Содержание

КАК ИЗ 12 ВОЛЬТ СДЕЛАТЬ 36 ВОЛЬТ видео онлайн

Видео:

Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провож

Рассмотрим, как понизить напряжение любого блока питания постоянного тока или отдельного участка элек

В ролике рассказываю о результатах эксперимента по применению повышающего преобразователя напряжения

Подписывайтесь на нашу группу Вконтакте — и Facebook — * В ...

В этом видео, покажу, как собрать очень простой регулятор напряжения на одном полевом транзисторе и пер

Помочь развитию канала сбербанк 2202 2024 1444 0184.

Как поднять или понизить вольтаж блока питания ✓Возвращай % с каждой покупки на aliexpress epn

Для очередной моей самоделки делаю понижающий преобразователь из четырех компонентов. Микросхема LM7812.

Не смотря на то, что в видео будет рассказано о конкретном случае понижения напряжения питания с 12 до 5 в

Простой способ переделать светодиодную лампочку с напряжения в 220 вольт на напряжение 12 вольт. И Очень п

Простая схема, которая позволит многократно повысить напряжение и даже зажечь светодиодную лампу от ба

Как и из чего собрать аккумуляторную батарею нужного напряжения и нужной емкости? Что для этого необход

Зрители попросили меня собрать и сделать обзор на самый простой регулятор постоянного напряжения. В эт

Всё, чтобы самому собрать блок питания: 1) Микросхема LM317T: 2) Резисторы 2 Вт: ...

Все мои плейлисты канала Peling ru -

Видео создано по материалам сайта: Реклама на канале: ...

Хороший, а главное не дорогой и хорошо зарекомендовавший себя, преобразователь напряжения из Китая. Voltag

#Трансформатор #Электрика.

Заходите на мой сайт ru/

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус

В прошлом обзоре блока питания я затронул тему того, как выбрать правильный блок питания. Если честно, то я немного не ожидал, что эта тема окажется такой нужной. В комментариях, а еще больше в личной переписке, меня спрашивали и о других нюансах выбора, принципах работы и о алгоритме поиска неисправностей.
В этом обзоре я постараюсь ответить на большую часть этих вопросов, а также возможно затрону тему новых вопросов 🙂

Начну с того, что для одного из моих ближайших проектов потребовался блок питания на 36 Вольт 10 Ампер. Вернее потребовалось их два, и заказал их два, но так как они абсолютно одинаковые, то и обзор будет на один блок.
Для чего и зачем я пока писать не буду, уж извините, но этот блок питания мы разберем «по винтикам».

Как всегда, сначала упаковка.
Пришли блоки питания (помимо общей упаковки) в обычных картонных коробках белого цвета, опознавательные знаки на упаковке отсутствовали, просто две большие коробки.
На вид абсолютно одинаковые, впрочем я бы скорее удивился если бы они были разными 🙂

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Основное отличие импульсных блоков питания от тех, которые используют 50Гц трансформаторы — размер. Второе отличие — цена.
50Гц трансформатор на такую мощность будет иметь гораздо большие размеры и хоть он по конструкции намного проще, но будет иметь большую цену, так как содержит больше меди и железа.
Кроме того импульсные БП имеют больший КПД, потому в последнее время получили большое распространение, хотя «железные» трансформаторы отличаются большей надежностью.
Но стоит учитывать, что брендовые БП имеют обычно еще большую сложность и цену, так как имеют хорошую элементную базу, фильтры питания, корректоры мощности и т.п, потому чаще люди пользуются более простыми вариантами от небольших китайских фирм.
Один из таких блоков питания мы и рассмотрим в этом обзоре.
Если до этого мы рассматривали блоки питания небольшой мощности, то в этот раз я расскажу про довольно мощный вариант БП мощностью 360 Ватт, хотя на фоне вариантов Бп мощностью 800-2000 Ватт и он кажется «малышом».

Как я выше писал, импульсные БП имеют чаще небольшие размеры.
Данный блок питания имеет высоту примерно как у коробка спичек — 49мм. Длина блока питания 215мм, ширина — 114мм.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
На одной из боковых граней корпуса присутствует маркировка:
S-360-36
Мощность блока питания 360 Ватт
Выходное напряжение — 36 Вольт
Максимальный выходной ток — 10 Ампер
Входное напряжение — 110/220Вольт ±15%

На второй стороне присутствует переключатель диапазона входного напряжения, в наших странах неактуальный и даже вредный, так как переключив в режим 110 Вольт и включив в стандартную сеть 220-230 Вольт мы получим скорее всего громкий бах.
Я обычно при ремонте таких БП сразу выкусываю этот переключатель, просто в целях безопасности.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Сверху корпуса установлен небольшой вентилятор. При таких мощностях блоки питания уже крайне редко делают с пассивным охлаждением, мне такие попадались всего несколько раз, но из-за сложности конструкции они имеют уже очень высокую цену, потом очень мало распространены.
Рядом присутствует надпись, указывающая, что вентилятор управляется автоматически в режиме вкл/выкл в зависимости от температуры.
Немного забегая вперед скажу, что никакой автоматики нет, без нагрузки он вращается медленно, но стоит хоть чуть чуть нагрузить БП, обороты сразу возрастают до штатных независимо от температуры.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
В прошлом обзоре я писал, что блоки питания, рассчитанные на большой выходной ток, обычно имеют разделенные клеммы для подключения нагрузки. Так сделано в этом БП, здесь установлено по три клеммы на плюсовой и минусовой контакты.
Входные клеммы стандартны — Фаза, ноль, заземление.
Также слева установлен светодиод индикации работы блока питания и подстроечный резистор для корректировки выходного напряжения.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Клеммник имеет защитную крышку, которая открывается на 90 градусов, а в закрытом состоянии защелкивается.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
У меня есть привычка разбирать БП перед первым включением. Делаю я это в целях безопасности, так как бывали разные случаи.
Внутри данного БП на вид все нормально, за исключением небольшого нюанса, который я заметил сразу. Дело в том, что выходной дроссель имеет большие размеры и почти касается верхней крышки, это не очень безопасно. Током конечно не убьет, но БП может пострадать, я бы рекомендовал проложить дополнительную изоляцию между дросселем и крышкой. Такой проблемой страдают многие недорогие блоки питания, так что это не косяк данного блока.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Как я писал выше, охлаждается блок питания посредством небольшого вентилятора.
Судя по маркировке, вентилятор имеет размеры 60х15мм, т.е. 60мм это длина и ширина, а 15мм — толщина.
Вентилятор рассчитан на 12 Вольт. к сожалению здесь применен недорогой вентилятор, кроме того имеющий подшипники скольжения и если вы планируете применить где нибудь такой БП, то для длительной беспроблемной работы я бы заменил его на что нибудь более правильное.
Я уже как то писал в своих обзорах, что чаще всего применяю вентиляторы фирмы Sunon, на мой взгляд у них довольно высокое качество и надежность.
Из хорошего можно сказать то, что вентилятор в данном БП довольно тихий, что очень хорошо.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Силовые полупроводники прикручены к алюминиевому корпусу блока питания через небольшие теплораспределяющие проставки.
Мне не очень нравится подобный вид крепления полупроводников, но так делают почти все. например в блоках питания фирмы Менвелл транзистор крепится точно также, правда там в целях безопасности на него одет резиновый колпачок.
Так как данный блок питания двухтактный, то высоковольтных транзисторов два, а не один.
Выходной диод один, хотя на плате присутствует место под установку второго, подключаемого параллельно первому. Второй устанавливается в блоках, рассчитанных на меньшее напряжение и больший ток, но никто не мешает поставить и здесь второй, но это уже скорее доработка, а измерения покажут, имеет ли смысл данная операция.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Осмотр закончили, включаем и производим небольшую проверку.
Цель данной проверки, выяснить пределы регулировки выходного напряжения и вставить на выходе БП то напряжение, на которое он рассчитан, ну или то, которое необходимо.
1. при включении БП показал на выходе 36.8 Вольта.
2. минимальное напряжение, которое можно выставить — 34.53, я рассчитывал, что минимальный порог будет ниже, для моего применения придется дорабатывать.
3. А вот максимальный порог сильно удивил. Когда крутил, то даже стало немного не по себе. 52.3 при штатном 36. Ожидал что БП накроется, пока я фотографирую, но все прошло нормально, хотя я не рекомендую выставлять такое напряжение на выходе, чаще нормальным считается ±10% от штатного.
4. Выставляем на выходе 36 Вольт. Судя по диапазону перестройки уже можно понять, что регулировка очень грубая, потому мне пришлось немного помучаться чтобы выставить ровно 36 Вольт, хотя в реальной жизни это смысла не имеет и сделано было только для обзора :)36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Разбираем блок питания дальше.
Транзисторы довольно неплохо прилипли к своей пластинке, отдирать их не хотелось потому я открутил и теплораспределительную пластинку :)36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
К плате особых нареканий не возникло, обычная недорогая сборка, бывало и хуже, но бывало и лучше, по пятибальной шкале на 3 балла.
Но один дефект все таки нашел, была не очень хорошая пайка одного из контактов трансформатора. Непропай в данном месте ни к чему фатальному бы не привел, но расстроил.
Дорожки. по которым течет значительный ток, дополнительно пролужены припоем.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Естественно я начертил схему данного БП, делал я это только для обзора, так как схемотехнику этих блоков питания знаю хорошо и обычно в схеме не нуждаюсь, но возможно кому нибудь будет полезно, так как такая схема (с некоторыми небольшими изменениями) используется в большинстве БП такой мощности.
Но хотя я и знаю хорошо эту схемотехнику, перечерчивать схему по плате было не очень удобно и заняло больше времени, чем я планировал.
Схема практически повторяет схему классического компьютерного блока питания и как показала практика, является очень ремонтопригодной.
На схеме присутствует шунт для измерения тока, на схеме его сопротивление указано как 0.1 Ома, но на самом деле при прозвонке он скорее был ближе к перемычке.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Дальше я решил немного рассказать о том, как вообще работают такие блоки питания, тем более что многие узлы являются типичными для почти всех импульсных блоков питания.
На этой блок схеме обозначены основные узлы импульсного блока питания. Правда сейчас задающий генератор и схема управления выполняются в одной микросхеме, а иногда микросхема содержит с высоковольтный транзистор.
Иногда по входу импульсного блока питания устанавливают Корректор Коэффициента Мощности, а в мощных БП он является обязательным, если БП соответствует европейским нормам, но об этом я расскажу как нибудь в другой раз, так как в недорогих БП он почти не встречается.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
На основании этой блок схемы я дальше и буду рассказывать об этом БП, но для начала немного теории о процессах, происходящих в импульсном блоке питания.
Ключевое в работе импульсного блока питания, это принцип ШИМ стабилизации, правда стоит отметить, что вполне существуют и импульсные блоки питания без этого, но они являются не стабилизированными, т.е. выходное напряжение зависит от мощности нагрузки и входного напряжения.
ШИМ регулирование это изменение соотношения времени включенного состояния коммутирующего элемента к выключенному состоянию.
Если на графике, то выглядит это так:
Если «на пальцах», то я недавно объяснял в личке этот принцип стабилизации, попробую повторить здесь.
Многие наверное помнят задачки типа — через одну трубу в бассейн поступает вода со скоростью х литров в минуту, через другую выливается со скоростью Y литров в минуту.
Вот на этом принципе я и объясню как это работает.

Для начала представим, что существует очень большая емкость (электрическая сеть), маленькая емкость (конденсатор выходного фильтра питания), ну и всякие мелочи для переправки воды из одного места в другое.
На бочке установлен кран, через него вода убегает к потребителю, ну или энергия в нагрузку.
Пополнять бочку мы можем только определенное количество раз в минуту (бывают альтернативные варианты, но о них пока не будем), например 100 раз.
Наша задача, поддерживать уровень воды в бочке всегда постоянным.
Так как пополнять может только определенное количество раз в минуту, то значит пополнять придется разными объемами.
К примеру если потребление маленькое, то будет достаточно обычных чашек, а если кран открыли на полную, то придется использовать ведра.
В ШИМ регулировке это означает меньшую или большую ширину открытого состояния силового элемента.
Если кран закрыт, то пополняем бочку наперстками, есть же еще испарение (утечки, нагрузка цепи обратной связи т.п.) которое надо компенсировать 🙂

Используя узел обратной связи, контроллер отслеживает напряжение на выходе блока питания и подстраивает мощность, передаваемую в нагрузку так, чтобы напряжение на выходе БП оставалось неизменным.
Кстати, таким способом можно сделать обратную связь по чем угодно.
Например в драйверах светодиода контроллер следит за током.
Можно следить за температурой, подстраивая скорость вентилятора, за освещением, регулируя яркость лампочки и т.д. и т.п.

На этой диаграмме показано:
1. Ток в цепи трансформатора (условно)
2. Сигнал управления ключевым транзистором
3. Напряжение на выходном конденсаторе.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Существует довольно много топологий построения импульсных блоков питания, я нарисовал несколько самых распространенных.
Немного расскажу о них.
1. Обратноходовый преобразователь. Применяется там, где хорошо иметь большой диапазон входного напряжения и небольшая мощность (до 100-150 Ватт). Скорее всего Бп вашего планшета или монитора применена именно эта схема.
2. Полумостовой преобразователь. Также очень распространенная схемотехника. Думаю что я буду не сильно далек от истины, если скажу, что в 95% компьютерных БП применена именно такая схемотехника. Ее преимущества — большая мощность при относительно простой схемотехнике, меньший размер трансформатора, так как трансформатор применяется без зазора, в отличии от первого варианта.
3. Двухтактный преобразователь (PushPull- Тяни-Толкай). Данная схема в сетевых блоках питания применяется крайне редко, зато она нашла широкое применение в инверторах недорогих блоков бесперебойного питания.
4. Мостовой преобразователь. Так сказать «расширенная» версия полумостового. Преимущества — большая мощность, ток через силовые ключи в два раза ниже чем в полумостовой.
Также такая схема применяется в более сложных блоках бесперебойного питания.

Существует еще несколько топологий, но они являются производными от приведенных выше, и менее распространены, потому не вошли в данную статью.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
В этот раз я также начертил цветной вариант схемы обозреваемого блока питания, где цветом обозначил основные узлы, о которых говорил выше.
Как я писал, некоторые цвета мне тяжело назвать правильно, потому буду уточнять.
Красный — Входной фильтр питания, диодный мост, силовой узел.
Красно-фиолетовый (слева внизу) — Узел управления мощными транзисторами инвертора.
Зеленый — Микросхема- ШИМ контроллер и ее «обвязка».
Синий — Выходной выпрямитель, дроссель и конденсатор фильтра
Голубой — Цепь контроля выходного тока
Фиолетовый — Узел контроля выходного напряжения
Желто-рыжий — Узел блокировки преобразователя при снижении напряжения на выходе.

В этой схеме нет привычного элемента, который был на всех прошлых схемах — оптрона. Дело в том, что здесь ШИМ контроллер питается от выходного напряжения. первоначальный запуск бока питания происходит благодаря резисторам R8 и R14. Такой принцип применялся в компьютерных БП АТ стандарта, с приходом АТХ стандарта контроллер стал питаться от источника питания дежурного режима и эти резисторы исключили из схемы.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Дальше я покажу большую часть узлов и элементов на примере конкретного блока питания.
Начнем с сетевого фильтра.
В этом БП он есть, это уже хорошо, так как в дешевых компьютерных БП вместо него ставят просто перемычки, но в дорогих он может быть и многоступенчатым. Здесь средний вариант между этими двумя.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
По входу блока питания установлен предохранитель и ограничитель пускового тока — NTC терморезистор (термистор).
Также присутствует Х2 конденсатор для уменьшения помех, излучаемых блоком питания, в сеть.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Двухобмоточный синфазный дроссель намотан довольно толстым проводом, хотя размеры при такой мощности могли сделать бы и побольше.
Входной диодный мост KBU808 рассчитан на 8 Ампер 800 Вольт.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
В фильтре питания присутствуют как Y конденсаторы, так и один обычный, высоковольтный.
Но в данном случае применение обычного высоковольтного вместо конденсатора Y типа безопасно, так как если БП не заземлен, то даже при его пробое выход БП будет все равно подключен через Y конденсатор, а если БП заземлен, то тем более ничего не будет :)36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Конденсаторы входного фильтра питания промаркированы как 680мкФх250 Вольт.
Если верить маркировке, то в принципе их емкость достаточна, а напряжение выбрано даже с запасом.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Но реальность оказалась несколько другой, емкость конденсаторов всего 437мкФ, что при последовательном соединении дает всего около 220мкФ. Мало, хоть в принципе и терпимо.
Большая емкость дает больший срок жизни конденсаторов, меньшие пульсации и добавляет запаса по входному напряжению в сторону уменьшения напряжения.
Я думаю потом их заменить на что то поприличнее, но пока не нашел подходящих, так как данные конденсаторы имеют высоту 35мм, максимум можно попробовать установить 40мм, а большинство найденных мною конденсаторов имеют высоту 45мм.
На плате выделено место под конденсатор большего диаметра, так что «будем искать» :)36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Узел ШИМ контроллера и инвертора.
В качестве ШИМ контроллера применена «классика жанра», KA7500, которая является почти полным аналогом TL494, наверное самого распространенного ШИМ контроллера, соперничать с ним по популярности может разве что uc384x.
Силовые ключи инвертора — MJE1300936 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
К сожалению теплораспределительная пластина прижимается к корпусу без пасты. Тестирование показало, что проблем из-за этого не возникает, но я бы для успокоения души все таки нанес термопасту.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Узел выходного трансформатора, выпрямителя и конденсаторов фильтра.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Выходной диод — SF3006PT, это 30 Ампер 400 Вольт диод, что для 10 Ампер блока питания более чем достаточно.
Как я выше писал, рядом есть место для второго диода, потому в принципе можно немного улучшить характеристики, но на самом деле прирост КПД будет мизерным.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Выходной дроссель.
Здесь он выполняет несколько другую функцию чем в обратноходовых блоках питания, из-за этого и такие большие размеры. Скажу лишь что его размеры соответствуют заявленной мощности блока питания. Кроме его высоты замечаний нет.
Конденсаторы выходного фильтра.
Производитель поставил три конденсатора по 1000мкФ 63 Вольта.
Обычно я говорю, что емкость выходного конденсатора должна быть равна 1000мкФ на каждый ампер выходного тока. В двухтактных блоках питания требования менее жесткие, и даже бренды ставят такую же (а иногда и меньшую) емкость при таком токе, правда в их оправдание могу сказать, что в брендовых БП конденсаторы стоят лучшего качества.
Также на фото попал токовый шунт и видно, что для более сильноточных вариантов есть место для дополнительных шунтов.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Здесь с емкостью все в порядке. Практически соответствует заявленной.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
После осмотра я скрутил все обратно, только не привинчивал верхнюю крышку и перешел к этапу тестирования под нагрузкой.
Стенд у меня остался тем же, что и в предыдущие разы и состоит из:
Электронной нагрузки
Мультиметра
Бесконтактного термометра
Осциллографа
Ручки и бумажки 🙂

Правда в этот раз мне пришлось снять верхнюю крышку с электронной нагрузки, так как боялся что она будет перегреваться на такой мощности.
В основном тестирование проходило как и в прошлые разы, за исключением того, что для измерения температуры мне приходилось на ходу снимать верхнюю крышку. Из-за этого некоторые значения измеренных температур будут чуть завышенными так как БП успевал чуть подогреваться без принудительного охлаждения.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
1. Режим холостого хода, напряжение выставлено 36.03 вольта, пульсации практически отсутствуют.
2. Ток нагрузки 2 ампера, напряжение чуть поднялось и составило 36.06 вольта, пульсации в норме.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
1. Ток нагрузки 4 Ампера, выходное напряжение поднялось еще немного, пульсации в норме.
2. Ток нагрузки 6 Ампер, выходное напряжение 36.09 Вольта, это очень хороший результат, пульсации при этом всего 50мВ36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
1. Ток нагрузки 8 Ампер, выходное напряжение почти неизменно, пульсации выросли до 75мВ, но все равно остаются низкими для такого тока.
2. Ток нагрузки 10 Ампер, выходное напряжение поднялось до 36.12 Вольта, отличный результат, изменение от исходного всего 0.3%. Пульсации выросли до 100мВ, на мой взгляд ничего страшного, особенно с учетом того, что БП выдает 360 Ватт и 100мВ это всего 0.25-0.3%
Для примера, если бы это был БП на 12 Вольт, то эквивалент пульсаций равнялся бы 30мВ.
К сожалению последний тест длился всего 15-16 минут из привычных мне 20, на электронной нагрузке сработала защита от перегрева и отключила нагрузку :(36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Дав нагрузке немного остыть, я решил ради эксперимента продолжить тест, но уже при 12 Ампер токе, проверять так проверять 🙂
Решение провести это эксперимент я принял потому, что компоненты БП имели температуру далекую от максимальной.
Но увы, проработал так БП максимум минуту, я сделал фото, снял осциллограмму, но потом последовал очень тихий щелчок (хотя на фоне воя вентиляторов нагрузки может и не такой тихий), малюсенькая вспышка в районе силовых ключей и БП затих 🙁
Правда у меня было маленькое подозрение, что виновата электронная нагрузка, она в определенной ситуации, при перегреве, могла закоротить выход БП (если сначала сработала защита на том радиаторе, где расположен датчик тока), хотя до такой температуры за минуту она прогреться не успела бы, но в любом случае БП не выдержал :(36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Осциллограмма перед выходом из строя.
Видно что напряжение пульсаций находится вполне в норме. Но меня расстраивают более высокочастотные пульсации, вызванные скорее всего «звоном» в силовых цепях, как по мне, это одна из возможных причин выхода из строя, но утверждать не буду.
Измерение теплового режима работы проходило как всегда, 20 минут прогрев, измерение температур, повышение тока на одну ступень и т.д.
Полученные результаты можно понять из таблицы. Верхняя строка цифр — измерение температур на холостом ходу, заодно я проверил что термометр показывает одинаковые значения на разных компонентах.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
В качестве небольшого бонуса я немного опишу методику поиска неисправности и ремонта конкретно этого БП и принципов поиска неисправности для основной массы поломок остальных.
Вообще, буквально недавно меня в личке спрашивали о алгоритме поиска неисправности, на что я ответил —
Может даже имеет смысл написать такую статью, правда пока не знаю к чему ее привязать, разве что спалить БП который пришлют на обзор :))))Как в воду глядел 🙂

В данном случае поломка оказалась не очень сложной, да и вообще я выше писал, что данный тип БП очень ремонтопригоден.
Здесь даже предохранитель остался цел 🙂

Для начала я должен предупредить, что при ремонте импульсного БП приходится работать с цепями имеющими высокое напряжение и имеющими непосредственную связь с сетью 220 Вольт. По правилам техники безопасности блок питания должен при этом питаться через развязывающий трансформатор, чтобы обеспечить гальваническую развязку с сетью 220 Вольт.

Первым делом при поиске неисправности производят общий осмотр, это очень важный этап, иногда позволяющий локализовать место поломки.
Также немаловажно знать, после чего вышел из строя БП.
1. Новый БП, чаще при работе или КЗ в нагрузке — силовые цепи.
2. Старый БП, если перед поломкой были проблемы с запуском. Либо перед поломкой его отключили от сети (для БП работающих постоянно) — конденсаторы выходного фильтра. Такая поломка чаще всего «тянет» за собой и высоковольтную часть, в низковольтной части чаще всего все остается исправным.
3. Старый БП, но предохранитель цел и даже есть попытки запуска — чаще всего виновата потеря емкости конденсатора фильтра питания ШИМ контроллера, обычно встречается на БП небольшой мощности собранных по обратноходовой схеме.

Дальше немного по компонентам.
Предохранитель цел — значит скорее всего цел и диодный мост, но на маломощных Бп роль предохранителя может сыграть обмотка входного дросселя.
Предохранитель сгорел — скорее всего дело плохо, но есть варианты
1. Если на входе БП есть защитный варистор и подали больше 300 Вольт, то чаще все решается заменой варистора и предохранителя.
2. Варистора нет, либо он цел. Вот тут скорее всего дело худо, проверяем — диодный мост и высоковольтный транзистор (или транзисторы если их два).

Чаще всего диодный мост выходит из строя только при сгорании высоковольтных транзисторов, сам по себе выходит из строя очень редко.

Следующий этап, проверяем высоковольтный транзистор, лучше его выпаять, так как если вышел из строя диодный мост, то это может давать ложное КЗ.
Если транзистор имеет КЗ хотя бы между двумя выводами из трех, то он умер. Если транзисторов два, то с вероятностью 99% умер и второй, менять лучше парой.
В моем случае так вышло. что транзисторы имели пробой между коллектором и базой, потому предохранитель остался цел так как не было КЗ по цепи высоковольтного питания. Это довольно редкий случай, чаще имеем КЗ между всеми тремя выводами.
Если транзистор сгорел, то проверяем резистор подключенный к выводу базы, так как чаще всего сгорает и он. Вывод эмиттера также может быть подключен к токоизмерительному резистору, обычно мощный и стоит рядом, проверяем и его.
В моем случае я имел два сгоревших транзистора и два резистора.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Следующий этап, подбор замены.
Если есть родные либо их можно купить, то отлично, если нет, то ищем замену.
При поиске замены сначала определяем что за транзисторы стояли, и ищем документацию на них. после этого ищем варианты, которые есть в наличии/продаже и сравниваем их характеристики.
У транзисторов, которые стояли в импульсном блоке питания обращаем внимание на следующие ключевые характеристики. Вообще влияет еще коэффициент передачи по току и граничная частота. Первый параметр лучше иметь похожий на тот что был в сгоревшем, второй если будет больше, то лучше. У полевых транзисторов надо смотреть на емкость затвора (Input Capacitance), чем меньше, тем лучше.
В моем случае транзисторы биполярные, потому и демонстрировать буду на их примере.
Я привел три варианта, родной — подходящий вариант — неподходящий вариант.
Хотя в неподходящем варианте критичны последние два параметра.
В моем случае родных не было, но были транзисторы с «доноров».
Резисторы подобрать проще, если нет подходящего номинала, то можно соединить несколько штук параллельно или последовательно. Но у меня были подходящие резисторы.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Резисторы сгорели очень аккуратно, сразу даже и не заметишь маленькую трещину в покрытии. Не было ни дыма и особого шума, разве что маленькая вспышка.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Перед заменой транзисторов желательно сначала проверить остальные компоненты рядом с ними иначе замененные компоненты ожидает судьба предыдущих.
Конкретно по этой схеме. Диоды параллельно коллектору и эмиттеру не сгорают никогда (по крайней мере я такого не видел), диоды в базе иногда сгорают, но в данном случае стоят довольно мощные диоды (чаще ставят мелкие 4148) и они остались целы. Конденсатор также выжил, выходят из строя здесь они редко, резистор межу коллектором и базой также можно не проверять, но стоит проверить резистор между базой и эмиттером.
Трансформатор — довольно надежный компонент и чем мощнее, тем надежнее, но у меня бывали случае межвиткового КЗ у мелких трансформаторов, причем обычным мультиметром это определить сложно или вообще невозможно.

После замены деталей неплохо проверить ШИМ контроллер. Первым у этих микросхем страдает внутренний стабилизатор напряжения 5 Вольт. Для проверки подаем питание 10-20 Вольт на микросхему (я подключился к конденсатору фильтра питания микросхемы) и измеряем напряжение между минусом питания и 14 выводом.
220 Вольт пока не подаем.
На фото питание в норме.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Если интересно, то можем подключиться к задающему генератору и посмотреть на красивую «пилу» 🙂
Ее наличие означает, что задающий генератор микросхемы работает.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
После этого можно проконтролировать прохождение управляющих импульсов к силовым транзисторам.
Кстати. Если БП работал долго, то из-за высыхания емкости конденсатора фильтра питания микросхемы (или высыхания конденсатора в Бп дежурного режима АТХ БП), она могла выйти из строя.
Иногда выход из строя выходных транзисторов тянет за собой и два управляющих транзистора, на схеме это Q2, Q3. Кроме них обычно ничего из строя не выходит.
Данный БП не даст управляющие импульсы на мощные транзисторы пока не «обойти» защиту от пониженного напряжения на выходе, я это сделал закоротив эмиттер и коллектор транзистора Q5.
Если все в порядке, то между эмиттером и базой будет примерно такая картинка:36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Все, на этом основная часть ремонта закончена.
Промываем плату от остатков флюса, я всегда рекомендую это делать, как минимум из-за культуры ремонта.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
С лицевой стороны платы ремонт «выдают» только отечественные резисторы.
Заодно я немного приподнял транзисторы, чтобы они лучше прижимались.36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Для проверки я всегда включаю БП через лампу накаливания. Это позволяет сократить количество походов в магазин за деталями 🙂
Лампу я использую мощностью 150 Ватт, она включается последовательно с сетью и при нормальной работе должна только моргнуть немного при включении.
В штатном режиме на холостом ходу она даже не накаляется, менее мощная лампа может немного накаляться, но на грани различимости, это также нормально.
Включаем, проверяем, все работает :)36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
Некоторые дополнения.
Если вы заметили, что ваш блок питания требует «прогрева» перед включением и это время постепенно увеличивается, то следует проверить конденсаторы БП, так как если затянуть с этим, то все может закончиться выходом из строя высоковольтного транзистора и часто микросхемы ШИМ контроллера.
Выходной диод БП выходит из строя редко, но лучше его проверить, обычно это можно сделать даже не выпаивая его из платы.
С переходом на импульсные блоки питания самая частая поломка — выход из строя электролитических конденсаторов, причем иногда емкость он может иметь нормальную, но внутреннее сопротивление сильно увеличивается.

Для общего развития я добавил для скачивания неплохую книгу по импульсным блокам питания.


Резюме.
Плюсы
Блок питания выдал заявленную мощность
Тепловой режим работы в норме
Небольшой уровень пульсаций
Наличие нормального фильтра по входу 220 Вольт
Отличная стабильность выходного напряжения
Хорошая ремонтопригодность

Минусы
Проблемы с надежностью при перегрузке или коротком замыкании
Конденсаторы входного фильтра имеют заниженную емкость
Нет заявленного автоматического управления вентилятором.
Низкое качество выходных конденсаторов

Мое мнение. Меня очень расстроило то, что блок питания вышел из строя, хотя это и произошло при мощности выше заявленной, но это говорит об отсутствии либо некорректной работе защиты от перегрузки. Но в то же время обрадовал температурный режим блока питания, даже при максимальной мощности никакие компоненты не перегревались, хотя выходящий воздух имел легкий запах нагретых компонентов, но это частая особенность новых блоков питания.
Но даже при том, что я спалил этот блок питания, могу сказать, что он имеет неплохой потенциал и если его не перегружать, то будет работать. В основном это связано с отработанностью данной схемотехники, здесь тяжело что то накосячить, хотя проблемы с надежностью вылезли 🙁
В будущем я думаю его немного доработать и надеюсь что в ближайшем времени вы увидите его (хотя скорее их) в одном из моих новых устройств, на которое я потихоньку готовлю обзор, там же будет и описание доработки.

Вполне возможно что в обзоре присутствует некоторое количество ошибок, если заметили, пишите, исправлю или дополню при необходимости.
Вся информация о ремонте основана на личном опыте. Вообще разнообразие причин поломок и методов определения неисправности гораздо больше, чем я описал, но боюсь что все описать очень тяжело и будет ну совсем большая статья.
Надеюсь что хотя бы часть читателей найдет ответы на свои вопросы, которые они мне задавали.

Магазин дал скидку на блок питания, исходная цена была 30.2 доллара, в течении недели будет действовать цена 26.99.

Товар предоставлен для написания обзора магазином.

36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус

В прошлом обзоре блока питания я затронул тему того, как выбрать правильный блок питания. Если честно, то я немного не ожидал, что эта тема окажется такой нужной. Меня спрашивают и о других нюансах выбора, принципах работы и о алгоритме поиска неисправностей.

В этом обзоре я постараюсь ответить на большую часть этих вопросов, а также возможно затрону тему новых вопросов 🙂

Начну с того, что для одного из моих ближайших проектов потребовался блок питания на 36 Вольт 10 Ампер. Вернее потребовалось их два, и заказал их два, но так как они абсолютно одинаковые, то и обзор будет на один блок.

Для чего и зачем я пока писать не буду, уж извините, но этот блок питания мы разберем 'по винтикам'.

Как всегда, сначала упаковка.

Пришли блоки питания (помимо общей упаковки) в обычных картонных коробках белого цвета, опознавательные знаки на упаковке отсутствовали, просто две большие коробки.

На вид абсолютно одинаковые, впрочем я бы скорее удивился если бы они были разными 🙂

Основное отличие импульсных блоков питания от тех, которые используют 50Гц трансформаторы - размер. Второе отличие - цена.

50Гц трансформатор на такую мощность будет иметь гораздо большие размеры и хоть он по конструкции намного проще, но будет иметь большую цену, так как содержит больше меди и железа.

Кроме того импульсные БП имеют больший КПД, потому в последнее время получили большое распространение, хотя 'железные' трансформаторы отличаются большей надежностью.

Но стоит учитывать, что брендовые БП имеют обычно еще большую сложность и цену, так как имеют хорошую элементную базу, фильтры питания, корректоры мощности и т.п, потому чаще люди пользуются более простыми вариантами от небольших китайских фирм.

Один из таких блоков питания мы и рассмотрим в этом обзоре.

Если до этого мы рассматривали блоки питания небольшой мощности, то в этот раз я расскажу про довольно мощный вариант БП мощностью 360 Ватт, хотя на фоне вариантов Бп мощностью 800-2000 Ватт и он кажется 'малышом'.

Как я выше писал, импульсные БП имеют чаще небольшие размеры.

Данный блок питания имеет высоту примерно как у коробка спичек - 49мм. Длина блока питания 215мм, ширина - 114мм.

На одной из боковых граней корпуса присутствует маркировка:

S-360-36

Мощность блока питания 360 Ватт

Выходное напряжение - 36 Вольт

Максимальный выходной ток - 10 Ампер

Входное напряжение - 110/220Вольт +/-15%

На второй стороне присутствует переключатель диапазона входного напряжения, в наших странах неактуальный и даже вредный, так как переключив в режим 110 Вольт и включив в стандартную сеть 220-230 Вольт мы получим скорее всего громкий бах.

Я обычно при ремонте таких БП сразу выкусываю этот переключатель, просто в целях безопасности.

Сверху корпуса установлен небольшой вентилятор. При таких мощностях блоки питания уже крайне редко делают с пассивным охлаждением, мне такие попадались всего несколько раз, но из-за сложности конструкции они имеют уже очень высокую цену, потом очень мало распространены.

Рядом присутствует надпись, указывающая, что вентилятор управляется автоматически в режиме вкл/выкл в зависимости от температуры.

Немного забегая вперед скажу, что никакой автоматики нет, без нагрузки он вращается медленно, но стоит хоть чуть чуть нагрузить БП, обороты сразу возрастают до штатных независимо от температуры.

В прошлом обзоре я писал, что блоки питания, рассчитанные на большой выходной ток, обычно имеют разделенные клеммы для подключения нагрузки. Так сделано в этом БП, здесь установлено по три клеммы на плюсовой и минусовой контакты.

Входные клеммы стандартны - Фаза, ноль, заземление.

Также слева установлен светодиод индикации работы блока питания и подстроечный резистор для корректировки выходного напряжения.

Клеммник имеет защитную крышку, которая открывается на 90 градусов, а в закрытом состоянии защелкивается. У меня есть привычка разбирать БП перед первым включением. Делаю я это в целях безопасности, так как бывали разные случаи.

Внутри данного БП на вид все нормально, за исключением небольшого нюанса, который я заметил сразу. Дело в том, что выходной дроссель имеет большие размеры и почти касается верхней крышки, это не очень безопасно. Током конечно не убьет, но БП может пострадать, я бы рекомендовал проложить дополнительную изоляцию между дросселем и крышкой. Такой проблемой страдают многие недорогие блоки питания, так что это не косяк данного блока.

Как я писал выше, охлаждается блок питания посредством небольшого вентилятора.

Судя по маркировке, вентилятор имеет размеры 60х15мм, т.е. 60мм это длина и ширина, а 15мм - толщина.

Вентилятор рассчитан на 12 Вольт. к сожалению здесь применен недорогой вентилятор, кроме того имеющий подшипники скольжения и если вы планируете применить где нибудь такой БП, то для длительной беспроблемной работы я бы заменил его на что нибудь более правильное.

Я уже как то писал в своих обзорах, что чаще всего применяю вентиляторы фирмы Sunon, на мой взгляд у них довольно высокое качество и надежность.

Из хорошего можно сказать то, что вентилятор в данном БП довольно тихий, что очень хорошо.

Силовые полупроводники прикручены к алюминиевому корпусу блока питания через небольшие теплораспределяющие проставки.

Мне не очень нравится подобный вид крепления полупроводников, но так делают почти все. например в блоках питания фирмы Менвелл транзистор крепится точно также, правда там в целях безопасности на него одет резиновый колпачок.

Так как данный блок питания двухтактный, то высоковольтных транзисторов два, а не один.

Выходной диод один, хотя на плате присутствует место под установку второго, подключаемого параллельно первому. Второй устанавливается в блоках, рассчитанных на меньшее напряжение и больший ток, но никто не мешает поставить и здесь второй, но это уже скорее доработка, а измерения покажут, имеет ли смысл данная операция.

Осмотр закончили, включаем и производим небольшую проверку.

Цель данной проверки, выяснить пределы регулировки выходного напряжения и вставить на выходе БП то напряжение, на которое он рассчитан, ну или то, которое необходимо.

1. при включении БП показал на выходе 36.8 Вольта.

2. минимальное напряжение, которое можно выставить - 34.53, я рассчитывал, что минимальный порог будет ниже, для моего применения придется дорабатывать.

3. А вот максимальный порог сильно удивил. Когда крутил, то даже стало немного не по себе. 52.3 при штатном 36. Ожидал что БП накроется, пока я фотографирую, но все прошло нормально, хотя я не рекомендую выставлять такое напряжение на выходе, чаще нормальным считается +/-10% от штатного.

4. Выставляем на выходе 36 Вольт. Судя по диапазону перестройки уже можно понять, что регулировка очень грубая, потому мне пришлось немного помучаться чтобы выставить ровно 36 Вольт, хотя в реальной жизни это смысла не имеет и сделано было только для обзора 🙂

Разбираем блок питания дальше.

Транзисторы довольно неплохо прилипли к своей пластинке, отдирать их не хотелось потому я открутил и теплораспределительную пластинку 🙂

К плате особых нареканий не возникло, обычная недорогая сборка, бывало и хуже, но бывало и лучше, по пятибальной шкале на 3 балла.

Но один дефект все таки нашел, была не очень хорошая пайка одного из контактов трансформатора. Непропай в данном месте ни к чему фатальному бы не привел, но расстроил.

Дорожки. по которым течет значительный ток, дополнительно пролужены припоем.

Естественно я начертил схему данного БП, делал я это только для обзора, так как схемотехнику этих блоков питания знаю хорошо и обычно в схеме не нуждаюсь, но возможно кому нибудь будет полезно, так как такая схема (с некоторыми небольшими изменениями) используется в большинстве БП такой мощности.

Но хотя я и знаю хорошо эту схемотехнику, перечерчивать схему по плате было не очень удобно и заняло больше времени, чем я планировал.

Схема практически повторяет схему классического компьютерного блока питания и как показала практика, является очень ремонтопригодной.

На схеме присутствует шунт для измерения тока, на схеме его сопротивление указано как 0.1 Ома, но на самом деле при прозвонке он скорее был ближе к перемычке.

Дальше я решил немного рассказать о том, как вообще работают такие блоки питания, тем более что многие узлы являются типичными для почти всех импульсных блоков питания.

На этой блок схеме обозначены основные узлы импульсного блока питания. Правда сейчас задающий генератор и схема управления выполняются в одной микросхеме, а иногда микросхема содержит с высоковольтный транзистор.

Иногда по входу импульсного блока питания устанавливают Корректор Коэффициента Мощности, а в мощных БП он является обязательным, если БП соответствует европейским нормам, но об этом я расскажу как нибудь в другой раз, так как в недорогих БП он почти не встречается.

На основании этой блок схемы я дальше и буду рассказывать об этом БП, но для начала немного теории о процессах, происходящих в импульсном блоке питания.

Ключевое в работе импульсного блока питания, это принцип ШИМ стабилизации, правда стоит отметить, что вполне существуют и импульсные блоки питания без этого, но они являются не стабилизированными, т.е. выходное напряжение зависит от мощности нагрузки и входного напряжения.

ШИМ регулирование это изменение соотношения времени включенного состояния коммутирующего элемента к выключенному состоянию.

Если на графике, то выглядит это так:

Если 'на пальцах', то я недавно объяснял в личке этот принцип стабилизации, попробую повторить здесь.

Многие наверное помнят задачки типа - через одну трубу в бассейн поступает вода со скоростью х литров в минуту, через другую выливается со скоростью Y литров в минуту.

Вот на этом принципе я и объясню как это работает.

Для начала представим, что существует очень большая емкость (электрическая сеть), маленькая емкость (конденсатор выходного фильтра питания), ну и всякие мелочи для переправки воды из одного места в другое.

На бочке установлен кран, через него вода убегает к потребителю, ну или энергия в нагрузку.

Пополнять бочку мы можем только определенное количество раз в минуту (бывают альтернативные варианты, но о них пока не будем), например 100 раз.

Наша задача, поддерживать уровень воды в бочке всегда постоянным.

Так как пополнять может только определенное количество раз в минуту, то значит пополнять придется разными объемами.

К примеру если потребление маленькое, то будет достаточно обычных чашек, а если кран открыли на полную, то придется использовать ведра.

В ШИМ регулировке это означает меньшую или большую ширину открытого состояния силового элемента.

Если кран закрыт, то пополняем бочку наперстками, есть же еще испарение (утечки, нагрузка цепи обратной связи т.п.) которое надо компенсировать 🙂

Используя узел обратной связи, контроллер отслеживает напряжение на выходе блока питания и подстраивает мощность, передаваемую в нагрузку так, чтобы напряжение на выходе БП оставалось неизменным.

Кстати, таким способом можно сделать обратную связь по чем угодно.

Например в драйверах светодиода контроллер следит за током.

Можно следить за температурой, подстраивая скорость вентилятора, за освещением, регулируя яркость лампочки и т.д. и т.п.

На этой диаграмме показано:

1. Ток в цепи трансформатора (условно)

2. Сигнал управления ключевым транзистором

3. Напряжение на выходном конденсаторе.

Существует довольно много топологий построения импульсных блоков питания, я нарисовал несколько самых распространенных.

Немного расскажу о них.

1. Обратноходовый преобразователь. Применяется там, где хорошо иметь большой диапазон входного напряжения и небольшая мощность (до 100-150 Ватт). Скорее всего Бп вашего планшета или монитора применена именно эта схема.

2. Полумостовой преобразователь. Также очень распространенная схемотехника. Думаю что я буду не сильно далек от истины, если скажу, что в 95% компьютерных БП применена именно такая схемотехника. Ее преимущества - большая мощность при относительно простой схемотехнике, меньший размер трансформатора, так как трансформатор применяется без зазора, в отличии от первого варианта.

3. Двухтактный преобразователь (PushPull- Тяни-Толкай). Данная схема в сетевых блоках питания применяется крайне редко, зато она нашла широкое применение в инверторах недорогих блоков бесперебойного питания.

4. Мостовой преобразователь. Так сказать 'расширенная' версия полумостового. Преимущества - большая мощность, ток через силовые ключи в два раза ниже чем в полумостовой.

Также такая схема применяется в более сложных блоках бесперебойного питания.

Существует еще несколько топологий, но они являются производными от приведенных выше, и менее распространены, потому не вошли в данную статью.

В этот раз я также начертил цветной вариант схемы обозреваемого блока питания, где цветом обозначил основные узлы, о которых говорил выше.

Как я писал, некоторые цвета мне тяжело назвать правильно, потому буду уточнять.

Красный - Входной фильтр питания, диодный мост, силовой узел.

Красно-фиолетовый (слева внизу) - Узел управления мощными транзисторами инвертора.

Зеленый - Микросхема- ШИМ контроллер и ее 'обвязка'.

Синий - Выходной выпрямитель, дроссель и конденсатор фильтра

Голубой - Цепь контроля выходного тока

Фиолетовый - Узел контроля выходного напряжения

Желто-рыжий - Узел блокировки преобразователя при снижении напряжения на выходе.

В этой схеме нет привычного элемента, который был на всех прошлых схемах - оптрона. Дело в том, что здесь ШИМ контроллер питается от выходного напряжения. первоначальный запуск бока питания происходит благодаря резисторам R8 и R14. Такой принцип применялся в компьютерных БП АТ стандарта, с приходом АТХ стандарта контроллер стал питаться от источника питания дежурного режима и эти резисторы исключили из схемы.

Дальше я покажу большую часть узлов и элементов на примере конкретного блока питания.

Начнем с сетевого фильтра.

В этом БП он есть, это уже хорошо, так как в дешевых компьютерных БП вместо него ставят просто перемычки, но в дорогих он может быть и многоступенчатым. Здесь средний вариант между этими двумя.

По входу блока питания установлен предохранитель и ограничитель пускового тока - NTC терморезистор (термистор).

Также присутствует Х2 конденсатор для уменьшения помех, излучаемых блоком питания, в сеть.

Двухобмоточный синфазный дроссель намотан довольно толстым проводом, хотя размеры при такой мощности могли сделать бы и побольше.

Входной диодный мост KBU808 рассчитан на 8 Ампер 800 Вольт.

В фильтре питания присутствуют как Y конденсаторы, так и один обычный, высоковольтный.

Но в данном случае применение обычного высоковольтного вместо конденсатора Y типа безопасно, так как если БП не заземлен, то даже при его пробое выход БП будет все равно подключен через Y конденсатор, а если БП заземлен, то тем более ничего не будет 🙂

Конденсаторы входного фильтра питания промаркированы как 680мкФх250 Вольт.

Если верить маркировке, то в принципе их емкость достаточна, а напряжение выбрано даже с запасом.

Но реальность оказалась несколько другой, емкость конденсаторов всего 437мкФ, что при последовательном соединении дает всего около 220мкФ. Мало, хоть в принципе и терпимо.

Большая емкость дает больший срок жизни конденсаторов, меньшие пульсации и добавляет запаса по входному напряжению в сторону уменьшения напряжения.

Я думаю потом их заменить на что то поприличнее, но пока не нашел подходящих, так как данные конденсаторы имеют высоту 35мм, максимум можно попробовать установить 40мм, а большинство найденных мною конденсаторов имеют высоту 45мм.

На плате выделено место под конденсатор большего диаметра, так что 'будем искать' 🙂

Узел ШИМ контроллера и инвертора.

В качестве ШИМ контроллера применена 'классика жанра', KA7500, которая является почти полным аналогом TL494, наверное самого распространенного ШИМ контроллера, соперничать с ним по популярности может разве что uc384x.

Силовые ключи инвертора - MJE13009

К сожалению теплораспределительная пластина прижимается к корпусу без пасты. Тестирование показало, что проблем из-за этого не возникает, но я бы для успокоения души все таки нанес термопасту. Узел выходного трансформатора, выпрямителя и конденсаторов фильтра. Выходной диод - SF3006PT, это 30 Ампер 400 Вольт диод, что для 10 Ампер блока питания более чем достаточно.

Как я выше писал, рядом есть место для второго диода, потому в принципе можно немного улучшить характеристики, но на самом деле прирост КПД будет мизерным.

Выходной дроссель.

Здесь он выполняет несколько другую функцию чем в обратноходовых блоках питания, из-за этого и такие большие размеры. Скажу лишь что его размеры соответствуют заявленной мощности блока питания. Кроме его высоты замечаний нет.

Конденсаторы выходного фильтра.

Производитель поставил три конденсатора по 1000мкФ 63 Вольта.

Обычно я говорю, что емкость выходного конденсатора должна быть равна 1000мкФ на каждый ампер выходного тока. В двухтактных блоках питания требования менее жесткие, и даже бренды ставят такую же (а иногда и меньшую) емкость при таком токе, правда в их оправдание могу сказать, что в брендовых БП конденсаторы стоят лучшего качества.

Также на фото попал токовый шунт и видно, что для более сильноточных вариантов есть место для дополнительных шунтов.

Здесь с емкостью все в порядке. Практически соответствует заявленной. После осмотра я скрутил все обратно, только не привинчивал верхнюю крышку и перешел к этапу тестирования под нагрузкой.

Стенд у меня остался тем же, что и в предыдущие разы и состоит из:

Электронной нагрузки

Мультиметра

Бесконтактного термометра

Осциллографа

Ручки и бумажки 🙂

Правда в этот раз мне пришлось снять верхнюю крышку с электронной нагрузки, так как боялся что она будет перегреваться на такой мощности.

В основном тестирование проходило как и в прошлые разы, за исключением того, что для измерения температуры мне приходилось на ходу снимать верхнюю крышку. Из-за этого некоторые значения измеренных температур будут чуть завышенными так как БП успевал чуть подогреваться без принудительного охлаждения.

1. Режим холостого хода, напряжение выставлено 36.03 вольта, пульсации практически отсутствуют.

2. Ток нагрузки 2 ампера, напряжение чуть поднялось и составило 36.06 вольта, пульсации в норме.

1. Ток нагрузки 4 Ампера, выходное напряжение поднялось еще немного, пульсации в норме.

2. Ток нагрузки 6 Ампер, выходное напряжение 36.09 Вольта, это очень хороший результат, пульсации при этом всего 50мВ

1. Ток нагрузки 8 Ампер, выходное напряжение почти неизменно, пульсации выросли до 75мВ, но все равно остаются низкими для такого тока.

2. Ток нагрузки 10 Ампер, выходное напряжение поднялось до 36.12 Вольта, отличный результат, изменение от исходного всего 0.3%. Пульсации выросли до 100мВ, на мой взгляд ничего страшного, особенно с учетом того, что БП выдает 360 Ватт и 100мВ это всего 0.25-0.3%

Для примера, если бы это был БП на 12 Вольт, то эквивалент пульсаций равнялся бы 30мВ.

К сожалению последний тест длился всего 15-16 минут из привычных мне 20, на электронной нагрузке сработала защита от перегрева и отключила нагрузку 🙁

Дав нагрузке немного остыть, я решил ради эксперимента продолжить тест, но уже при 12 Ампер токе, проверять так проверять 🙂

Решение провести это эксперимент я принял потому, что компоненты БП имели температуру далекую от максимальной.

Но увы, проработал так БП максимум минуту, я сделал фото, снял осциллограмму, но потом последовал очень тихий щелчок (хотя на фоне воя вентиляторов нагрузки может и не такой тихий), малюсенькая вспышка в районе силовых ключей и БП затих 🙁

Правда у меня было маленькое подозрение, что виновата электронная нагрузка, она в определенной ситуации, при перегреве, могла закоротить выход БП (если сначала сработала защита на том радиаторе, где расположен датчик тока), хотя до такой температуры за минуту она прогреться не успела бы, но в любом случае БП не выдержал 🙁

Осциллограмма перед выходом из строя.

Видно что напряжение пульсаций находится вполне в норме. Но меня расстраивают более высокочастотные пульсации, вызванные скорее всего 'звоном' в силовых цепях, как по мне, это одна из возможных причин выхода из строя, но утверждать не буду.

Измерение теплового режима работы проходило как всегда, 20 минут прогрев, измерение температур, повышение тока на одну ступень и т.д.

Полученные результаты можно понять из таблицы. Верхняя строка цифр - измерение температур на холостом ходу, заодно я проверил что термометр показывает одинаковые значения на разных компонентах.

В качестве небольшого бонуса я немного опишу методику поиска неисправности и ремонта конкретно этого БП и принципов поиска неисправности для основной массы поломок остальных.

Поломали, ремонтируем

Вообще, буквально недавно меня спрашивали о алгоритме поиска неисправности, на что я ответил -

Может даже имеет смысл написать такую статью, правда пока не знаю к чему ее привязать, разве что специально спалить БП :))))
Как в воду глядел 🙂

В данном случае поломка оказалась не очень сложной, да и вообще я выше писал, что данный тип БП очень ремонтопригоден.

Здесь даже предохранитель остался цел 🙂

Для начала я должен предупредить, что при ремонте импульсного БП приходится работать с цепями имеющими высокое напряжение и имеющими непосредственную связь с сетью 220 Вольт. По правилам техники безопасности блок питания должен при этом питаться через развязывающий трансформатор, чтобы обеспечить гальваническую развязку с сетью 220 Вольт.

Первым делом при поиске неисправности производят общий осмотр, это очень важный этап, иногда позволяющий локализовать место поломки.

Также немаловажно знать, после чего вышел из строя БП.

1. Новый БП, чаще при работе или КЗ в нагрузке - силовые цепи.

2. Старый БП, если перед поломкой были проблемы с запуском. Либо перед поломкой его отключили от сети (для БП работающих постоянно) - конденсаторы выходного фильтра. Такая поломка чаще всего 'тянет' за собой и высоковольтную часть, в низковольтной части чаще всего все остается исправным.

3. Старый БП, но предохранитель цел и даже есть попытки запуска - чаще всего виновата потеря емкости конденсатора фильтра питания ШИМ контроллера, обычно встречается на БП небольшой мощности собранных по обратноходовой схеме.

Дальше немного по компонентам.

Предохранитель цел - значит скорее всего цел и диодный мост, но на маломощных Бп роль предохранителя может сыграть обмотка входного дросселя.

Предохранитель сгорел - скорее всего дело плохо, но есть варианты

1. Если на входе БП есть защитный варистор и подали больше 300 Вольт, то чаще все решается заменой варистора и предохранителя.

2. Варистора нет, либо он цел. Вот тут скорее всего дело худо, проверяем - диодный мост и высоковольтный транзистор (или транзисторы если их два).

Чаще всего диодный мост выходит из строя только при сгорании высоковольтных транзисторов, сам по себе выходит из строя очень редко.

Следующий этап, проверяем высоковольтный транзистор, лучше его выпаять, так как если вышел из строя диодный мост, то это может давать ложное КЗ.

Если транзистор имеет КЗ хотя бы между двумя выводами из трех, то он умер. Если транзисторов два, то с вероятностью 99% умер и второй, менять лучше парой.

В моем случае так вышло. что транзисторы имели пробой между коллектором и базой, потому предохранитель остался цел так как не было КЗ по цепи высоковольтного питания. Это довольно редкий случай, чаще имеем КЗ между всеми тремя выводами.

Если транзистор сгорел, то проверяем резистор подключенный к выводу базы, так как чаще всего сгорает и он. Вывод эмиттера также может быть подключен к токоизмерительному резистору, обычно мощный и стоит рядом, проверяем и его.

В моем случае я имел два сгоревших транзистора и два резистора.

Следующий этап, подбор замены.

Если есть родные либо их можно купить, то отлично, если нет, то ищем замену.

При поиске замены сначала определяем что за транзисторы стояли, и ищем документацию на них. после этого ищем варианты, которые есть в наличии/продаже и сравниваем их характеристики.

У транзисторов, которые стояли в импульсном блоке питания обращаем внимание на следующие ключевые характеристики. Вообще влияет еще коэффициент передачи по току и граничная частота. Первый параметр лучше иметь похожий на тот что был в сгоревшем, второй если будет больше, то лучше. У полевых транзисторов надо смотреть на емкость затвора (Input Capacitance), чем меньше, тем лучше.

В моем случае транзисторы биполярные, потому и демонстрировать буду на их примере.

Я привел три варианта, родной - подходящий вариант - неподходящий вариант.

Хотя в неподходящем варианте критичны последние два параметра.

В моем случае родных не было, но были транзисторы с 'доноров'.

Резисторы подобрать проще, если нет подходящего номинала, то можно соединить несколько штук параллельно или последовательно. Но у меня были подходящие резисторы.

Резисторы сгорели очень аккуратно, сразу даже и не заметишь маленькую трещину в покрытии. Не было ни дыма и особого шума, разве что маленькая вспышка. Перед заменой транзисторов желательно сначала проверить остальные компоненты рядом с ними иначе замененные компоненты ожидает судьба предыдущих.

Конкретно по этой схеме. Диоды параллельно коллектору и эмиттеру не сгорают никогда (по крайней мере я такого не видел), диоды в базе иногда сгорают, но в данном случае стоят довольно мощные диоды (чаще ставят мелкие 4148) и они остались целы. Конденсатор также выжил, выходят из строя здесь они редко, резистор межу коллектором и базой также можно не проверять, но стоит проверить резистор между базой и эмиттером.

Трансформатор - довольно надежный компонент и чем мощнее, тем надежнее, но у меня бывали случае межвиткового КЗ у мелких трансформаторов, причем обычным мультиметром это определить сложно или вообще невозможно.

После замены деталей неплохо проверить ШИМ контроллер. Первым у этих микросхем страдает внутренний стабилизатор напряжения 5 Вольт. Для проверки подаем питание 10-20 Вольт на микросхему (я подключился к конденсатору фильтра питания микросхемы) и измеряем напряжение между минусом питания и 14 выводом.

220 Вольт пока не подаем.

На фото питание в норме.

Если интересно, то можем подключиться к задающему генератору и посмотреть на красивую 'пилу' 🙂

Ее наличие означает, что задающий генератор микросхемы работает.

После этого можно проконтролировать прохождение управляющих импульсов к силовым транзисторам.

Кстати. Если БП работал долго, то из-за высыхания емкости конденсатора фильтра питания микросхемы (или высыхания конденсатора в Бп дежурного режима АТХ БП), она могла выйти из строя.

Иногда выход из строя выходных транзисторов тянет за собой и два управляющих транзистора, на схеме это Q2, Q3. Кроме них обычно ничего из строя не выходит.

Данный БП не даст управляющие импульсы на мощные транзисторы пока не 'обойти' защиту от пониженного напряжения на выходе, я это сделал закоротив эмиттер и коллектор транзистора Q5.

Если все в порядке, то между эмиттером и базой будет примерно такая картинка:

Все, на этом основная часть ремонта закончена.

Промываем плату от остатков флюса, я всегда рекомендую это делать, как минимум из-за культуры ремонта.

С лицевой стороны платы ремонт 'выдают' только отечественные резисторы.

Заодно я немного приподнял транзисторы, чтобы они лучше прижимались.

Для проверки я всегда включаю БП через лампу накаливания. Это позволяет сократить количество походов в магазин за деталями 🙂

Лампу я использую мощностью 150 Ватт, она включается последовательно с сетью и при нормальной работе должна только моргнуть немного при включении.

В штатном режиме на холостом ходу она даже не накаляется, менее мощная лампа может немного накаляться, но на грани различимости, это также нормально.

Включаем, проверяем, все работает 🙂

Некоторые дополнения.

Если вы заметили, что ваш блок питания требует 'прогрева' перед включением и это время постепенно увеличивается, то следует проверить конденсаторы БП, так как если затянуть с этим, то все может закончиться выходом из строя высоковольтного транзистора и часто микросхемы ШИМ контроллера.

Выходной диод БП выходит из строя редко, но лучше его проверить, обычно это можно сделать даже не выпаивая его из платы.

С переходом на импульсные блоки питания самая частая поломка - выход из строя электролитических конденсаторов, причем иногда емкость он может иметь нормальную, но внутреннее сопротивление сильно увеличивается.

Для общего развития я добавил для скачивания неплохую книгу по импульсным блокам питания.

Резюме.

Плюсы

Блок питания выдал заявленную мощность

Тепловой режим работы в норме

Небольшой уровень пульсаций

Наличие нормального фильтра по входу 220 Вольт

Отличная стабильность выходного напряжения

Хорошая ремонтопригодность

Минусы

Проблемы с надежностью при перегрузке или коротком замыкании

Конденсаторы входного фильтра имеют заниженную емкость

Нет заявленного автоматического управления вентилятором.

Низкое качество выходных конденсаторов

Мое мнение. Меня очень расстроило то, что блок питания вышел из строя, хотя это и произошло при мощности выше заявленной, но это говорит об отсутствии либо некорректной работе защиты от перегрузки. Но в то же время обрадовал температурный режим блока питания, даже при максимальной мощности никакие компоненты не перегревались, хотя выходящий воздух имел легкий запах нагретых компонентов, но это частая особенность новых блоков питания.

Но даже при том, что я спалил этот блок питания, могу сказать, что он имеет неплохой потенциал и если его не перегружать, то будет работать. В основном это связано с отработанностью данной схемотехники, здесь тяжело что то накосячить, хотя проблемы с надежностью вылезли 🙁

В будущем я думаю его немного доработать и надеюсь что в ближайшем времени вы увидите его (хотя скорее их) в одном из моих устройств, там же будет и описание доработки.

Вся информация о ремонте основана на личном опыте. Вообще разнообразие причин поломок и методов определения неисправности гораздо больше, чем я описал, но боюсь что все описать очень тяжело и будет ну совсем большая статья.

42 Вольта вместо 12 - это нужно? Да это просто необходимо.

Даже современные автомобили, имеют бортовое напряжение в 12 вольт, пришедшее на транспорт с далёких 50 — 60 годов прошлого века. И всех водителей, да и производителей транспортных средств тоже, вроде бы этот привычный всем вольтаж устраивает. Но наверное многие водители замечали, что только стоит включить например подогрев сидений, или обычные фары, и тут же обороты холостого хода начинают падать. Тут всё довольно просто — необходимую мощность, которая требуется для нормальной работы электрических потребителей, можно получить только забрав её от двигателя. И не все водители знают, что для владельца автомобиля, такое превращение механической энергии в электрическую, выходит попросту говоря в выхлопную трубу, вместе с дополнительными литрами сожжённого топлива. И чем больше электропотребителей и мощнее они, тем больше топлива сжигается, сжигая деньги владельца.

Скажу более точно: на каждые сто ватт электрической энергии, расход топлива увеличивается на 170 грамм (миллилитров). Нетрудно подсчитать, сколько лишнего топлива сожрёт ваша машина или мотоцикл, если нашпиговать их например автозвуком, мощностью в 500 или 1000 ватт. И я знаю, что многие рассмеются в лицо и с удовольствием согласятся жечь лишний бензин или соляру, лишь бы слушать качественную и громкую музыку — я и сам такой. Но цель этой статьи в другом.

Начнём с того, что если всего лишь сэкономить какие то жалкие 100 ват электроэнергии, то конструкторам можно будет снизить вес автомобиля аж на 50 килограмм !!! Я имею в виду ватты, которые автомобиль потребляет от электрических потребителей, установленных на заводе, а не от потребителей, установленных самим водителем при тюнинге. И стремление завлечь покупателя комфортом в автомобиле, заставляет конструкторов оборудовать машины всё новыми и новыми энерго-потребителями. Подогрев зеркал, сидений, стёкол, антено и стеклоподъёмники, различные электронные блоки системы впрыска, ESP, ABC, системы навигации и климатические электроустановки, электрический усилитель руля, и ещё много чего. И о некоторых новейших электрических потребителях, я уже писал на моём блоге, например: электрическая помпа системы охлаждения, турбина с электродвигателем крыльчатки, аккумулятор с подогревом, или электропривод тормозов. Всё это скоро появится на серийных машинах.

И если совсем недавно, обычная серийная машина среднего класса девяностых -двухтысячных годов, потребляла от 800 до 1500 ватт электромощности, то сегодняшние среднеклассовые автомобили потребляют уже от 3000 до 7000 ватт !!!

А европейские законы, даже заставили конструкторов установить в современные автомобили электрический подогрев в катализатор, который потребляет 1,5 киловатт !!! электроэнергии, и примерно столько же мощности теряется в проводах по пути к подогревателю. Если посчитать (исходя из 170 мл на 100 ватт, как написано выше) сколько лишнего топлива сжигается из-за подогрева катализатора, то становится непонятным, чего хотят добиться «зелёные»???

И как я уже говорил выше, всё же не стоит экономить например на удовольствии от музыки или комфорта (ведь за удовольствие не жалко платить), но вот чтобы при этом не сжигать бессмысленно топливо, нужно непременно искать выход.

А выход есть.

Ведь известно, что основная потеря электромощности происходит в проводах (я об этом написал выше, сколько теряет в проводах подогреватель катализатора). Это простые законы физики, и напомню, что у каждого провода (проводника) имеется некоторое электрическое сопротивление R. И выделяющаяся в этом проводнике мощность, будет равна произведению I²·R. Но с сопротивлением R почти ничего нельзя сделать. Можно конечно, если заменить медь проводника на серебро (только вот сколько будет стоить такая машина), да и увеличить сечение проводника тоже не выход (возрастёт и масса и цена, и сечение проводов в автомобилях итак уже по самое «нехочу»).

Но вот зато изменить силу тока I, весьма привлекательно, ведь в формуле сила тока стоит в квадрате (I²), а это значит, что если мы снизим портребляемый ток в 3 раза, то потери уменьшатся аж в 9 раз !!! Как говорится простая математика и никакого мошенничества.

Так от чего же зависит величина силы тока?

У любого портребителя электрической энергии мощность вычисляется как произведение U·I, а буква U — это напряжение сети автомобиля. А значит, при одинаковой мощности к примеру подогревателя сиденья, этот подогреватель будет потреблять в 3 раза меньший электрический ток, если напряжение его питания увеличить в 3 раза. Не пойму только, как это конструкторам транспортных средств, до сих пор не пришло в голову поменять 12 вольт на 36 (просто потребителей на машине было мало в те годы). Это нужно было сделать ещё тогда в далёкие 50 — 60-е годы, когда переходили с 6 на 12 вольт! Хотя и было в те годы мало потребителей на машине, но ведь тенденция их роста была очевидна.

И если мы возьмём 3 батареи по 12 вольт каждая и соединим их перемычками, то в сумме получится всего 36 вольт, но ведь это только в то время, когда машина простаивает в гараже. Стоит только завести двигатель, и получим 42 вольта (ведь 12 вольт при работе мотора повышается до 14 вольт).

42 ВОЛЬТА.

42 ВОЛЬТА — это стандарт будущего бортового напряжения земного транспорта. И хочу заменить, что не следует полагать, будто бы вскоре придётся впихивать под капот 3 батареи, которые займут в 3 раза больше пространства под капотом и они будут в 3 раза тяжелее нынешнего 12-вольтового аккумулятора. Совсем нет. Потому что потребляемый к примеру электростартером электрический ток, уменьшится во столько же раз, и мы сможем установить у себя под капотом аккумулятор, ёмкостью всего 20 А/ч !!! Единственное отличие такой батареи от нынешней 12-ти вольтовой — это количество банок: их будет не шесть, а в три раза больше — 18 !!!

Новый стандарт поможет легче осуществить внедрение систем управления не механически, а по проводам (система Drive by wire). Эта система будет устанавливаться даже в самых важных и ответственных узлах автомобиля: тормоза, рулевое управление и подача газа. И чтобы повысить надёжность этих узлов, от которых зависит безопасность водителя и окружающих, нужно будет установить два совершенно независимых источника элктроэнергии на борту автомобиля (как на самолётах). Проще говоря, на маломощных приборах можно будет оставить 12 вольтовую сеть, а на других более мощных потребителях установить сеть в 42 вольта. Это позволит к тому же не тратится водителям на адаптеры, если они захотят установить в машину 12 вольтовые мониторы телевизоров, компьютеров, навигаторов, телефонов и других маломощных приборов.

И напоследок скажу, что новые автомобили с 42 вольтовым напряжение на борту уже колесят по дорогам. Например новая машина (семёрка) от БМВ, была выпущена в 2001 году, и напряжение у неё на борту в 42 вольта. Кстати, даже наш отечественный завод, уже выпустил уникальный генератор, напряжение от которого можно выбрать, подключившись к одной из трёх колодок: 14, 28 и 42 вольта. Но об этом в следующей, вот этой небольшой статье.

Как сделать из 12 вольт 24 вольта. Как получить двадцать четыре вольта из компьютерного блока питания

В этой статье мы рассмотрим стабилизированный источник питания с плавной регулировкой выходного напряжения 0...24 вольта и током 3 ампера. Защита блока питания реализована на принципе ограничения максимального тока на выходе источника. Подстройка порога ограничения по току производится резистором R8. Выходное напряжение регулируется переменным резистором R3.

Принципиальная схема блока питания изображена на рисунке 1.

Перечень элементов:

R1........................180R 0,5W
R2, R4................. 6К8 0,5W
R3.......................10k (4k7 – 22k) reostat
R5........................7k5 0,5W
R6........................0.22R не менее 5W (0,15- 0.47R)
R7.......................20k 0,5W
R8.......................100R (47R – 330R)
C1, С2.................1000 x35v (2200 x50v)
C3.......................1 x35v
C4.......................470 x 35v
C5......................100n ceramick (0,01-0,47)
F1......................5A
T1......................KT816 (BD140)
T2......................BC548 (BC547)
T3......................KT815 (BD139)
T4......................KT819 (КТ805,2N3055)
T5......................KT815 (BD139)
VD1-4................КД202 (50v 3-5A)
VD5.................. BZX27 (КС527)
VD6...................АЛ307Б, К (RED LED)

Начнем по порядку:

Понижающий трансформатор выбирается такой мощности, чтобы он был способен долговременно отдавать ток в нагрузку требуемой величины, а напряжение на вторичной обмотке было на 2...4 вольта больше максимального напряжения на выходе блока питания. Соответственно и выпрямительный мост выбирается с запасом по току, чтобы не пришлось потом диоды моста или диодную сборку лепить на радиатор.

Как прикинуть мощность трансформатора? Например: на вторичке должно быть 25 вольт при токе 3 ампера, значит имеем 25 * 3 = 75 Ватт. Чтобы трансформатор мог долговременно отдавать в нагрузку 3 ампера увеличьте это значение процентов на 20... 30, т.е. 75 + 30% = 97,5 Вт. Отсюда следует, что необходимо выбрать 100 ваттный трансформатор.

Максимальное напряжение на выходе блока питания зависит от стабилитрона VD5, стоящего в коллекторной цепи транзистора Т1. Например: при использовании стабилитрона КС168, на выходе получим максимальное напряжение порядка 5 вольт, а если поставить КС527, на выходе поимеем максимальное напряжение вольт 25. Информацию по стабилитронам можете найти в статье:

Какого номинала должна быть фильтрующая емкость , стоящая после диодного моста? В нашем случае по схеме стоят две емкости в параллель С1 и С2 по 1000 микрофарад. А вообще емкость этого конденсатора выбирается из расчета порядка 1000 микрофарад на 1 ампер выходного тока.
Электролит С4, стоящий на выходе блока питания выбирается в районе 200 микрофарад на 1 ампер выходного тока.

На какое напряжение поставить электролиты С1, С2 и С4? Если не вдаваться в заумные расчеты, то можно воспользоваться формулой: ~Uвх:3×4 , т.е. величину напряжения, которую выдает вторичная обмотка понижающего трансформатора, нужно разделить на 3 и умножить на 4. Например: на вторичке имеем 25 вольт переменки, отсюда 25:3*4 = 33,33 , поэтому конденсаторы С1, С2 и С4 выбраны на Uраб = 35 вольт. Можно поставить емкости с более высоким рабочим напряжением, но никак не меньшим расчетной величины. Конечно такой расчет грубоват, но тем не менее...

На Т5 собран ограничитель тока. Порог ограничения зависит от номинала резистора R6 и положения переменного резистора R8. В принципе переменник R8 можно и не устанавливать, а порог ограничения сделать фиксированным. Для этого базу транзистора Т5 соединим с эмиттером Т4 напрямую, а подбором резистора R6 установим необходимый порог. Например: при R6=0,39 Ом ограничение будет порядка 3 ампер.

Регулировка тока ограничения. Без нагрузки установите потенциометром R3 Uвых порядка 5 вольт. Подсоедините к выходу БП последовательно соединенные амперметр и резистор 1 Ом (мощность резистора ватт 10). Подстроить R8 на необходимый ток ограничения. Проверяем: понемногу выкручиваем R3 на максимум, при этом показания контрольного амперметра не должны изменяться.

В процессе работы транзистор Т1 слегка греется, поставьте его на небольшой радиатор, а вот Т4 калится основательно, на нем рассеивается приличная мощность, тут без радиатора внушительного размера не обойтись, а еще лучше к этому радиатору кулер от компьютера приспособить.

Как прикинуть мощность рассеяния Т1? Например: напряжение после диодного моста 28 вольт, а на выходе вольт 12. Разница составляет 16 вольт. Прикинем мощность рассеяния при максимальном токе 3 ампера, т.е. 12*3 = 36 Ватт. Если выходное напряжение выставим 5 вольт при токе 3 ампера, значит на транзисторе рассеится мощность (28 - 5) * 3 = 69 Ватт. Поэтому при выборе транзистора Т4 не поленитесь заглянуть в справочник по транзисторам, посмотрите на какую мощность рассеяния он рассчитан (в таблице колонка Рк max ). Справочный материал по транзистору смотри на рисунке ниже (для увеличения картинки кликните на изображении):

Печатная плата блока питания изображена на следующем рисунке:

Какого номинала поставить предохранитель? В этой схеме стоит два предохранителя: по первичной обмотке трансформатора (выбирается на 0,5...1 ампер больше максимального тока первичной обмотки), и второй перед выпрямительным мостом (выбирается на 1 ампер больше максимального тока ограничения БП).

С этой схемы можно выжать гораздо больше 3 ампер, для этого необходимо иметь транс-р, способный выдать необходимый ток, поставить диодный мост с запасом по току, пересчитать фильтрующие емкости, дорожки на плате, по которым будет протекать большой ток армировать толстым проводом, и применить параллельное соединение транзисторов в качестве Т4 как показано на следующем рисунке. Транзисторы так же ставятся на радиатор с принудительным обдувом вентилятором.

Если вы собираетесь использовать этот БП в качестве зарядного устройства для автомобильного аккумулятора, установите без нагрузки (аккумулятор не подключен) регулятором напряжения порядка 14,6 вольт на выходе и подключите аккумулятор. По мере заряда батареи плотность электролита увеличивается, сопротивление возрастает, соответственно ток будет падать. Когда аккумулятор зарядится и на его клеммах будет 14,6 вольт, зарядный ток прекратится.

Внешний вид печатной платы и собранного блока питания смотрите ниже:

Каждый автолюбитель мечтает иметь в своем распоряжении выпрямитель для зарядки аккумулятора. Без сомнения, это очень нужная и удобная вещь. Попробуем рассчитать и изготовить выпрямитель для зарядки аккумулятора на 12 вольт.
Обычный аккумулятор для легковой автомашины имеет параметры:

  • напряжение в обычном состоянии 12 вольт;
  • емкость аккумулятора 35 — 60 ампер часов.

Соответственно ток заряда составляет 0,1 от емкости аккумулятора, или 3,5 — 6 ампер .
Схема выпрямителя для зарядки аккумулятора изображена на рисунке.

Прежде всего нужно определить параметры выпрямительного устройства.
Вторичная обмотка выпрямителя для зарядки аккумулятора должна быть рассчитана на напряжение:
U2 = Uак + Uo + Uд где:

— U2 — напряжение на вторичной обмотке в вольтах;
— Uак — напряжение аккумулятора равно 12 вольт;
— Uo — падение напряжения на обмотках под нагрузкой равно около 1,5 вольт;
— Uд — падение напряжения на диодах под нагрузкой равно около 2 вольт.

Всего напряжение: U2 = 12,0 + 1,5 + 2,0 = 15,5 вольт.

Примем с запасом на колебание напряжения в сети: U2 = 17 вольт.

Ток заряда аккумулятора примем I2 = 5 ампер.

Максимальная мощность во вторичной цепи составит:
P2 = I2 х U2 = 5 ампер х 17 вольт = 85 ватт.
Мощность трансформатора в первичной цепи (мощность, которая будет потребляться от сети) с учетом КПД трансформатора, составит:
P1 = P2 / η = 85 / 0,9 = 94 ватт. где:
— Р1 — мощность в первичной цепи;
— Р2 — мощность во вторичной цепи;
-η = 0,9 — коэффициент полезного действия трансформатора, КПД.

Примем Р1 = 100 ватт.

Рассчитаем стальной сердечник Ш — образного магнитопровода, от площади поперечного сечения которого зависит передаваемая мощность.
S = 1,2√ P где:
— S площадь сечения сердечника в см.кв.;
— Р = 100 ватт мощность первичной цепи трансформатора.
S = 1,2√ P = 1,2 х √100 = 1,2 х 10 = 12 см.кв.
Сечение центрального стрежня, на котором будет располагаться каркас с обмоткой S = 12 см.кв.

Определим количество витков, приходящихся на 1 один вольт, в первичной и вторичной обмотках, по формуле:
n = 50 / S = 50 / 12 = 4,17 витка.

Возьмем n = 4,2 витка на 1 вольт.

Тогда количество витков в первичной обмотке будет:
n1 = U1 · n = 220 вольт · 4,2 = 924 витка.

Количество витков во вторичной обмотке:
n2 = U2 · n = 17 вольт · 4,2 = 71,4 витка.

Возьмем 72 витка.

Определим ток в первичной обмотке:
I1 = P1 / U1 = 100 ватт / 220 вольт = 0,45 ампер.

Ток во вторичной обмотке:
I2 = P2 / U2 = 85 / 17 = 5 ампер.

Диаметр провода определим по формуле:
d = 0,8 √I.

Диаметр провода в первичной обмотке:
d1=0,8 √I1 = 0,8 √ 0,45 = 0,8 · 0,67 = 0,54 мм.

Диаметр провода во вторичной обмотке:
d2 = 0,8√ I2 = 0,8 5 = 0,8 · 2,25 = 1,8 мм.

Вторичная обмотка наматывается с отводами.
Первый отвод делается от 52 витка, затем от 56 витка, от 61, от 66 и последний 72 виток.

Вывод делается петелькой, не разрезая провода. затем с петельки счищается изоляция и к ней припаивается отводящий провод.

Регулировка зарядного тока выпрямителя производится ступенчато, переключением отводов от вторичной обмотки. Выбирается переключатель с мощными контактами.

Если такого переключателя нет, то можно применить два тумблера на три положения рассчитанных на ток до 10 ампер (продаются в авто-магазине).
Переключая их, можно последовательно выдавать на выход выпрямителя, напряжение 12 — 17 вольт.


Положение тумблеров на выходные напряжения 12 — 13 — 14,5 — 16 — 17 вольт.

Диоды должны быть рассчитаны, с запасом, на ток 10 ампер и стоять каждый на отдельном радиаторе, а все радиаторы изолированы друг от друга.

Радиатор может быть один, а диоды установлены на нем через изолированные прокладки.

Площадь радиатора на один диод около 20 см.кв., если один радиатор, то его площадь 80 — 100 см.кв.
Зарядный ток выпрямителя можно контролировать встроенным амперметром на ток до 5 -8 ампер .

Можно использовать данный трансформатор, как понижающий, для питания аварийной лампы на 12 вольт от отвода 52 витка. (смотрите схему).
Если нужно питать лампочку на 24 или на 36 вольт, то делается дополнительная обмотка, из расчета на каждый 1 вольт 4,2 витка.

Эта дополнительная обмотка включается последовательно с основной (смотреть верхнюю схему). Нужно только сфазировать основную и дополнительную обмотки (начало — конец), чтобы общее напряжение сложилось. Между точками: (0 – 1) — 12 вольт; (0 -2) — 24 вольта; между (0 – 3) — 36 вольт.
Например. Для общего напряжения в 24 вольта нужно к основной обмотке добавить 28 витков, а для общего напряжения 36 вольт, еще 48 витков провода диаметром 1,0 миллиметр.


Возможный вариант внешнего вида корпуса выпрямителя для зарядки аккумулятора, изображен на рисунке.

Изготовим каркас трансформатора для статьи «Как рассчитать силовой трансформатор»

Для уменьшения потерь на вихревые токи, сердечники трансформатора набираются из пластин штампованных из электротехнической стали. В маломощных трансформаторах чаще всего применяются «броневые» или Ш – образные сердечники.

Обмотки трансформатора находятся на каркасе. Каркас для Ш-образного сердечника, располагается на центральном стержне, что упрощает конструкцию, позволяет лучше использовать площадь окна и частично создает защиту обмоток от механических воздействий. Отсюда и название трансформатора — ,броневой,. .

Для сборки броневых сердечников используются пластины Ш – образной формы и перемычки к ним. Для устранения зазора между пластинами и перемычками, сердечник собирается,вперекрышку,.

Площадь сечения Ш-образного сердечника S, есть произведение ширины центрального стержня на толщину набора пластин (в сантиметрах). Подходящие пластины для сердечника нужно подобрать.

Для примера, из статьи «Как рассчитать трансформатор 220/36 вольт»:

- мощность трансформатора Р = 75 ватт;
— площадь сечения магнитопровода S = 10 см.кв = 1000 мм.кв.

Под такое сечение магнитопровода выбираем пластины:

— ширина b = 26 мм. ,
— высота окна пластины c = 47 мм ,
— ширина окна – 17 мм.,

Если есть пластины другого размера, можно использовать и их.

Tолщина набора пакета пластин будет:

S: 26 = 1000: 26 = 38,46. Примем: a = 38,5 мм .

Есть много способов изготовления каркасов для Ш-обраного серденика из разных материалов: электрокартон, прессшпан, текстолит и т.д. Иногда применяется бескаркасная намотка. Для маломощных трансформаторов до 100 вт. неплохо получаются каркасы склеенные из картона и бумаги.

Изготовление каркаса.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт .

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт , нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.

Сделаем упрощенный расчет трансформатора 220/36 вольт.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;

U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;

I _2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р_1 , мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:
S — площадь в квадратных сантиметрах,

P _1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка .

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где : d — диаметр провода .

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Из выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:
- первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Преобразователь напряжения пригодиться во многих случаях. Во-первых, этот прибор пригодится для получения напряжения 28 В, при питании коммутатора ADC гигабайтного Интернета, а также при подключении блока Macintosh G4s от стандартного блока питания компьютера ATX. Да ещё есть много случаев, когда вам пригодится отличное от стандартного напряжение.

Возможно даже вам потребуется подключить электрооборудование на 12 В к сети туристического прицепа или мотоцикла на 6 В. Также вы можете применить преобразователь для питания компьютерного кулера от 24 В, когда недостаточно обычной скорости вращения вентилятора от 12 В. В каких случаях нужно повысить скорость вращения кулера, вы можете узнать из других статей. Особенно нелишне будет прочесть рассказ о том, как собрать самодельный, мощный обогреватель для автомобиля.

Предложенная схема преобразователя напряжения используется для питания флуоресцентной лампы в планшетном сканнере.

Пояснения к схеме.

Трансформатор необходимо собрать на ферритовом сердечнике. Преобразователь отлично будет работать на тороидальном сердечнике диаметром 30 мм, который похож на миниатюрный пончик. Если использовать броневой ферритовый магнитопровод, то преобразователь будет работать тоже. К тому же, состоящий из двух Ш-образных половинок сердечник легче найти, и наматывать проволоку на него легче. Броневой ферритовый магнитопровод можно найти, например: в поломанном компьютерном блоке питания, в цоколе сгоревшей компактной люминесцентной лампы (КЛЛ или экономлампе).

Обмоточной проволоки на сердечник трансформатора придётся мотать совсем не много, поэтому витки можно намотать даже тонким проводом в поливиниловой изоляции. Первичная обмотка повышающего трансформатора состоит всего лишь из 4 витков, две вторичные обмотки наматываются из 13 витков каждая.

Не ошибитесь, и соберите трансформатор правильно. Первичная обмотка наматывается в противоположном направлении, чем вторичные обмотки, которые намотаны в одном направлении. Начало одной вторичной обмотки соединено с концом другой. На схеме, точками возле «спиралек», обозначены начала обмоток трансформатора.

Транзисторы нужны для ключей преобразователя биполярные. Так как, для выше названных целей применения нашего преобразователя, ток на выходе не может превысить 500 мА, то можно использовать распространённые транзисторы: 2N3904, 2N4401, PN2222, MPS2222, C945, NTE123AP. Если вы собираетесь запустить от преобразователя плазменный монитор, тогда нужно взять два транзистора помощнее, такие как D965, которые устанавливаются в фотовспышку фотоаппарата. Если же вам нужно подключить к преобразователю нагрузку мощностью более 5 А, тогда устанавливайте ключи на составных транзисторах, например TIP120 или TIP3055. Но тогда не забудьте поменять диоды в схеме, на такие которые выдержат токи свыше 10 А, а сами транзисторы уже понадобиться закрепить на радиаторы.

Диоды устанавливайте не любые, которые найдёте, а те которые могут закрываться при обратной полярности тока за время 35 наносекунд, и меньше. Отлично, по этому показателю, для преобразователя подходят диоды 1N914 и 1N4148, но они выдерживают прямой ток не более 4 А. При подключении к преобразователю нагрузки более низкоомной, чем кулер, нужно поставить выпрямители SUF30J, UF510, UF540, которые могут работать при токах 15 – 20 А.

Конденсаторы можно выбрать с изоляционной обкладкой, как из полиэстера, так и из полипропилена. Конденсаторы на 100 пФ и 470 пФ не электролитические, а неполярные, они нужны для фильтрации высоких частот. Конденсатор на выходе, имеющий ёмкость 1,5 мФ, является электролитическим. По напряжению конденсаторы выбирайте в два раза больше, того напряжения, что действует в цепи.

Катушка нужна на величину индуктивности около 1 мГн. Таких катушек полно в радио- и телеаппаратуре, а также в тех же экономлампах.

Резисторы обязательно выбирайте по мощности с запасом. Оптимально для данной схемы подходят резисторы по 0,5 Вт. При увеличении выходного напряжения вдвое, необходимо также и сопротивление резисторов увеличивать вдвое.

Как ранее упоминалось, приведённая схема в первую очередь предназначена для питания компьютерного вентилятора завышенным вдвое входным напряжением. А вы можете, изменив соотношение витков на трансформаторе, изменять входное напряжение и в других пределах. В этом вам поможет умная голова, и умелые руки.

Ветрогенератор на базе асинхронного двигателя Что делать если постоянно срабатывает дифференциальный автомат

Статья поясняет как переделать обычный компьютерный блок питания на напряжение 24 вольта.

В некоторых случаях возникает потребность в мощных источниках питания для различного оборудования, рассчитанного на напряжение 24 вольта.

В этой статье расскажу как можно переделать обычный компьютерный блок питания как АТХ так и АТ на напряжение 24 в. Так же из нескольких таких блоков можно компоновать любые напряжения для питания всевозможных устройств.

Например для питания местной АТС УАТСК 50/200М, рассчитанной на напряжение 60 в и мощность около 600 Ватт, автор статьи заменил обычные громадные трансформаторные блоки на три маленьких компьютерных блоков питания которые аккуратно умещались на стенке рядом с рубильником питания и почти не создавая при этом никакого шума.

Переделка заключается в добавлении двух силовых диодов, дросселя и конденсатора. Схема аналогичная шине питания +12в после импульсного трансформатора, только диоды и полярность конденсатора обращены наоборот, как показано на рисунке (фильтрующие конденсаторы не показаны).

Прелесть такой переделки заключается в том, что цепи защиты и стабилизации напряжения остаются не тронутыми и продолжают работать в прежнем режиме. Возможно получить напряжение отличное от 24 вольт (например 20 или 30), но для этого придётся изменить параметры делителя опорного напряжения управляющей микросхемы и изменить либо отключить схему защиты, что сделать уже более сложно.

Дополнительные диоды Д1 и Д2 крепятся через изоляцию на том же самом радиаторе, что и остальные, в любом удобном месте но с обеспечением полного пятна контакта с радиатором.

Дроссель Л1 крепиться в любом доступном на плате месте (можно приклеить), но следует отметить, что в различных моделях и марках блоков питания он будет греться по-разному, возможно даже больше чем уже стоящий по цепи + Л2 (зависит от качества блока питания). В таком случае нужно либо подбирать индуктивность (которая не должна быть меньше стандартной Л2) либо крепить его непосредственно на корпус (через изоляцию) для отвода тепла.

Проверять блок можно на полной нагрузке или на нагрузке, на которую он у вас будет работать. При этом корпус должен быть полностью закрыт (как положено). При проверке следует наблюдать не перегреваются ли радиаторы, на которых закреплены полупроводники и дополнительно установленный дроссель по цепи -12в. К примеру, блок питания рассчитанный на 300 ватт можно нагрузить током 10-13А при напряжении 24В. Не лишним будет проверить пульсации выходного напряжения осциллографом.

Так же очень важно отметить, что если у вас будут работать вместе два или более блоков соединённые последовательно, то корпус (массу) схемы нужно ОТКЛЮЧИТЬ от металлического корпуса блока питания (я это делал простым перерезанием дорожек в местах крепления платы к шасси). Иначе вы получите короткое замыкание или через провод заземления шнуров питания или через касание корпусов друг к другу. Для наглядности исправной работы блока можно вывести наружу лампочку или светодиод.

Отличие переделки стандартов АТ и АТХ заключается лишь в запуске блока. АТ начинает работать сразу после включения в сеть 220 в, а АТХ нужно либо запускать сигналом PS-ON, как это сделано на компьютере, либо заземлить провод этого сигнала (обычно он подходит к управляющей ножке микросхемы). При этом блок так же будет стартовать при включении в сеть.

36 Вольт в гараже

Электроэнергия в гараже – необходимое мероприятие. Она, как минимум, требуется для зарядки аккумулятора.

Кроме того, приходится точить инструменты, сверлить, включать паяльник, осветительные приборы.

Однако присутствие ГСМ, и особенно бензина, предъявляет к электропроводки в гараже особые требования. Сырость и контакт с землей делают проводку опасной в отношении электротравм.

Поэтому, перед тем, как получить гараж с электричеством, следует изучить основные требования безопасности, а также технологические приемы электромонтажных работ, нарушение которых также очень плохо влияет на безопасность.

Проводка в гараже: требования правил

Не делая подробных ссылок на нормы электроснабжения гаража СНИП и ПУЭ (правила устройства электроустановок), и прочие правила, что сделало бы статью громоздкой и трудночитаемой, все же необходимо выписать саму суть.

Если гараж находится в кооперативном владении, то потребуется получить разрешение для его электрификации. Узнать подробности можно у администрации кооператива.

Для подключения к трехфазной сети 0.4 кВ (380 В) необходимо обратиться в местное предприятие электроснабжения. Если все делается по правилам, то они же составят проект по требованиям заказчика. (На самом деле такой проект возникает как согласование пожеланий заказчика с возможностями и ограничениями правил.)

Можно сделать своими руками монтаж электропроводки в гараже, а также выполнить все монтажные работы. Но это только тогда когда речь идет об однофазной сети 220 В. Для подведения трехфазной сети потребуется разрешение. А монтаж до отдельного счетчика будет делать уполномоченная организация (местный электроснаб).

В случае сети 220 В позаботьтесь о счетчике, рассчитанном на ток в 50 Ампер, чтобы в случае необходимости был запас по току нагрузки. Разумеется, кабели от ввода должны этот ток обеспечивать. Эта работа также делается специалистами при контроле энергонадзора.

Если ваш счетчик уже такой ток обеспечивает (видно на самом счетчике), то можно делать подключение к гаражу, по воздуху, или под землей.

Как сделать проводку в гараже своими руками — фото:

Как провести электропроводку в гараже? Сначала обсудим то, что можно делать самостоятельно, своими силами. Из дома можно провести электричество в гараже по воздуху или под землей. Воздушную линию делают кабелем и подвешивают на стальной несущей проволоке диаметром 3 мм.

Линию под землей тянут в гофрированной трубе из пластика, в траншее глубиной 80 см, на подушке из песка, толщиной 10 см. Эта линия подключается к домашнему счетчику и является, таким образом, частью квартирной проводки, в качестве отдельной линии, также защищенной автоматом.

В самом помещении устанавливается сделанный своими руками электрический щиток в гараж для дальнейшего распределения электроэнергии (схему электрощитка для гаража смотрите ниже). И этот электрический щиток для гаража начинается с главного автомата, такого же, как и в квартире. О выборе номинального тока для них скажем ниже.

Схема распределительного электрощитка для гаража своими руками:

Схемы и расположение потребителей

Как провести проводку в гараже своими руками? Перед началом работ нужно подобрать схему проводки в гараже своими руками. Схемы электропроводки в гараже бывают разными, в зависимости то того, какая информация требуется тому, кто их смотрит. В электрической технике различают принципиальные схемы и схемы расположения.

Первые должны детально описывать всю электрическую цепь, а вторые – расположение потребителей, с указанием расстояния или так, чтобы можно было ориентироваться по масштабу чертежа. Начнем с принципиальной схемы подключения проводки в гараж, которая требуется в соответствии с последней версией ПУЭ.

Однофазная принципиальная схема электроснабжения гаража показана на рисунке ниже. Для удобства на схеме проводки в гараже использована реальная расцветка проводов (как в обычных кабелях).

Разводка электропроводки в гараже своими руками — схема, фото:

Фазный проводник сети находится под опасным напряжением относительно нейтрали и земли, так как нейтраль обычно заземляется. Однако, для работы устройства защитного отключения (УЗО) необходима защитная земля (PE, protection earth).

Принцип работы УЗО состоит в использовании дифференциального трансформатора, который складывает входящий (по фазному проводу) и уходящий (по проводу нейтрали) токи. Если изоляция потребителя повреждена и есть замыкание на корпус, то сумма токов фазного провода и нейтрали не равна нулю. А разницу дает как раз ток утечки на землю.

Возможно, этот ток течет по телу человека! Смертельный ток около 100 мА. А УЗО, показанное на схеме, настроено на ток 5 мА. Таким образом, человек будет защищен, ибо устройство сработает за миллисекунды и разомкнет цепь.

Но это работает только в том случае, когда ток утечки течет помимо дифференциального трансформатора УЗО, а именно в отдельной линии заземления!

Главный автомат обесточивает нашу маленькую сеть на схеме при коротких замыканиях на общей линии (магнитная защита) или в случае большой суммарной перегрузки всех линий (тепловая защита). Также он используется при ремонтах.

Для того, чтобы обеспечить независимость разных потребителей, используется несколько линий, питающихся от одной или нескольких групп. Обычно в частном гараже, как и в квартире, вполне достаточно одной группы. А каждая группа питается от своего автомата в цепи фазы. Это очень удобно при ремонтах.

Автоматы (автоматические выключатели) защищают свои цепи от перегрузок по току и от коротких замыканий. Следует помнить, что УЗО защищает цепи только от токов утечки! От перегрузки по току она цепь не защищает, это делает автоматический выключатель.

Шины, расположенные в щитках, выполняются в виде полос или брусков из медных или латунных сплавов и снабжены отверстиями для проводов, которые затягиваются винтами. Следует сказать, что современная номенклатура электротехнических изделий очень удобна для монтажных работ, если использовать ее грамотно.

Схема трехфазной сети отличается от однофазной только двумя дополнительными фазами и установкой трехфазных (строенных) автоматов и УЗО. Отдельные фазы этой сети разводятся как линии напряжения 220 В совместно с нейтралью. Между любыми двумя фазами напряжение равно 380 В, а фазовый угол в равномерно нагруженной сети равен 120 градусов. При этом ток в нейтрали равен нулю.

Электричество в гараже своими руками — схема расположения показана на следующем рисунке:

На таких схемах электрики в гараже не обязательно выполнять требования для чертежей по принятым правилам, так как мы делаем их для себя. Главное – это ясность всех обозначений. Вертикальные участки проводки отмечены плюсами с указанием высоты. Это даст возможность легко посчитать длину линий.

На схеме подключения электропроводки в гараже обозначаются условными обозначениями розетки и светильники. Можно добавить выключатели. Все добавляется по месту расположения. Мы еще поработаем над этим документом чуть ниже, когда будем выбирать материалы.

Выбор проводов и кабелей по мощности нагрузок

Здесь можно руководствоваться такой таблицей:

Таблица составлена для напряжения 230 В (новый стандарт вместо 220). Теперь мы можем выбрать сечения кабелей для гаража на предыдущем рисунке. Предположим, что все светильники под потолком на 80 Вт, светильники на 36 В в яме по 100 Вт и розетки для ямы нам понадобятся для электрооборудования мощностью до 5 кВт.

Линия потолочных светильников потребляет в сумме 240 Вт, а для ямных светильников мы не можем использовать таблицу, так как напряжение трансформатора 36 В. Кроме того, в яме есть розетка под электроинструмент на 36 В. Поэтому мы исходим из максимальной мощности трансформатора, пусть она равна 500 Вт.

Провод от трансформатора лучше вести медный, проводка закрытого типа – часть ее проходит по трубам в бетонном полу гаража. Поэтому нам подойдет кабель с жилой сечения 4.5 мм.кв, “четыре с половиной квадрата” на жаргоне электриков. Для ямных розеток мы тоже возьмем медный провод для закрытой проводки, это потребует, согласно таблице, 5.5 мм.кв.

На самом деле эти скрупулезные расчеты вовсе не пустяки, вы поймете это, как только окажетесь в магазине и начнете смотреть на ценники медных кабелей.

Итак, нам понадобится 8 м кабеля 4.5 мм.кв и 7 м кабеля 5.5 мм.кв. А также 9 м алюминиевого кабеля сечением 1.5 мм.кв для потолочных светильников, тоньше электрического кабеля практически не бывает в продаже. Выбираем и покупаем ближайшие сечения с округлением в большую сторону.

Алюминий мы выбираем потому, что он недорог, а потолочная линия практически ненагружена. Кабели следует выбирать в двойной изоляции и с изолирующими проводниками.

По току выбираем и автоматы. Для линии потолочных светильников 2.5 А, для линии розеток в яме 15 А, и остается трансформатор. Поскольку трансформатор трансформирует с тем же самым коэффициентом не только напряжения, но и токи, то мы можем легко подсчитать ток в первичной обмотке: 14 / (220 / 36) = 14*36 / 220 = 2.3 А. Подойдет автомат 2.5 А. Общий максимальный ток составит 20 Ампер и такой же должен стоять автомат. Остается только выбрать подходящее УЗО.

Оно должно быть рассчитано на проходящий ток не менее 20 А и ток срабатывания 10-20 мА, не больше! Приборы с исправной изоляцией имеют практически нулевой ток утечки.

Остальные материалы и технология монтажа

Кабели и шины помещаются в закрытые щитки, коробки и кабельные каналы или лотки. Эти материалы традиционно изготавливались из металла. Сейчас применяют негорючий пластик в форме труб, круглых или прямоугольных. Хуже всего гофрированная труба – в нее бывает очень сложно протягивать кабели и провода.

Лучше всего – кабельные лотки с защелкивающимися крышками. Неплохо подходит металлопластиковая труба для водопровода или отопления.

В местах сгиба, если нельзя сделать этот сгиб большим радиусом из труб, применяют коробки, которые служат для распределения ответвлений и устройства выключателей.

Как коробки, так и трубы должны хорошо крепиться на несущих элементах (стенах, балках, потолках), а соединение труб с коробками должно быть, по возможности, герметичным.

На практике придется проявить терпение и мастерство, даже при использовании самых технологичных материалов.

Протягивание кабелей через трубы должно начинаться с проволоки, которая заводится в трубу с помощью специальной головки, исключающей заедание. Затем кабель привязывают к проволоке и протягивают через трубу. Вот почему предпочтительны лотки с закрывающимися крышками. В них очень легко делать монтаж и ремонт.

Для крепления лотков требуется значительно меньше отверстий и они имеют аккуратный внешний вид. В примере с гаражом лотки могли бы использоваться в вертикальных участках проводки, а потолочные светильники можно подвесить на натянутом тросике.

В коробках желательно использовать зажимное соединение винтами, но можно паять медные скрутки, это также вполне надежный метод. Для перехода от алюминия к меди, во избежание коррозии надо использовать или специальные клеммы, или шайбы из цинка или оцинкованной стали. Это помешает коррозии во влажной среде. “Голый” контакт меди и алюминия неизбежно приведет к коррозии, ухудшению контакта и его перегреву.

Заземление

Как сделать заземление в гараже своими руками? Роль заземления уже обсуждалась выше и теперь о том, как его организовать. Для этого следует вбить в землю недалеко от гаража стальную оцинкованную трубу длиной в 2 метра и приварить к ней круглую сталь, диаметром 6-8 мм. Место заземления желательно выбирать влажным.

Стальной круг (его надо покрасить водостойкой краской), заводится в гараж и там ведется к щитку, где делается еще одна клемма для надежного соединения с шиной PE толстым медным проводом. Заземление тем лучше, чем меньше его сопротивление, поэтому толщина заземляющего проводника должна быть достаточной.

Выполнение эл. проводки в гараже своими силами возможно. Самостоятельная разводка проводки в гараже потребует значительно меньших расходов, чем с привлечением наемных работников. Но если вы хотите провести на высоком уровне электрику в гараже своими руками, то придется многому поучиться в этом процессе и почитать статьи, подобные этой.

Данная статья посвящалась, в основном, скорее проектированию гаражной проводки, чему уделяется не слишком много внимания. Тема не маленькая и в рамках одной статьи невозможно охватить все практические тонкости, связанные с монтажом. Но в интернете много схем проводки для гаража и неплохих видеороликов касающихся именно практической части работ и приемов их выполнения.

Полезное видео

Как сделать проводку в гараже правильно? Смотрите видео ниже:

Помещения, которые расположены ниже нулевого уровня цокольной части здания называют подвалами. Они окружены со всех сторон землей, которая обеспечивает относительную стабильность температуры в течение года и, как правило, лишены естественного света.

Условия эксплуатации подвалов связаны с повышенной влажностью воздуха. Она возникает в результате:

близкого расположения грунтовых вод и технических сложностей создания строительных конструкций, обладающих герметичностью со всех сторон;

выпадения конденсата из поступающего с улицы в помещение воздуха при его охлаждении.

Применяемые меры борьбы с влажностью, основанные на отводе грунтовых вод, проветриваниях, использовании систем вытяжной или приточной вентиляции не всегда эффективны. Они частично повышают сухость воздуха.

Поэтому подвалы отнесены к категории помещений повышенной опасности, а правилами безопасности, действующими при эксплуатации электроустановок, в них запрещено использовать открытую электропроводку на 220 вольт без соблюдения специальных мер.

для технических целей;

в качестве помещений, где удобно круглый год хранить сельскохозяйственную продукцию, овощи, припасы.

Вопрос безопасного освещения подвалов можно решить использованием:

естественного природного света;

искусственных электрических источников, не создающих опасность для поражения человека электротоком.

Естественное освещение подвала

Типовые конструкции окон, используемые в строительстве, не подходят для подвальных помещений. Но современные технические разработки позволяют применять световые фонари на основе туннельного эффекта.

Они имеют оптическую систему, которая воспринимает свет солнца и эффективно передает его по световоду в помещение. Один световой фонарь может освещать площадь около 9 квадратных метров с силой светового потока в пасмурную погоду, сравнимой с той, которую создает обыкновенная лампочка накаливания мощностью 40 ватт.

При солнечной погоде световой поток возрастает более чем в 6 раз.

Принцип работы туннельного фонаря основан на использовании внешнего элемента — купола, который собирает, концентрирует световую энергию, передает ее по световоду с отражающими стенками и освещает внутренним элементом — рассеивателем объем помещения.

Труба световода может быть жесткой или гибкой и достигать длины 6 метров.

Туннельные фонари выпускаются многими производителями с разными техническими характеристиками. Они обладают герметичностью, хорошо удерживают тепло, набирают популярность в строительстве.

Электрическое освещение подвала

Типичные ошибки «домашних мастеров», или как не надо делать электропроводку

Отдельные хозяева подвальных помещений «слепо» копируют те действия по прокладке электропроводки, которые выполняют электрики в квартире. Они недопонимают риски опасностей, которым подвергают себя и близких людей.

Главная ошибка заключается в том, что для освещения применяется напряжение 220 вольт, которое используется даже без своих защитных автоматов и подводится от распределительного щита дома или квартиры.

Выбор и монтаж светильников

На фотографии показан монтаж герметичного в прошлом светильника с защитой стеклянного баллона решеткой, металлический корпус которого разъела ржавчина. Через образовавшиеся щели конденсат из воздуха оседает на электрических контактах патрона и лампы, создавая путь для утечки тока на землю.

Вертикальное крепление подобного светильника на низкой высоте не исключает соприкосновение его корпуса с головой человека. При высокой влажности воздуха это очень опасно.

Установка розетки

С первого взгляда видно, что для монтажа использована специальная диэлектрическая колодка подрозетника промышленного изготовления, которая отделяет токоведущие части розетки от влажной стены, а вся конструкция надежно прикреплена. Достаточно ли этого?

Провода, выходящие из розетки, ничем не защищены, кроме как слоем собственной изоляции, которая подвержена воздействию влаги.

Модель установленной розетки не имеет никакой защиты от проникновения конденсата, постоянно окисляющего ее металлические детали и создающего предпосылки для появления токов утечек.

В помещениях с повышенной влажностью установка розеток для питания электроприборов на 220 вольт запрещена правилами.

Установка выключателя

Обыкновенный выключатель, предназначенный для использования в сухих жилых помещениях, смонтирован на деревянной доске, закрепленной на стене. Конденсат из влажного воздуха не только воздействует на металлические детали выключателя, но и способствует гниению древесины, которая со временем потеряет свои механические свойства.

Электрические провода

Если внимательно рассмотреть фотографию, то можно увидеть, что в качестве тоководов для освещения использованы специальные провода типа «лапша» с усиленной изоляцией, которые предназначены для работы в телефонных сетях и могут эксплуатироваться в закрытых траншеях под землей.

Их медные жилы изготовлены с сечением 1 квадрат, что, в принципе, достаточно для нагрузок, создаваемых одной лампочкой накаливания.

Однако, подключение розетки в эту цепь определяет возможность перегрузки созданной электропроводки, которая, к тому же проложена открытым способом по стенам без использования защитных трубопроводов, коробов и других элементов.

Приведенные на фотографиях нарушения считаются наиболее типичными. Но, на практике можно встретить более опасные подключения электрических аппаратов, повреждения изоляции, оголенные провода, разбитые плафоны, поломанные корпуса выключателей и розеток. О том, чем это грозит читайте здесь: Чем опасна старая электропроводка

Как сделать освещение подвала безопасным

Выбор схемы и метода защит для электропроводки

Безопасный способ использования освещения внутри подвала основан на применении приборов, питающихся от напряжения 36 вольт или ниже. С этой целью используют схему с понижающим разделительным трансформатором.

Для его размещения рекомендуется использовать герметичный электрощиток промышленного изготовления, который монтируют не в самом подвальном помещении, а на входе в него. Там же расположены остальные коммутирующие и защитные устройства.

Контакты выключателя освещения подвала лучше подключить к фазе питающей цепи трансформатора. Это сократит время его работы на холостом ходу.

Электрический кабель от понижающего трансформатора до светильников подвала необходимо смонтировать единой конструкцией без использования распределительных коробок. Его ввод должен исключать попадание конденсата внутрь светильника.

Внутри подвала устанавливать электрические розетки нельзя.

Выбор кабеля и проводов, способы крепления

Отдельные провода без внешней защиты для электропроводки подвала могут потерять свои изоляционные свойства по различным причинам. Их применять запрещено.

Для запитки светильников необходимо пользоваться только кабелями, причем с усиленной двойной изоляцией, обеспечивающей герметизацию токоведущих жил. В качестве примера можно порекомендовать марку кабеля КВВГнг.

Даже такой кабель необходимо защитить от механических повреждений размещением внутри трубопроводов или специальных коробах.

Выбор трансформаторов для электропроводки

Основным показателем при выборе конструкции должна быть допустимая мощность потребления, а не только выходное напряжение. Ведь токи нагрузок в сети 36 вольт отличаются от тех, которые существуют в схемах на 220.

Рассмотрим пример использования лампочки накаливания на 40 ватт в схемах разного напряжения.

В сети 220 ее ток будет составлять 40/220=0,18 ампера. А в схеме с 36 вольтами 40/36=1,1 А. Для цепей 12 вольт 40/12=3,3 А.

Предусмотреть ток потребления лампочки, которую ввернут в патрон светильника через несколько лет, невозможно. Поэтому трансформатору необходимо создать запас по мощности.

Выбор светильников для электропроводки

Конструкция светильника должна защищать лампочки от механического воздействия и проникновения конденсата. Стеклянные колпаки для этого помещают внутрь решетки или выполняют из прочного стекла.

Использование металлических деталей снаружи, подверженных действию коррозии, необходимо свести к минимуму или исключить.

В низких помещениях светильники лучше располагать не на потолке, а на верхней части боковых стен. Это уменьшит нежелательное соприкосновение с ними, увеличит пространство в центральной части помещения.

Выбор выключателей для электропроводки

Обыкновенные конструкции для использования в сухих жилых помещениях для условий работы внутри подвала не пригодны. Промышленность для таких целей выпускает специальные герметизированные выключатели, защищенные от проникновения влаги.

Описанные в статье рекомендации могут быть подвергнуты критике большим количеством оппонентов, которые считают, что нет необходимости так усложнять электропроводку в подвале ради периодического его посещения. Ведь у других людей освещение от 220 вольт работает десятками лет.

Заканчивая статью, хочется задать встречные вопросы: насколько оправданы такие риски и стоит ли ими испытывать собственное здоровье? Задумайтесь над этим.

#1 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    #2 Ю-ПИТЕР

  • Audi Club
  • 909 сообщений
    • Город: Pietari
    • Авто: Было 80-В4 АВК АКП (черный), 100-С4 AAR МКП (белый), А6С4 AEL АКП (дипломат), 100-С4 AAR МКП (синий), 100-C4 AAR МКП (т-зеленый). Есть 100-C4 AAR МКП (синий) & Nissan Avenir Salut_J

    Сообщение изменено: Godzilla (12 Май 2009 – 16:06 )

    #3 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    #4 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    #5 Killy

  • Audi Club
  • 202 сообщений
    • Авто: Octavia 4×4 TDI

    #6 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    Внезапная проверка отдела гл. энергетика показала, что в закромах Родины есть

    1. 380/36, но при подключении его на 220 выдает 12 вольт и 160 Вт

    Лампочки на 12в есть в свободной продаже.

    Зы пиво люблю невское оригинальное только в таре 0.33

    #7 fox_count

    Танкист по жизни.

  • NWAC Members
  • 3 626 сообщений
    • Город: дорога жизни вч
    • Авто: Киа Соренто 2,5 рестайл

    #8 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    Гараж однако. Техника безопасности.

    alekseev_aleksey, ниче что я за тебя ответил.

    #9 fox_count

    Танкист по жизни.

  • NWAC Members
  • 3 626 сообщений
    • Город: дорога жизни вч
    • Авто: Киа Соренто 2,5 рестайл

    #10 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    Да хрен их знает, была какая-то проверка, всех вздрючили, а тут я с 220. в общем надо чтобы было 36, и только 36. Но и 220 отбирать не будут

    Да, техника безопасности

    #11 Alex305

  • NWAC Members
  • 1 031 сообщений
    • Город: Рамбов (Ломоносов)
    • Авто: француженка

    #12 samol

  • NWAC Members
  • 1 133 сообщений
    • Город: Спб
    • Авто: Hyundai Elantra 2008

    Сообщение изменено: samol (14 Май 2009 – 00:39 )

    Что лучше 36v, 48v, 52v?

    Что лучше для Вашего электровелосипеда: 36, 48 или 52 вольта?

    Сегодня мы поговорим, что лучше 36, 48 или 52 вольта для аккумулятора на электровелосипеде.

    Почему напряжение батареи начинается с 12 вольт ?

    Большинство электровелосипедов, которые вы знаете больше 12 вольт, и их напряжение начинает возрастать от 24 вольт, при этом они очень слабые.

    Небольшие велосипеды на 36 вольт, как вы знаете являются средним стандартом в этой эволюции электровелосипедов.

    А завершает эту цепочку 48 вольтовые системы, которые, как правило, устанавливаются на велосипеды высокой мощности. Конечно же есть умельцы, которые ставят на велосипед электросистемы на 60 и 72 и 96 вольта, однако большинство электровелосипедов работает в диапазоне 36 и 48 вольт.

    Это наследие осталось от тех дней, когда в обиходе использовались кислотные аккумуляторы, в том числе на электровелосипедах.  А если взглянуть внутрь кислотного аккумулятора, то они состоят из 2-вольтовых ячеек, которые легко соединить вместе в группы по 6 штук и сделать батарею на 12 вольт.  А уже исходя из этого результата можно сделать 36 и 48 вольт.  Вообщем так это напряжение стало общим для электровелосипедов.

    Последние 5-10 лет произошел большой скачек, который привел кислотные аккумуляторы, которые тяжелые, относительно слабые и мало ёмкостные, к литиевым аккумуляторам , которые намного легче, а также имееют большую емкость , и плотность энергии.

    Но есть нюансы. Литийионные аккумуляторы не всегда могут соответствовать этим ступеням, растущим по 12 вольт, которые применяются по нынешний момент со времен кислотных аккумуляторов.  И это все потому, что литийионные батареи измеряются не по 2 вольта на каждую ячейку, а 3,6 вольта. И это вызывает определенные неудобства. Если вы ищете батарею на 36 вольт, то она работает хорошо, так как 36 на 10 – 36 вольт.

    А для 48 вольт аккумулятор необходимо собрать с  13 параллелями, при этом 3,6в умножаем на 13 и получается  46,8в вольт на батарею.

    И много продавцов и производителей решили эту проблему и сказали, давайте возьмем ячейки напряжением 3,7 вольт, а не 3,6 вольт.  (напряжение может варьироваться от типа ячеек)

    При этом, если Вы берете ячейку 3,7 вольта и умножаете на 13 параллелей, вы получаете напряжение 48 вольт. И все как бы отлично получается, и можно называть это батареей на 48 вольт.

    Но проблема в том, что даже если напряжение 48 вольт, то ее напряжение изменяется во время разряда с 54 вольт, когда заряжена и падает до 39 вольт при полном разряде.

    То есть, большинство времени разряда этой батареи будет на уровне ниже 48 вольт.

    Интересное решение, которое набирает популярности последние пару лет, это 52 вольтовые аккумуляторы, в которых добавляется ряд ячеек, то есть в отличии от 13s батареи, 14s батарея имеет еще одну ячейку(ряд ячеек), тем самым она дает еще 3,7 вольта к вашему напряжению. То есть, вы берете 3,6 вольт как номинальное напряжение, увеличиваете до 50,4 вольта (используя 3,7 вольт ячейки, получится 51,8в), и так люди это округляют и называют батареи на 52 вольта.

    И тут небольшая путаница на рынке, а именно то, что не каждый продавец называет батарею на 52 вольта одинаково. Некоторые продавцы называют батарею «50 вольт», поскольку они используют ячейки на 3,6 вольта, что дает в сборе 50,4 вольта. И это правильно, поскольку покупатель знает, за что платит деньги. 

    Но в этой части вопрос немножко не понятный для покупателей. Поскольку одни указывают как 50 вольт, другие как 52 вольта.  И все для того, чтоб казаться лучше, хотя и те и другие использую 14s батарею. В народе принято называть такие батареи на 52 вольта все же, поскольку в индустрии электровелосипедов так называют аккумуляторы подобного типа.

    Какие все же преимущества батареи на 52 вольта? И стоит ли рассматривать апгрейд с 48 вольт до 52 вольта для того, чтоб получить больше мощности и максимальной скорости?

    Мощность — это ваты, и для повышения мощности вам надо повышать напряжение. Также, вращение моторов происходит из-за напряжения, то есть если вы увеличили скорость, то вам надо увеличить напряжение.  Если вы увеличите напряжение батареи с  48 вольт до 52 вольта, то вы увеличите оба параметра: мощность электровелосипеда и максимальную скорость.

    Очень много контроллеров для велосипедов, которые поддерживают 48 вольт, а также могут поддерживать 52 вольта(на Bafang BBS сложнее ситуация и такая функция доступна на Bafang BBS HD 1000w). И это удобно, поскольку вы можете легко отключить свою батарею на 48 вольт и подключить на 52 вольта, не меняя ничего другого, тем самым добавите больше мощности и больше скорости.

    Но есть еще один спорный вопрос среди людей которые думают о преимуществах апгрейда велосипеда до 52 вольт, это то, что 48 вольтовая батарея будет меньше нагреватся и будет потреблять меньше тока. И это не совсем так в реальной жизни. И вот почему. Главная причина здесь, это то, что большинство контроллеров для е-байков имеют ограничение мощности в амперах, а не в ватах. Что это значит? Это значит, что если вы ограничите мощность, которая базируется на количестве ампер, что написано на батареи (будь-то у вас 48 вольт батарея или 52 вольта батарея), а контроллер у вас, к примеру на 25 ампер, у вас потребление будет только 25 ампер, максимум с этой батареи.  Некоторые пользователи электровелосипедов говорят, что если у тебя больше напряжение больше, то ты можешь потреблять меньше тока.  

    Однако, подумайте в таком ключе. Невозможно ехать быстрее и использовать при этом меньше энергии.

    То есть, если вы едете быстрее вы используете больше мощности, а соответственно и тока. А значит, использование 52 вольтовой батареи не будет более эффективным нежели 48 вольтовой. Также как и не будет меньше нагреваться 52 вольтовая батарея, поскольку у вас будут затраты тока одинаковые, поскольку потребление тока базируется на вашем контроллере мотора , а не на батарее.

    Да, тут много преимуществ, в скорости, в мощности от использования батареи на 52 вольта,  но когда люди говорят, что она будет меньше нагреваться и меньше потреблять, то это не соответствует действительности.

    А недостатком апгрейда батареи на 52 вольта является конечно же цена.

    Если сравнивать на сколько вы больше получите емкости от батареи, то это будет 7,6%. Однако многие продавцы выставляют цену за такие батареи более 10-20%. Если вы подсчитаете цену, то можно понять, что вы платите больше. Иногда это связано со сложностью сборки ячеек в корпус, дополнительным удорожанием БМС платы и тд.

    Также вам следует будет заменить зарядку. На 48 вольт зарядка нужна до 54,6вольт, а на 52 вольта  – 58,8 вольт.

    Вам решать, насколько больше вы хотите заплатить за этот апгрейд.

    Надеюсь эта статья стала для вас полезной. Спасибо за внимание. Читайте наши другие статьи.

    Батареи Часть 1 - 12 В, 24 В и 36 В

    Это первая часть из трех частей, посвященных батареям. В этой статье мы объясним, как соединить батареи в последовательную и параллельную цепи, чтобы получить необходимое напряжение и желаемые ампер-часы.

    Первое, что следует помнить при работе с аккумуляторами и их настройке в различных конфигурациях, это то, что если вы не уверены в том, что делаете, обратитесь к электрику! Вокруг много морских и автоэлектриков, и они смогут во всем разобраться в кратчайшие сроки.Просто убедитесь, что они используют луженые провода, переключатели, вилки, автоматические выключатели и т. Д., Подходящие для морской среды.

    Эта статья будет представлять особый интерес для всех, кто собирается купить или владеет электрическим подвесным мотором. Электродвигатели бывают разных размеров: самые маленькие, как правило, на 12 вольт, большие, с большей тягой, обычно на 24 вольта, а есть действительно большие, которые обычно на 36 вольт.

    Цепь серии

    Некоторые из вас могут подумать, что никогда не видели батарею на 36 вольт, и были бы совершенно правы.Если вам требуется 36 вольт, вам нужно будет соединить три батареи на 12 вольт в последовательную цепь, чтобы получить более высокое напряжение.

    Итак, в последовательной цепи мы можем увеличить напряжение на количество батарей. 3 x 12 вольт равны 36 вольт, или 2 x 12 вольт равны 24 вольт.

    При соединении батарей в последовательную цепь вы увеличиваете только напряжение, а не доступные ампер-часы. Например, если использованные 12-вольтовые батареи были рассчитаны на 100 ампер-часов, общее количество ампер-часов для 36-вольтовой цепи все равно было бы 100 ампер-часов.

    Цепь серии

    Чтобы соединить батареи в последовательную цепь, подготовьте батареи, разъемы и кабели для батарей и убедитесь, что к батареям не подключены никакие приборы или что-либо еще. Возьмите соединительный кабель аккумулятора и протяните его от отрицательной клеммы одной батареи к положительной клемме другой батареи.

    Чтобы запустить устройство с более высоким напряжением, подсоедините красный или положительный кабель к пустой положительной клемме на одной из батарей, и это должно оставить у вас пустую отрицательную клемму на другой батарее, к которой вы будете подсоединять черный или отрицательный кабель.

    Параллельная цепь

    Параллельная цепь

    Допустим, у вас есть 12-вольтовая батарея, которая проработает электричество в течение одного дня, но вы действительно хотели бы использовать ее в течение двух дней, прежде чем снова придется заряжать батареи. Если у вас есть две 12-вольтовые батареи на 100 ампер-часов и подключить их в параллельную схему, вы получите 12 вольт и 200 ампер-часов. Три 12-вольтовых батареи по 100 ампер-часов каждая, включенные в параллельную цепь, конечно же, дадут нам 12 вольт и 300 ампер-часов.

    Чтобы подключить параллельную цепь, вам нужно еще раз убедиться, что к батареям ничего не подключено, и что у вас есть разъемы и кабели под рукой.

    Отсюда просто нужно подключить положительную клемму одной батареи к положительной клемме другой батареи, а также к отрицательной клемме. Когда вы присоединяете свое устройство, вы просто присоединяете отрицательный (черный) кабель к отрицательной клемме, а положительный (красный) провод - к положительной клемме.

    Как подключить 12-вольтные фары к 36-вольтовой тележке для гольфа (8 шагов)

    Хотя некоторые модели гольфмобилей поставляются с фарами и задними фонарями, они обычно стоят дороже и могут быть довольно редкими.

    Однако владельцы тележек для гольфа могут без труда установить эти фонари на свои тележки, если они понимают процесс.

    К счастью, у разных производителей он обычно достаточно однороден, и вам не нужно выполнять какие-либо специальные действия для этих моделей.

    Тем не менее, большинство светильников, которые вы устанавливаете, требуют питания 12 вольт - это не проблема, если ваша тележка 12-вольтовая модель, но большинство тележек в наши дни - 36-вольтовые.

    В результате вам необходимо тщательно подготовиться к этой проблеме и принять меры, чтобы избежать проблем с электричеством.

    К счастью, вам нужно сделать лишь несколько шагов, чтобы получить хорошие результаты.

    Как подключить 12-вольтные фары к 36-вольтовой тележке для гольфа

    1. Подготовка к этому процессу

    Когда вы подключаете 12-вольтовые лампы к 36-вольтовой тележке, вы должны предпринять несколько шагов, чтобы этот процесс прошел гладко.

    Вы должны начать с того, что поставите вашу тележку в парк или нейтраль - в зависимости от того, какой вариант доступен - и положите кирпичи позади и перед колесами.

    Это поможет предотвратить ненужное перемещение тележки и сделает вашу работу максимально безопасной.

    Теперь вам нужно убедиться, что вы нашли батареи тележки и отсоединили их, чтобы не допустить поражения электрическим током.

    Обычно их можно найти под сиденьем тележки, хотя они могут быть и в других местах.

    Отсоедините отрицательную клемму от каждой тележки и изолируйте провод от положительной клеммы, чтобы избежать искр, которые вместо этого могут вызвать повышенный риск возгорания.

    Кроме того, вам необходимо собрать свои предметы и инструменты, чтобы обеспечить качественную установку.

    Вам нужно будет найти монтажный комплект, разработанный специально для вашей модели тележки - его обычно можно приобрести у большинства производителей тележек для гольфа и часто поставляется с множеством инструментов, которые вы можете использовать для безопасного и контролируемого монтажа ваших фонарей. и без всяких затруднений.

    Вам также понадобится набор отверток со стандартными опциями и опциями Philips, набор сверл с соответствующими битами и многое другое.

    Вам также может понадобиться пластиковый контейнер или мешок, который можно использовать для сбора винтов или других предметов, которые могут потребоваться для установки.

    И может потребоваться вольтметр, чтобы проверить заряд аккумулятора вашей тележки и индикаторов, чтобы убедиться, что нет никаких проблем.

    2. Решите, где вы хотите установить светильники

    Теперь вам нужно выбрать, где вы хотите установить фары и задние фонари на вашем гольф-мобиле.

    Здесь вы можете выбрать несколько различных вариантов.

    Многие люди размещают их в довольно стандартном порядке, размещая их на крайних краях спереди и сзади.

    Однако вам не нужно класть их сюда, если вы хотите разместить их в другом месте.

    Тем не менее, если вы используете монтажный комплект - разумный выбор для установки 12-вольтовых ламп на 36-вольтовую тележку - вы будете ограничены в том, где вы можете разместить свои фонари.

    Это потому, что эти комплекты имеют особый дизайн, которому вы должны следовать.

    И это включает размещение источников света в нужном им положении.

    Является ли эта потеря выбора хорошим компромиссом для облегчения работы по установке фонарей?

    Мы так считаем, потому что монтажный комплект помогает максимально упростить этот процесс для нужд человека.

    Им не нужно беспокоиться о таких вещах, как сверление в неправильном месте или электрические ошибки, из-за которых их свет не работает.

    Вместо этого они могут использовать шаблон и направления набора, чтобы обеспечить максимально плавный процесс монтажа.

    Разместите шаблон для крепления фар спереди тележки - он должен прилегать к тележке в зависимости от его размера и конструкции.

    Затем вы можете карандашом или ручкой нарисовать то место, где вы хотите добавить источники света.

    Проделайте то же самое с задними фонарями, и вы почти готовы начать сверление отверстий.

    3. Просверлите монтажные отверстия

    Теперь наступает одна из самых сложных частей этого процесса - сверление крепежных отверстий.

    Несмотря на то, что ваш шаблон должен помочь вам узнать, где просверлить отверстия, вам необходимо убедиться, что вы выбрали правильное сверло, осторожно удерживайте сверло на месте и обеспечьте достаточное давление, чтобы пробить металлические или пластиковые материалы и дать вам монтажные отверстия, которые вам нужны.

    Мы предлагаем использовать сверло диаметром 5/16 дюйма для этого процесса.

    Вам нужен этот размер, потому что он чуть больше четверти дюйма и дает вам достаточно места не только для света, но и для кабелей.

    При сверлении вам нужно сильно прижимать, но в большинстве случаев пусть сверло сделает свою работу.

    Если вы нажмете слишком сильно, бит может отклониться в сторону и повредить те участки тележки, которые необходимо оставить в целости и сохранности.

    После того, как вы просверлили все отверстия - минимум четыре для двух фар и двух задних фонарей - важно пропустить комплект света через монтажные отверстия.

    В этот комплект входят кабели, которые вы будете использовать для подключения 12-вольтовых фонарей к 36-вольтовой тележке для гольфа.

    Свяжите эти кабели с помощью прилагаемых кабельных стяжек и убедитесь, что они надежно закреплены, прежде чем переходить к следующему шагу.

    Тем не менее, мы повторяем, НЕ следует пока прикреплять фары к каким-либо электрическим элементам вашего двигателя.

    Мы понимаем наше желание, но не можем рекомендовать его, потому что установка еще не завершена.

    И добавление электричества к кабелям на этом этапе может вызвать у вас электрический шок, если вы не будете осторожны - и, хотя это не опасно, удар может повредить ваши фары и вашу тележку.

    4. Присоедините жгут света

    На этом этапе вы почти готовы добавить свои фонари в корзину.

    Но сначала нужно аккуратно прикрепить их к обвязке.

    Этот жгут - важная часть этого процесса, потому что он включает в себя все провода, необходимые для освещения вашей тележки.

    Ремень необходимо вставить в отверстия, как упоминалось ранее, чтобы вы могли выполнить следующий шаг.

    Начните этот шаг с прикручивания лампочек к соответствующей области крепления на жгуте.

    Вы легко найдете это место, потому что оно похоже на обычную розетку лампы.

    Прикрутите фары на место, и вы почти готовы приступить к остальной части процесса.

    А вот и самая важная часть этого процесса - добавление редуктора на 36-12 вольт к жгуту проводов освещения.

    Эта деталь очень важна, потому что она забирает 36 вольт из аккумулятора вашей тележки и делает более управляемым 12 вольт.

    Это помогает предотвратить перегрузку света и предотвращает поломку тележки или возникновение других проблем в работе.

    Эта деталь должна быть включена в вашу корзину - в противном случае вам необходимо заказать ее, прежде чем вы продолжите работу.

    Получив эту деталь, вы прикрепляете ее к электрическому соединению жгута непосредственно перед тем, как прикрепить ее к батарее.

    Теперь вы почти готовы добавить источники света в отверстия, которые вы просверлили ранее.

    Это позволит вашей тележке работать плавно и эффективно с вашими фарами.

    5. Добавьте светильники в отверстия

    На этом этапе ваша подвеска полностью подготовлена, и ваши фары вставлены в розетки.

    Что не менее важно, у вас есть 12-вольтный редуктор, который сохранит вашу электрическую ситуацию безопасной и разумной.

    Однако ваши фары по-прежнему будут находиться за пределами вашей тележки.

    Теперь, когда вы их поставите на место.

    Это довольно просто, но требует нескольких осторожных шагов, чтобы избежать путаницы.

    Осторожно протяните остатки жгута освещения и его проводов в отверстие и вдавите свет в отверстие.

    Если вы просверлили монтажное отверстие правильно, ваш светильник должен без труда оставаться на месте.

    Возможно, вам придется пройти под тележкой и потуже затянуть свет в отверстие.

    Некоторые даже используют инструменты для внутреннего монтажа, чтобы удерживать их на месте, но вам может не понадобиться, если вы использовали кабельные стяжки для удержания проводов на месте ранее.

    Вышеуказанные шаги относятся только к вашим фарам, и их должно быть более чем достаточно, чтобы подготовить их к работе.

    Однако вам также необходимо убедиться, что вы правильно установили задние фонари.

    К счастью, для большинства людей этот шаг не так уж и сложен.

    Вам нужно будет вставить жгут заднего фонаря в просверленные отверстия, как вы это делали ранее с фарами.

    После того, как вы аккуратно вставили жгут таким образом, вы можете подсоединить его к остальной проводке с помощью готовых защелкивающихся соединителей.

    Это гарантирует, что ваши фонари будут работать вместе и работать максимально плавно без каких-либо проблем.

    Теперь вы можете вкрутить лампы задних фонарей в соответствующие гнезда и вдавить их в просверленные отверстия для правильной установки.

    6. Просверлите монтажные отверстия для коммутатора

    Ваши фонари почти готовы к работе, но у вас есть один небольшой недостаток - у вас нет выключателя!

    Переключатель необходим для управления осветительными приборами и обеспечения их правильной работы.

    К счастью, в вашем монтажном комплекте должна быть простая панель, которую вы можете использовать для управления освещением.

    Однако этот выключатель необходимо установить, прежде чем вы сможете включить свет тележки.

    Найдите выключатель света и поместите его рядом, когда он вам понадобится.

    Теперь наденьте сверло 15/32 дюйма на сверло и найдите место, где вы хотите добавить переключатель.

    Место, которое вы выберете, не имеет большого значения, но должно быть выполнено на вашей панели.

    Найдите пустую область, не имеющую другого назначения для вашей тележки - часто производители помещают эти панели сюда, чтобы предоставить вам место для добавления новых товаров в вашу тележку.

    Просверлите панель и снимите бит.

    Теперь вы можете осторожно вставить выключатель в это отверстие.

    Убедитесь, что вы правильно выровняли его на тележке как по горизонтали, так и по вертикали, чтобы избежать каких-либо проблем.

    Обычно вы можете наблюдать за этим процессом, но, возможно, захотите получить уровень, который поможет.

    В любом случае, вам необходимо закрепить выключатель света гайкой и шайбой, чтобы удерживать его на месте.

    И прежде чем двигаться дальше, мы предлагаем отключить выключатель, чтобы предотвратить случайный электрический разряд.

    Хотя эта проблема возникает редко и не должна вызывать особого беспокойства, убедитесь, что выключатель выключен, чтобы предотвратить ее появление.

    Если переключатель включен, при выполнении остальных шагов может произойти сотрясение или вероятность его поражения.

    Не включайте переключатель, пока мы не скажем об этом здесь.

    7. Присоедините переключатель

    Теперь, когда вы установили выключатель, пора прикрепить его к жгуту освещения.

    К счастью, этот процесс довольно прост и не требует большого количества шагов.

    К концу коммутатора должен быть прикреплен защелкивающийся разъем, который можно использовать для прямого подключения к линии.

    После того, как этот провод будет правильно подключен, ваш осветительный жгут готов к подключению к батарее.

    Теперь вы понимаете, почему мы попросили вас подождать до конца, чтобы прикрепить жгут к батарее?

    Если бы вы сделали это раньше, велика вероятность, что в этот момент вы испытаете неожиданный шок.

    Кроме того, на этом этапе проще прикрепить ремень к батарее, потому что вы уже будете работать с переключателем и будете находиться под капотом - в результате вы сэкономите много времени и энергии.

    Начните с подсоединения отрицательного провода от редуктора напряжения к батарейному блоку внутри вашей тележки.

    Вы всегда должны сначала подсоединять отрицательную клемму, чтобы избежать риска поражения электрическим током.

    И вы должны убедиться, что вы прикрепили кабель к последней батарее в банке - это ячейка, используемая для прикрепления новых предметов к вашей тележке.

    Теперь вы можете добавить плюсовую клемму и аккуратно прикрутить их на место.

    Вот что классно - вот и все!

    Теперь ваш жгут освещения обеспечивает электричеством ваши светильники в зависимости от положения переключателя и обеспечивает стабильный и постоянный поток энергии.

    А с включенным редуктором ваша тележка и фары должны оставаться прочными и не иметь проблем с повреждениями, о которых можно вообще беспокоиться.

    Однако вам необходимо протестировать коммутатор, чтобы убедиться, что вы не допустили ошибок при установке.

    8. Завершение работы с тележкой

    Этот последний шаг в основном касается подготовки вашей тележки к нормальной работе.

    Это начинается с того, что вы тщательно повторно подключаете все отрицательные клеммы.

    Обратите внимание на расположение этих проводов, чтобы убедиться, что они идут к нужной батарее.

    Вы можете пометить их, чтобы избежать такой путаницы, хотя кабели аккумулятора должны быть довольно очевидными и не слишком сложными для понимания в этой ситуации.

    Как только все клеммы батареи будут подключены, снимите ленту с переключателя и включите ее.

    Это важный момент!

    Если ваши огни включаются без задержки и ярко светят, то установка завершена.

    Если они трясутся при включении, неожиданно тускнеют или не включаются вообще, есть проблема или две с проводкой и клеммами аккумулятора.

    Возможно, вам понадобится профессионал, который поможет вам исправить их, чтобы избежать дальнейших осложнений, таких как повышенный риск поражения электрическим током.

    Видео Пример подключения одной 12-вольтовой лампы к 36-вольтовой тележке для гольфа

    Одна батарея 36 В или три батареи 12 В? Плюсы и минусы

    Несколько лет назад, когда приложение требовало 36 вольт, лучшим вариантом было подключить три батареи 12 В последовательно. Но теперь, когда на рынке появились батареи на 36 В, вы можете задаться вопросом, может ли использование всего одной батареи «плавать» вашу лодку лучше.(Буквально для тех, кому они нужны для питания троллинговых моторов!)

    Вот пример. Допустим, вашему троллинговому двигателю или другому устройству требуется 36 вольт и 50 Ач. Вы можете заменить одну батарею на 36 В, 50 Ач, на три батареи на 12 В, 50 А · ч, соединенные последовательно. Но правильный ли это путь?

    Это зависит от источника питания, типа используемой батареи и личных предпочтений. Во-первых, давайте посмотрим, как тип батареи может повлиять на ваш выбор.

    Какой тип батареи 36 вольт вы используете?

    Для некоторых типов батарей выбор между тремя батареями на 12 В и одной батареей на 36 В может иметь большее значение.Например, свинцово-кислотные батареи необходимо часто проверять и доливать дистиллированную воду, поэтому вы можете предпочесть следить только за одной батареей вместо трех.

    Но если вы выбрали литий, вы вообще откажетесь от обслуживания. Таким образом, обслуживание батарей не будет важным фактором, когда дело доходит до выбора между тремя батареями на 12 В или одной батареей на 36 В.

    И если говорить о литии… как о новейшей технологии в производстве аккумуляторов, он превосходит по всем параметрам. И три батареи на 12 В, и одна литиевая батарея на 36 В обеспечивают питание в два раза дольше, чем обычные батареи.

    Вот некоторые из других преимуществ, которые вы получаете, просто выбирая литий:

    • Не требует обслуживания.
    • Более быстрое время зарядки, чем у обычных батарей (2 часа или меньше).
    • Не содержит токсинов, не протекает и безопасно для хранения в помещении.
    • Три литиевые батареи 12 В или литиевая батарея 36 В будут весить на 70% меньше, чем аналогичные установки других типов батарей.
    • Ампер остается стабильным, даже если срок службы батареи составляет менее 50%.
    • Скорость разряда, когда она не используется, составляет всего 2% в месяц (для свинцово-кислотных аккумуляторов ставка составляет 30%).

    Три литиевые батареи 12 В и литиевая батарея 36 В

    Итак, вы выбрали литий. А теперь перейдем к актуальному вопросу. Стоит ли использовать одну батарею на 36 В для питания троллингового двигателя / другого приложения? Или три батарейки на 12В?

    Правда, оба варианта хорошо работают с литием! Таким образом, можно сказать, что единственные «за» и «против» основаны на потребностях конкретного приложения и личных предпочтениях. Вот разница между батареей на 36 В и батареей.три батареи на 12 вольт:

    Плюсы и минусы использования трех литиевых батарей 12 В

    Плюсы: Один из аргументов в пользу использования трех батарей по 12 штук в серии заключается в том, что если одна из них выйдет из строя, ее легко заменить. Кроме того, у вас будет больше гибкости при размещении батарей в вашем приложении. Это может быть полезно для тех, кто хочет распределить вес в лодке.

    В отличие от батареи на 36 В, вам не понадобится специальное зарядное устройство для аккумуляторов 12 В. Они также могут помочь при запуске двигателя.

    Минусы: Чем больше у вас батарей, тем больше у вас точек подключения. Вам придется установить и подключить каждое из них, а каждое открытое соединение является потенциальным источником ненадежности.

    Плюсы и минусы использования одной литиевой батареи 36 В

    Плюсы: Самым очевидным преимуществом выбора одной батареи на 36 В является то, что она всего одна! Одна легкая батарея (если она литиевая) для установки и хранения. Всего один набор кабелей для подключения, меньше точек подключения, о которых нужно беспокоиться, и меньше беспорядка, о котором можно споткнуться.

    Еще одним плюсом является тот факт, что батареи на 36 В работают по принципу «подключи и работай». Вам не нужно придумывать, как последовательно соединить три батареи на 12 В для получения более высокого напряжения.

    Но самым важным преимуществом для многих может быть то, что использование всего одной батареи 36 В экономит место! Это отлично подходит для рыбацких лодок, где на счету каждый дюйм пространства. Это одна из причин, почему они популярны для использования с троллинговыми двигателями большой мощности.

    Минусы: Вам понадобится специальное зарядное устройство для литиевой батареи на 36 В.Зарядные устройства на 12 В более распространены на рынке, но они никуда не годятся.

    Прочие соображения

    А как насчет цены батареи на 36 В по сравнению с тремя батареями на 12 В? Сможет ли один вариант вернуть вам больше с трудом заработанных денег, чем другой? Возможно нет. Хотя батареи на 12 В менее дороги, вам придется купить три из них, чтобы получить необходимую мощность. И если вам не понадобится новое зарядное устройство, стоимость батареи на 36 В будет лишь немного выше.

    Суть в том, что оба варианта работают нормально.Нет большой разницы между использованием трех батарей 12 В или одной батареи 36 В с точки зрения преимуществ и недостатков, если вы используете литий. Выберите настройку, которая лучше всего подходит для вашего приложения и потребностей.

    И еще несколько хороших новостей: у нас есть оба варианта! Купите нашу новую литиевую батарею 36 В здесь или посмотрите литиевые батареи на 12 В здесь.

    Узнайте больше о литиевых батареях здесь:

    Можно ли использовать 3 батареи по 12 вольт в гольф-мобиле на 36 вольт?

    Если у вас есть тележка для гольфа 36 - вольт , которая работает от шести батареек на 6- вольт , , вы можете заменить их тремя 12 - батареями на 14 вольт , которые часто легче найти.

    Нажмите, чтобы увидеть полный ответ


    Также спросили, можно ли использовать 3 батареи 12 В в гольф-мобиле 36 В?

    Вы можете использовать 3 батареи / 12 В последовательно с по для создания источника питания 36 В . Однако этому источнику будет не хватать мощности по току и способности к глубокому разряду. В результате будет иметь низкое время работы и сократит срок службы батареи . Батареи должны быть тележками для гольфа конкретными батареями .

    Кроме того, можно ли поместить 48-вольтовые батареи в гольф-мобиль на 36 вольт? Да, но эффективно и просто. Однако, хотя и можно модернизировать эти автомобили до электронного управления скоростью на уровне 36V или 48V , я не рекомендовал бы из-за затрат, связанных с переоборудованием. Вы можете купить современную тележку 48V за гораздо меньшие деньги, чем преобразование 36v в 48v .

    Кроме того, можно ли использовать тележку для гольфа на 12 вольтовых батареях?

    A 12 - вольт глубокого цикла аккумулятор обеспечивает питание для запуска и приведения в движение электрической тележки для гольфа . Поскольку электрические тележки для гольфа не имеют генератора для подзарядки батареи в используют , как и в случае с грузовиками и автомобилями, батарея глубокого цикла необходима для того, чтобы тележка работала в течение долгого дня. по ходу.

    Могу ли я использовать в гольфмобиле обычные батареи глубокого разряда?

    Технический ответ: Да. Можно использовать морской аккумулятор вместо электрических аккумуляторов для гольф-каров . Обе они технически представляют собой гелевые свинцово-кислотные батареи , разработанные для целей глубиной - цикла , сообщает It Still Runs. Однако это сходство не означает, что они должны быть и используются взаимозаменяемо.

    Плюсы и минусы: 48-вольтная тележка для гольфа vs.36-вольтный гольф-мобиль

    Мы говорили о плюсах и минусах EZGO vs. Club Car и касались напряжения в этом обсуждении. Пришло время копнуть глубже и понять, какое напряжение питает ваш гольф-мобиль.

    Что такое напряжение?

    Прежде чем мы перейдем к плюсам и минусам различных напряжений тележек для гольфа, давайте вернемся к уроку науки и поговорим о том, что такое напряжение на самом деле. С технической точки зрения, напряжение - это разность потенциалов заряда между двумя точками в электрическом поле.Чем больше напряжение, тем больше ток.

    Какое напряжение у моей тележки для гольфа?

    Важно знать, какое напряжение находится в вашем гольф-мобиле, чтобы понять его скорость и потенциал мощности. Чтобы определить, имеет ли ваш гольф-кар 36 В или 48 В, выполните следующие действия:

    1. Поднимите сиденье, чтобы увидеть аккумуляторный отсек.
    2. Подсчитайте количество отверстий на каждой батарее. Возможно, вам придется снять крышку батарейного отсека, чтобы увидеть отверстия.
    3. Умножьте количество лунок на 2, чтобы определить напряжение аккумулятора гольф-кара.
    4. Умножьте напряжение аккумулятора тележки для гольфа на общее количество аккумуляторов.

    Пример. В моем гольф-мобиле Club Car Precedent каждая батарея имеет 4 отверстия. 4x2 = 8, так что это батареи на 8 В. Их 6 штук, так что моя тележка на 48 вольт.

    Кроме того, поддержание ваших батарей чрезвычайно важно для того, чтобы ток протекал с надлежащим напряжением. Мы рекомендуем эту короткую электронную книгу по обслуживанию батарей, которая бесплатна для Kindle Unlimited.

    Тележка для гольфа 36 В

    Типичный 36-вольтовый гольф-мобиль имеет конфигурацию батарей из (6) 6-вольтных батарей.

    ПРОФИ

    • Они более доступны для покупки.
    • Замена батареек более доступна, так как есть только (6) 6-вольтовых батарей.
    • Стандартные двигатели и контроллеры
    • , как правило, дешевле заменить.
    • Они идеально подходят для круизов по району с ровным покрытием или по полю для гольфа со скоростью 10–12 миль в час.
    • При необходимости их можно улучшить для увеличения скорости.

    Минусы

    • Они производят меньше энергии, чем системы на 48 В.
    • Они менее эффективны и, следовательно, работают меньше часов без подзарядки.
    • Не рекомендуется использовать гольф-кар 36V вне дорог, так как он имеет меньшую мощность.

    Тележка для гольфа 48 В

    Гольф-мобиль с питанием от 48 вольт состоит либо из (6) батарей на 8 вольт, либо, в случае некоторых гольф-каров Club Car Precedent, из (4) батарей на 12 вольт.

    ПРОФИ

    • Их легко превратить в охотничьи багги или внедорожные повозки.
    • Они потребляют на 1/3 меньше силы тока, чем тележки на 36 В, поэтому они более эффективны.
    • Детали, особенно обновления, более доступны для 48-вольтных систем.
    • Тележки для гольфа
    • с 48-вольтовой системой имеют более высокую стоимость при перепродаже.

    Минусы

    • Батареи заменять дороже.
    • Если в системе используются батареи на 12 В, время работы будет меньше из-за меньшего объема проводов батареи.
    • Замена двигателей и контроллеров обычно дороже.
    • Тележка
    • на 48 Вольт дороже купить.

    Независимо от того, решите ли вы использовать 36 или 48 вольт, важно понимать разницу, чтобы у вас были реалистичные ожидания от вашего нового гольфмобиля.

    Посетите WHEELZ Custom Carts для получения дополнительных принадлежностей или запасных частей.

    electric - Как подключить лампочки 12 В к цепи 36 В?

    Да. Три лампы в серии будут работать при условии, что они достаточно хорошо согласованы с точки зрения силы тока и сопротивления. Автомобильные лампы на самом деле предназначены для работы от 13,8 вольт, что является напряжением электрической системы автомобиля при работающем генераторе. Это дает вам примерно 20% запаса между лампами на 32В.Не вижу проблемы. Если одна из лампочек перегорит, все лампы 3 серии погаснут. Два других не взорваны. Если вы не можете получить 3 таких совпадения, замените все 3 другими.

    Другой вариант - посмотреть на светодиоды , предназначенные для использования в автомобилях или жилых домах, , но рассчитанные на диапазон напряжения, например. 12-30 В постоянного тока. Такой диапазон значений напряжения означает, что у них внутри есть электронный импульсный блок питания, который адаптирует входящее напряжение к постоянному току, необходимому светодиоду. Та же концепция, что и у источников питания 100–240 В для ноутбуков или люминесцентных балластов 100–277 В.Обычно они указывают максимальное напряжение 24 или 28 В постоянного тока, но есть большая вероятность, что любая конкретная марка будет нормально работать с 32 В.

    Еще один вариант - получить блок питания 12 В постоянного тока. заменить блок питания 32 В. Импульсные источники питания 12 В постоянного тока широко распространены благодаря популярности светодиодного освещения. Вам не нужно будет перепрограммировать; просто оставьте лампы параллельно. Однако, поскольку напряжение упало в 3 раза, ток увеличится в 3 раза (при условии, что вы останетесь с лампами накаливания той же яркости), поэтому убедитесь, что ваши провода достаточно толстые.На самом деле я бы рекомендовал также преобразовать в светодиод на 12 В в этой точке, что потребляет гораздо меньше энергии и решает проблему толщины провода.

    Исторически в электрических трамваях / трамваях использовалось пять последовательно подключенных лампочек на 120 В, питаемых от контактного провода 600 В постоянного тока. Дуги 600 В постоянного тока кажутся сумасшедшими, поэтому лампы относятся к особому типу «транзитного класса», предназначенному для гашения дуги 600 В при перегорании.

    Резисторы - плохая идея. Железные дороги тоже делают то же самое, обычно для фар, и это неприятно - резистор должен быть согласован с лампочкой.Смена типа ламп требует перекалибровки и часто перепроектирования резистора. Кроме того, резисторы, работающие в соответствии со спецификациями, имеют температуру поверхности 700 градусов по Фаренгейту - скопление пыли или кусок бумаги могут стать причиной возгорания. Даже если вы сильно увеличите размер, чтобы установить температуру в безопасный диапазон, вам все равно придется иметь дело с отходящим теплом.

    Между прочим, в последний раз я был в магазине автозапчастей, они хотели 6 долларов за упаковку из двух лампочек. Не плати. В сети они на намного дешевле на .

    32 В - это в значительной степени устаревшее напряжение, когда-то использовавшееся на железных дорогах.Луковицы становится очень трудно найти. Если это как-то связано с пулом, я бы переключился на 12В.

    Для ламп накаливания, нагревателей и других резистивных нагрузок вам не нужно беспокоиться о переменном и постоянном токе. Напряжение переменного тока обозначается на основе постоянного напряжения, которое ведет себя как: для резистивной нагрузки: «32 В переменного тока» - это напряжение, при котором лампа будет иметь такую ​​же яркость, что и 32 В постоянного тока.

    12В Вс. 24в против Аккумуляторы на 36 В и различные автомобильные системы

    Кто помнит 6-вольтовые автомобильные аккумуляторы?

    В большинстве автомобилей, произведенных в Северной Америке до 1950 года, использовались 6-вольтовые батареи.Это напряжение было достаточным, учитывая низкую потребляемую мощность транспортных средств в то время. Однако во время и после Второй мировой войны цены на медь росли, и в автомобилях было добавлено больше цепей управления, двигателей и электронных устройств. К середине 1950-х годов автомобильные электрические системы на 12 В были нормой для новых автомобилей.

    Более высокое напряжение экономило деньги и было более надежным. Закон Ома гласит, что для равной мощности в цепи удвоение напряжения уменьшает вдвое величину необходимого тока. Проще говоря, для более высокого тока требуются провода большего размера.

    Таким образом, переход на 12 В означал, что для передачи энергии по транспортному средству требовалось меньше меди. Кроме того, достижения в области аккумуляторных технологий позволили создать 12-вольтовые батареи такого же размера, как и 6-вольтовые батареи.

    Системы высокого напряжения имеют дополнительные преимущества:

    • Двигатели и другие электрические компоненты были изготовлены из меньшего количества меди.
    • Электрические реле и моторные щетки прослужили дольше.
    • Снижены падения напряжения из-за плохих соединений.
    • Свинцово-кислотные аккумуляторные батареи подвергаются меньшей нагрузке во время запуска двигателя.
    • Стартеры с более высоким крутящим моментом могут быть изготовлены для двигателей с более высокой степенью сжатия.

    Нити лампы накаливания должны были быть толще, чтобы создавать такое же количество света, но поскольку в современных автомобилях используется мало ламп накаливания, если они вообще есть, этот вопрос является спорным.

    ЗАПРОСИТЬ ИНФОРМАЦИЮ

    Автомобильные системы на 24 В

    Системы на 24 В имеют аналогичные преимущества перед системами на 12 В. Могут использоваться меньшие и более легкие жгуты проводов, электродвигатели того же размера более мощные, а влияние падений напряжения сводится к минимуму.

    По этим причинам электрические системы высокого напряжения часто используются в коммерческих, промышленных и военных транспортных средствах. В этих автомобилях обычно используются дизельные двигатели с высокой степенью сжатия, поэтому требуются мощные стартеры. Повышается надежность за счет меньшего количества проблем с падением напряжения.

    Легковые и грузовые автомобили потребительского уровня, даже с дизельными двигателями, не используют 24-вольтовые системы, в основном потому, что недорогие батареи бывают 12-вольтовыми, поэтому потребуются два. Кроме того, большинство компонентов и аксессуаров для розничных автомобилей рассчитаны на питание от источника питания 12 В.

    36-вольтовые транспортные средства и оборудование

    Системы 36 и более высокого напряжения не редкость в коммерческом и промышленном оборудовании. Такие высокие напряжения требуются для транспортных средств, которые используют электродвигатели для приведения в движение вместо двигателей внутреннего сгорания, потому что требования к электрическому току настолько высоки, что размеры кабелей были бы смехотворно большими.

    К этому классу оборудования относятся вилочные погрузчики, тягачи и автовозы. В гольф-карах и электромобилях также используются системы высокого напряжения.Обычно вместо свинцово-кислотных аккумуляторов используются несколько аккумуляторов глубокого цикла, которые заряжаются ежедневно.

    Влияние систем высокого напряжения на характеристики генератора

    Фактическим стандартом для конструкции генератора переменного тока является генератор Lundell. Это не самая эффективная конструкция, но ее легко построить. Если, скажем, стандартный генератор Lundell на 14 В используется в системе с более высоким напряжением, его зависимость мощности от напряжения становится непрактичной при более высоких оборотах.

    Генератор Lundell можно перемотать для правильной работы при более высоких напряжениях, увеличив количество обмоток статора при уменьшении размера провода, но менее дорогие методы, в которых используются дополнительные электронные схемы, преодолевают это ограничение более экономично.С помощью электроники можно даже создавать генераторы переменного тока на два напряжения.

    Куда отсюда?

    Вероятно, мы достигли плато напряжения для автомобилей и других транспортных средств. Были предложены системы с более высоким напряжением для личных автомобилей, но, несмотря на то, что автомобили имеют больше электронных функций, энергопотребление отдельных устройств падает. Так что не ждите в ближайшее время появления автомобильных аккумуляторов с более высоким напряжением.

    Если вам нужен генератор переменного тока для вилочного погрузчика, тягача, транспортного средства для перевозки персонала или любого другого промышленного транспортного средства, свяжитесь с нами сегодня.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *