаты учащихся и вопросы для задания.


УРОК 4 ДЕЯТЕЛЬНОСТЬ

Что вы собираетесь делать

Вы собираетесь построить две простые транзисторные схемы, каждая из которых использует один транзистор. Эти схемы позволят вам наблюдать за работой транзистора в качестве усилителя, как это делал Уолтер Браттейн в Bell Labs зимой 1947 года. В первой схеме вы будете использовать транзистор для управления яркостью света; во втором транзистор превратит ток, протекающий через ваше тело, в звук!

Часть 1: Light Touch

Постройте первую схему, используя единственный транзистор, светодиод, источник питания и сопротивление.Яркость светодиода будет указывать на соотношение между током, идущим к базе транзистора - его входом - и током, протекающим от коллектора транзистора к эмиттеру - его выходом.

Что вам понадобится

• Аккумулятор 9 В и зажим с выводами

• макет

• соединительный провод

• Светодиод

• Резистор 220 Ом

• Резистор 100 кОм

• транзистор, 2N2222A (тип Si, NPN, номер детали Radio Shack 276-2009)

• микроамперметр (диапазон 0–50 000 А)

Как это сделать

1. Работайте в группах по три или четыре человека. Соберите схему, показанную на схеме. Совместите выводы транзистора со схемой и определите базу, эмиттер и коллектор. Посоветуйтесь со своим учителем, если вы не уверены в связях.

2. Замкните входную цепь двумя выводами, используя каждый из перечисленных ниже методов.

• осторожно сжимая провода

• плотно сжимая провода

• погружение проводов в воду

• увеличение расстояния между выводами в воде

• проведите карандашом темную линию и прикоснитесь к ней проводами.

• увеличение расстояния между грифелями на штрихе карандаша

В своем лабораторном журнале составьте таблицу, аналогичную показанной, в которой следует записывать интенсивность света для каждого метода. Вы можете использовать такие термины, как тусклый, средний и яркий, или развернуть числовую шкалу с 1 = 5 очень тусклым и 5 = 5 очень ярким. (Включите в свою таблицу столбец интенсивности звука для Части 2.)

3. Нарисуйте копию принципиальной схемы в своем лабораторном журнале.Используйте стрелки, чтобы показать направление, в котором ток течет по цепи. Помните, что текущий поток изменяется от положительного к отрицательному. Пометьте входную и выходную цепи транзистора.

4. Повторите один из методов, который дает достаточно яркий свет. Поместите микроамперметр последовательно с входными проводами и запишите показания. Затем переместите микроамперметр последовательно со светодиодом и запишите это показание.

FYI

P и N в номенклатуре транзисторов указывают тип носителей заряда, которые существуют в материалах, из которых состоит транзистор.В материале N-типа носителями являются отрицательно заряженные электроны, а в материале P-типа носителями являются положительно заряженные. Это места, где могли существовать электроны, и называются дырками и .

Что вы узнали?

1. Какие методы позволили свету светиться наиболее ярко? самый тусклый?

2. Какие методы позволяли проходить через них наиболее актуальным? в мере? Откуда вы знаете?

3. Насколько хороша была ваша схема усилителя? Насколько выходной ток был больше входного? Откуда появился «дополнительный» ток?

Часть 2: Звуковая машина человека

Теперь вы измените схему, добавив новые детали.Транзистор очень чувствителен к изменениям на входе. Входной ток может колебаться тысячи - даже миллионы - раз в секунду, и выходной ток будет реагировать соответствующим образом. Дополнения к схеме будут производить колебательный ток, изменяющийся несколько тысяч раз в секунду, на входе транзистора. Вы услышите результат через динамик.

Что вам понадобится

(в дополнение к материалам части 1)

• проволока

• Резистор 10 кОм

• Резистор 100 кОм

• переключатель

• конденсаторы (0.1 мкФ и 0,01 мкФ)

• 1K CT: трансформатор на 8 Ом (Radio Shack Cat # 273-1380)

• Динамик 8 Ом

Как это сделать

1. Соберите схему, показанную на схеме. Вы можете припаять или использовать обычные платы IC Experimenter.

2. Завершите цепь с проводами, используя каждый метод, указанный в Части 1. Запишите интенсивность звука для каждого метода. Вы можете использовать такие термины, как гул, крик и визг, или разработать числовую шкалу с 1 5 очень низким и 5 5 очень громким.

3. Нарисуйте копию принципиальной схемы в своем лабораторном журнале. Используйте стрелки, чтобы показать направление, в котором ток течет по цепи. Пометьте входную и выходную цепи транзистора.

FYI

МОП-транзистор - современный транзистор, используемый в компьютерных микросхемах - по работе аналогичен тому, который впервые предложил Шокли. Он состоит из полупроводника, по которому может течь ток, и электрода, изолированного от этого полупроводника.Напряжение, приложенное между изолированным электродом и полупроводником, регулирует ток через полупроводник. Принцип аналогичен протеканию воды по гибкой трубке. Когда трубка сжимается, поток воды уменьшается. Сожмите достаточно сильно, и поток прекратится. В МОП-транзисторе напряжение, приложенное к управляющему электроду, вызывает сжатие.

Что вы узнали?

1. Какие методы производили самые громкие звуки? самый мягкий?

2. Какие методы позволяли проходить через них самым актуальным? в мере? Откуда вы знаете?

3. Обсудите со своей группой преимущества, которые, по вашему мнению, могут иметь транзисторные переключатели перед механическими. Какое качество транзисторов - высокая надежность, малое усиление тока или мгновенный отклик - по вашему мнению, является наиболее важным для транзисторов, используемых в компьютерах? в медицинском оборудовании, таком как кардиостимуляторы? в управляемых ракетах?

Попробуй!

  • Используйте свою схему, чтобы проверить, насколько хорошо другие методы и материалы проводят электричество.
  • Если возможно, подключите к вашей цепи осциллограф и проанализируйте волны, которые вы слышите.
  • Используя закон Ома, I = V / R, вычислите токи в первой цепи.
  • Поменяйте полярность батареи и повторяйте каждое действие. Что происходит?

Эти учебные материалы стали возможными благодаря гранту Lucent Technologies Foundation и могут быть продублированы для некоммерческого использования в образовательных целях.

Чтобы заказать видеосвязь, позвоните в PBS Learning Media по телефону 1-800-344-3337.


Авторские права 1999 г., ScienCentral, Inc. и Американский институт физики. Нет часть этого веб-сайта может быть воспроизведена без письменного разрешения. Все права защищены.

Как работают транзисторы? - Объясни, что материал

Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.

Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, - крошечных переключателей, которые позволяют вам думать и запоминать вещи.Компьютеры содержат миллиарды миниатюрных «клеток мозга». Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления. изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?

Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри.(Технически, если вас интересуют более необычные элементы, это кремниевый транзистор PNP-усилителя 5401B. Я объясню, что все это означает сейчас.)

Что на самом деле делает транзистор?

Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки.Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький громкоговоритель, который находится у вас в ухе.

Транзистор действительно прост - и действительно сложен. Давайте начнем с простая часть. Транзистор - это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:

  • Когда он работает как усилитель, требуется в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другом.Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.«
  • Транзисторы также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон - это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, полезно знать, из чего сделан транзистор.

Как делается транзистор?

Фото: кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний - это полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающего электричество), ни изолятор (что-то вроде пластика, останавливающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны - те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.В кремнии, обработанном таким образом, меньше таких "свободные" электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).

Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, которое изначально было нейтральным - и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободных электронов - те, которые могут свободно перемещаться и помогать переносить электрический ток.

Кремниевые бутерброды

Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.

Предположим, мы соединяем кусок кремния n-типа с частью p-типа кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.

Как работает соединительный транзистор

Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).

Теперь предположим, что мы используем три слоя кремния в нашем сэндвиче вместо из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен - другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.

Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы назовем базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электронов (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).

Другой способ взглянуть на это - сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.

Транзистор работает, когда электроны и дырки начинают двигаться через два перехода между кремнием n-типа и p-типа.

Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:

Малый ток, который мы включаем на базе, создает большой ток поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или "полярностей") электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.

Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).

Как работает полевой транзистор (FET)

Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналогично коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).

Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:

Для полноты картины отметим, что полевой МОП-транзистор является униполярным. транзистор потому что только один вид («полярность») электрического заряда участвует в его работе.

Как работают транзисторы в калькуляторах и компьютерах?

На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?

Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя "вводные" (то, что вы знаете) о погоде и о том, что у вас в коридоре, вы можете принять такое решение: "Если идет дождь И я есть зонтик, я пойду в магазины ". Это пример булевой алгебры, в которой используется так называемое И "оператор" (слово "оператор" - это всего лишь небольшой математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. "Если ветрено ИЛИ идет снег, тогда я надену пальто "- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу ". Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.

Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит это требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (включенные или выключенные) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы - это основная технология, лежащая в основе компьютерных микросхем памяти.

Кто изобрел транзистор?

Изображение: оригинальная конструкция точечного транзистора, изложенная в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).

Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США - но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 г. Хотя Шокли сыграл большую роль в этом проекте, он был разъяренный и взволнованный из-за того, что его оставили в стороне. Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора - устройство гораздо лучше, чем точечный транзистор.

В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.

Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими научными достижениями мира награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.

Транзисторы 101

Транзисторы 101 Изучение транзисторов
(через простую схему драйвера светодиода)

Светодиод

Светодиод - это устройство, показанное выше. Кроме красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод.Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.

Чтобы светодиод заработал, нужен источник питания и резистор. Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором. Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.

Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.

Шаг 1.) Сначала вам нужно найти положительная ножка светодиода. Самый простой способ сделать это - поискать нога, которая длиннее.

Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный - в другом. (На картинке ниже ряды вертикальные.)

Шаг 3.) Поместите одну ногу 220 резистор Ом (неважно, на какой ноге) в том же ряду, что и отрицательный ножка светодиода.Затем поместите другую ножку резистора в пустой ряд.

Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это. Затем вставьте положительный (красный провод) конец адаптера питания в боковой ряд с красной полосой рядом.

Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, поскольку он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду).Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду). См. Картинку ниже если необходимо.

Макетная плата должна выглядеть как на картинке ниже.

Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться. Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод.Должно не загорается. Ток не может течь от отрицательной ветви светодиода к положительная нога.

Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод. Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.

Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]

Закон Ома можно использовать с резисторами найти ток, протекающий по цепи.Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление). Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать то что при горит светодиоде на нем падение напряжения 1.9 (Кстати: падение напряжения зависит от типа светодиода). Это означает, что если положительный вывод подключен к 5 вольт, отрицательный нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета силы тока.Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0,0014 Ампер = 14 мА

Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор. Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться.Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального номинального тока ... так что не используйте резистор, который настолько мал что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).

Далее мы хотим иметь возможность повернуть светодиод включается и выключается без изменения схемы. Для этого мы научимся использовать другой электронный компонент, транзистор.

Транзистор

Транзисторы - основные компоненты во всей современной электронике.Это просто переключатели, которые мы можем использовать для включения и выключения. Несмотря на то, что они просты, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (именно поэтому эти чипы так чертовски горячий). Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.

Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:

Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E).Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).

Символ транзистора

В электрические схемы (схемы) для представления NPN транзистора

Базовая схема

База (B) - переключатель включения / выключения для транзистора.Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру. (Переключатель выключен.)

Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.

Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода.Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В коллекторная ножка должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки). Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.

Далее поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть, как на картинке ниже.

Теперь наденьте один конец желтого джемпера. провод в положительном ряду (рядом с красной линией), а другой конец - в ряд с ножкой резистора 100 кОм (конец не подключен к База). Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе.Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) с небольшим током от Вход.

Назад к закону Ома

Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод.Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:

1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.

2.) Если транзистор включен, напряжение на коллекторе на 1,6 вольт выше, чем напряжение эмиттера.

Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:

Итак, ток, протекающий через резистор 100 кОм, равен (5-0.7) / 100000 = 0,000043 А = 0,043 мА.

Ток, протекающий через резистор 220 Ом, равен (3,1 - 1,6) / 220 = 0,0068 А = 6,8 мА.

Если мы хотим, чтобы ток протекал больше через светодиод мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм. Это означает , что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Несмотря на то Выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.

Примечание :
Это руководство в значительной степени основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com. (Посмертное спасибо ребятам из лаборатории игуаны).

Что такое транзистор? Определение, символ, клеммы и условия эксплуатации

Определение: Транзистор - это полупроводниковое устройство, которое передает слабый сигнал от цепи с низким сопротивлением к цепи с высоким сопротивлением. Слова trans означают свойство передачи и istor означают свойство сопротивления , предлагаемое соединениям. Другими словами, это переключающее устройство, которое регулирует и усиливает электрический сигнал, например напряжение или ток.

Транзистор состоит из двух PN диодов, соединенных спина к спине. Он имеет три вывода: эмиттер, базу и коллектор. Основа - это средняя часть, состоящая из тонких слоев. Правая часть диода называется эмиттерным диодом, а левая часть - коллекторно-базовым диодом. Эти имена даны по общему выводу транзистора. Эмиттерный переход транзистора подключен к прямому смещению, а переход коллектор-база подключен к обратному смещению, что обеспечивает высокое сопротивление.

Символы транзисторов

Существует два типа транзисторов, а именно транзистор NPN и транзистор PNP. Транзистор, который имеет два блока из полупроводникового материала n-типа и один блок из полупроводникового материала P-типа, известен как транзистор NPN. Точно так же, если материал имеет один слой материала N-типа и два слоя материала P-типа, то он называется транзистором PNP. Символ NPN и PNP показан на рисунке ниже.

Стрелка в символе указывает направление протекания обычного тока в эмиттере с прямым смещением, приложенным к переходу эмиттер-база.Единственная разница между транзисторами NPN и PNP заключается в направлении тока.

Клеммы транзисторов

Транзистор имеет три вывода: эмиттер, коллектор и базу. Клеммы диода подробно описаны ниже.

Эмиттер - Секция, которая снабжает большую часть основного носителя заряда, называется эмиттером. Эмиттер всегда подключен с прямым смещением относительно базы, так что он подает основной носитель заряда на базу.Переход эмиттер-база вводит большое количество основных носителей заряда в базу, потому что она сильно легирована и имеет умеренный размер.

Коллектор - Секция, которая собирает большую часть основного носителя заряда, подаваемого эмиттером, называется коллектором. Коллектор-база всегда имеет обратное смещение. Его основная функция - удалить большинство зарядов из соединения с базой. Коллекторная часть транзистора умеренно легирована, но больше по размеру, так что она может собирать большую часть носителей заряда, подаваемых эмиттером.

База - Средняя часть транзистора известна как база. База образует две цепи: входную цепь с эмиттером и выходную цепь с коллектором. Цепь эмиттер-база смещена в прямом направлении и обеспечивает низкое сопротивление цепи. Коллектор-база имеет обратное смещение и обеспечивает более высокое сопротивление цепи. База транзистора слегка легирована и очень тонкая, из-за чего основной носитель заряда подается на базу.

Работа транзистора

Обычно для изготовления транзисторов используется кремний из-за их высокого напряжения, большего тока и меньшей температурной чувствительности. Часть эмиттер-база, смещенная в прямом направлении, составляет базовый ток, протекающий через базовую область. Величина базового тока очень мала. Ток базы заставляет электроны перемещаться в область коллектора или создавать отверстие в области базы.

База транзистора очень тонкая и слегка легированная, из-за чего в ней меньше электронов по сравнению с эмиттером.Несколько электронов эмиттера объединяются с отверстием в основной области, а оставшиеся электроны перемещаются к области коллектора и составляют ток коллектора. Таким образом, можно сказать, что большой ток коллектора достигается за счет изменения базовой области.

Условия эксплуатации транзистора

Когда эмиттерный переход находится в прямом смещении, а коллекторный переход находится в обратном смещении, то говорят, что он находится в активной области. Транзистор имеет два перехода, которые могут быть смещены по-разному.Различная рабочая проводимость транзистора показана в таблице ниже.

Состояние Эмиттерный переход (EB) Коллекторный переход (CB) Область работы
FR Прямое смещение Обратное смещение Активное
FF Прямое смещение Прямое смещение Насыщенность
RR Обратное смещение Обратное смещение Отсечка
RF с обратным смещением с прямым смещением с обратным смещением

FR - В этом случае переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *