Как читать схемы. Напряжение и сила тока

Как читать схемы? В прошлой статье мы с вами рассмотрели, как выглядят обозначения основных радиоэлементов на схеме. В этой статье мы поговорим о таких понятиях, как электрический ток, напряжение и сила тока. Хотя я уже писал о них в самых первых статьях, но в этой статье попробуем все это сложить в одну кучу, чтобы вам было легче уловить суть дела.

Проводники электрического тока

Начнем с самого-самого начала. Как вы знаете, все схемы состоят из проводков или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводков соединял различные радиоэлементы и у меня получилась схема, которая усиливает звуковые частоты

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются печатными дорожками.

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология). 

На другой стороне печатной платы уже располагаются радиоэлементы

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев,  как торт из коржей:

Прямо внутри них  есть дорожки, которые соединяются межслойно. Очень сильно экономится площадь на поверхностях печатной платы. Бум  SMD  технологий вызвал в свою очередь нужду в многослойных печатных платах.

Электрический ток

Думаю, вы  не раз слышали такое выражение: “по этому проводу течет ток”. Электронику проще объяснять как раз с точки зрения гидравлики. Раз ток течет, значит, в нашем случае, проводок – это шланг или труба для электрического тока. Получается, что так. А что такое электрический ток?

Электрический ток – это упорядоченное движение заряженных частиц, чаще всего электронов, в одном направлении. По аналогии с гидравликой, электроны – это молекулы воды. Электрический ток – поток воды. Думаю, этого пока будет достаточно. Одними словами сыт не будешь, поэтому давайте нарисуем рисунок, чтобы порадовать глаза:

В данный момент шланг валяется где-нибудь в огороде и в нем осталась вода. Шланг никуда не подключен, то есть молекулы воды в шланге находятся в неподвижном состоянии.

По аналогии с электроникой, медный проводок лежит на столе и никуда не подключен.

Но вот настал вечер. Надо полить помидоры и огурцы, иначе к зиме останетесь без закуски. Как только мы открываем кран, вода в шланге начинает движуху:

Теперь вопрос на засыпку: почему когда мы открыли краник, вода побежала по шлангу?  Создалось давление… молекулы что левее стали давить на молекулы что правее и движуха началась. Но кто толкал те молекулы, которые толкали молекулы? Это либо насос, либо вода в водобашне под воздействием гравитационной силы Земли.

В электронике электроны толкает так называемая ЭДС. В любой электрической схеме есть тот самый “насос”, который толкает электроны по проводкам и радиоэлементам. Он может находится в самой схеме, либо подключаться в схему извне. Как только электроны начинают движуху в проводке в одном направлении, то можно уже сказать, что в проводке стал течь электрический ток.

Напряжение

А теперь представьте такую ситуацию. У нас есть водонасос, но шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Там пробка закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет приличная, то пробка вылетит со скоростью пули, либо давление порвет шланг, если пробка туго сидит в шланге.

Все то же самое можно сказать и про водобашню. Давление на дне башни зависит от того, сколько воды налито в башню. Если башня под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь прикиньте какое давление на дне океана, особенно в Марианской впадине 😉

Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать напряжение от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Электрическое давление  – это еще не значит, что есть электрический ток. Для того, чтобы появился электрический ток должна быть движуха электронов в одном направлении, а они в данный момент тупо стоят на месте.  А раз движухи нету, то и нет электрического тока. Но то, что уже есть давление – это предпосылка к зарождению электрического тока.

Вы прямо сейчас можете создать давление воздуха в своем организме. Для этого достаточно набрать воздуха в легкие и закрыть рот. Потом выпустить воздух и надуть щеки, не открывая рот. В это время у вас на щеки молекулы воздуха будут оказывать давление. Чем больше вы выдыхаете воздуха, тем напряженнее стают ваши щеки от давления. Движуха идет из области высокого давления в область низкого давления. В ваших легких вы создали большое давление, а давление снаружи оказалось меньше. Поэтому-то щёчки и надулись.

С точки зрения электроники, на одном щупе блока питания высокое давление, а на другом низкое. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  – черным или синим. Тут типа давление минимальное (нулевое).

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – недостаточное.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но  напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Итак, одна составляющая для зарождения электрического тока у нас уже есть – это напряжение.

Вернемся снова к гидравлике.

Давление мы создали, но электрического тока до сих пор нету. Что надо сделать? Правильно, убрать пробку из шланга и дать водичке спокойно вытекать. Пошла движуха, значит, пошел электрический ток!

От какого слова образуется слово “ток”. Я думаю, от слова поТОК. Поток воды, поток энергии, поток света и тд, а поток электронов в проводке называется просто “электрическим током”. Значит, заставляя течь электроны, мы тем самым создаем электрический ток 😉

Теперь снова надуйте свои пухленькие щечки и пытайтесь создать внутри полости рта очень высокое давление. Что у нас произойдет? Ваши губки не выдержат и поток воздуха устремится изо рта в окружающее пространство. То есть вы создали в полости рта высокое давление, которое устремилось в область низкого давления, то есть наружу. Почти схожим образом вы создаете “ветер” из пукана, напрягая свой животик :-).

Ладно, давайте обобщим, все что мы тут пописали. ЭДС создает движуху электронов по проводку. Для того, чтобы движуха была, электроны должны куда-то направляться, желательно обратно к ЭДС источнику. В идеале, должно быть как-то так:

Как вы видите, труба у нас выходит из насосной станции и входит в насосную станцию. То есть контур трубы получается замкнутым. Пока работает насосная станция, у нас есть движуха воды. Как только насосная станция сдохнет, движуха воды прекратится. Также немаловажно чтобы труба не была тонкая в диаметре, иначе ее порвет, если насосная станция будет большой мощности.

По аналогии с электроникой получаем все то же самое. Во-первых, нужно чтобы контур был замкнутым, во вторых – чтобы был источник ЭДС, и в-третьих, чтобы провод выдерживал поток электронов.

Сила тока

Также нас интересует еще один немаловажный фактор – это какой объем воды у нас выльется из шланга за какое-то время.

Как думаете, с каким напором воды мы быстрее наполним ведерко?

С таким

или с таким?

или вот с таким?

Понятное дело, что с последним. Почему так? Да потому что, ну пусть скажем за секунду, у нас вылитой из трубы воды будет больше, чем из шланга. А объем вылитой воды из зеленого шланга за секунду будет больше, чем из желтого, так как напор воды в желтом шланге очень слабый. И теперь еще один вопросик на посошок. Какой поток струи будет обладать бОльшей силой? Ясно дело, что струя, которая выходит из трубы. Такой струей можно и гидрогенераторы крутить.

Давайте допустим, что у нас  есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Так… теперь давайте все что мы тут пописали про водичку, применим в электронике. Проводки – это шланги или трубы, в зависимости от размера. Тонкий проводок – это тонкий в диаметре шланг, толстый проводок – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый проводок при одинаковом напряжении можно протащить больше электронов, чем тонкий.

И еще, в какой трубе сила потока электронов будет больше? Разумеется, через толстый проводок, так как количество электронов через поперечное сечение проводка за единицу времени будет проходить больше, чем в тонком проводке 😉 А количество электронов, которое проходит через поперечное сечение проводника за какой-то промежуток времени, называется силой тока. Я ведь говорил, что гидравлика и электроника очень взаимосвязаны ;-).

Не забываем, что электроны обладают зарядом, поэтому официальная терминология силы тока звучит так: сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения? Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится,  но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика. Второе – это поставить шланг большим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводку. Чем он больше в диаметре, тем больше он сможет протащить через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит  от того, на какую силу тока он рассчитан

Как только сила тока через проводок превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в обрыве

Заключение

Электрический ток в основном характеризуется такими параметрами, как напряжение и сила тока. Провода служат именно теми самыми “трубами и шлангами” для того, чтобы передавать электрический ток на расстояния. Они выбираются в зависимости от того, какая сила тока будет течь через них.

Например, вот такие медные “проводочки” используются для передачи бешеной силы тока на заводах, крупных фабриках, электросетях и тд. Называют их медными шинами.

На последней картинке можно увидеть предохранитель, который соединяет шины. Его номинал 500 Ампер. Можно сказать, что через сечение такой медной шины за 1 секунду может пробежать очень большой заряд, а точнее 500 Кулон.

А что было бы, если мы туда поставили какой-нибудь медный тонкий проводок? Я думаю, произошло бы что-то типа этого

 

 

Резюме

Электрический ток – это движение в одном направлении свободных электронов.

Свободные электроны у нас имеются в проводках, которые в основном сделаны из меди и алюминия.

Электрический ток характеризуется двумя параметрами: напряжением и силой тока.

Чтобы в проводке возник электрический ток, надо чтобы в одном конце проводка было избыточное давление, а в другом  – недостаточное.

Ток течет от плюса к минусу (хотя электроны бегут от минуса к плюсу)

Сила тока через проводок – это количество заряда, которое проходит через площадь “кружочка” (сечение проводка поперек) за одну секунду. Выражается в Амперах (Кулон/ Вольт).

Проводки, через которые будет проходить большая сила тока, делают толще, иначе тонкие провода нагреются и расплавятся, причинив вред окружающим предметам.

www.ruselectronic.com

Как читать электрические схемы. Соединительные провода и линии электрической связи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы рассмотрели три основных вида электрических схем применяемых в радио- и электротехнике, и в продолжение темы как читать электрические схемы приступим к изучению условных графических обозначений элементов, с помощью которых строятся электрические схемы. Начнем с самого простого — соединительных проводов и линии электрической связи.

Если взглянуть на принципиальную схему, то в глаза бросается обилие параллельных и пересекающихся прямых линий. Все эти линии обозначают соединительные провода или линии электрической связи, которыми соединяются между собой детали любого электрического устройства. Места соединения, символизирующие электрическое соединение в виде пайки, скрутки, сварки и т.п., изображают зачерненной точкой, а если линии пересекаются без соединения, то в месте их пересечения точка не ставится.

Иногда еще можно встретить старые принципиальные схемы, где при пересечении линий электрической связи отсутствие соединения обозначали специальным обводом, от применения которого в настоящее время отказались, так как он усложнял чертежную работу. Обводы применяли из-за опасения, что в месте пересечения человеческий глаз по ошибке может увидеть точку и тем самым создать ошибочное представление о соединении.

Для удобства чтения линии связи и соединения между деталями на схемах принято изображать горизонтальными и вертикальными линиями. Ответвления соединительных проводов и линий изображают под углом 90°, однако в некоторых случаях допускается изображение ответвлений под углами, кратными 45°.

Длина и расположение соединительных линий на схеме ни как не отображают натуральную длину провода или его расположение в реальном устройстве. Может получиться так, что самая длинная соединительная линия, изображенная на схеме, в реальном устройстве будет представлять короткий проводник или его полное отсутствие, потому что детали между собой соединены выводами.

А может оказаться и так, что самая короткая линия на схеме будет являться изображением самого длинного проводника в реальном устройстве. Тут главное понимать, что на схемах соединительная линия показывает только то, что определенный вывод одной детали электрически соединен с другим определенным выводом другой детали.

Иногда на принципиальных схемах с целью сокращения количества соединительных линий, имеющих общее функциональное назначение, применяют однолинейное изображение, представляющее собой одну общую соединительную линию, в которую сливаются, а в нужном месте разветвляются одиночные линии. При этом каждой одиночной линии на входе и выходе присваивается одинаковый номер, по которому ее определяют в схеме. Допускается как обычное, так и утолщенное изображение общей линии.

В качестве примера рассмотрим часть схемы узла индикации.
На схеме видно, что вывод 2 микроконтроллера DD2 PIC16F84 заходит в общую линию под номером 4 (красная стрелка) и, выходя из общей линии, соединяется с выводом 22 индикатора HG1 CA58-11SR. Или вывод 6 микроконтроллера DD2 заходит в общую линию под номером 1 (темная стрелка) и, выходя из общей линии, соединяется с выводом 7 дешифратора DD1 К514ИД2.

При сборке сложных электрических устройств, состоящих из самостоятельных блоков, в общую схему устройства блоки включают при помощи соединительных проводов, которые в процессе монтажа увязывают в жгуты, что делает монтаж красивым и аккуратным.

На принципиальных и монтажных схемах жгут изображают линией нормальной толщины, ну а то, что это именно жгут, указывают ответвления одиночных линий.

Чтобы легче было искать, в каком направлении находится второй конец одиночной линии, линию изображают с коротким изломом под углом 45°. ГОСТ также допускает и более упрощенный вариант, хотя и менее удобный, это когда разветвление проводов жгута осуществляется без излома.

В электрических устройствах, например, аудиотехнике или измерительной аппаратуре, между отдельными элементами или узлами часто используют соединения экранированным проводником. Это связано с тем, что при определенных условиях обычный проводник может возбуждать электромагнитное поле в окружающем пространстве или, наоборот, в нем может наводиться э.д.с под влиянием внешнего магнитного поля, например, фон переменного тока.

Для устранения такого эффекта провод заключают в заземляющую металлическую оболочку, исключающую распространение магнитного поля, как по проводу, так и от него. Такую оболочку называют экраном, а сам способ защиты – экранированием.

Как правило, экран выполняют из тонких медных проволок сплетенных таким образом, что они образуют своеобразную «рубашку» или оплетку поверх изоляции провода. Экранирование осуществляется соединением одного конца оплетки с общим полюсом питания или с корпусом устройства.

Экранированный проводник обозначается штриховой линией и на принципиальных схемах его изображают либо штриховой окружностью, либо обычной соединительной линией, по обе стороны которой расположены две параллельные штриховые линии, условно изображающие продольное сечение экранирующей оболочки.

Когда хотят показать, что линия экранирована на всем протяжении от одного элемента схемы до другого, то экранирование обозначают штриховой окружностью. Когда же необходимо показать только часть экранированного участка, экранирование показывается не по всей линии связи, а на ее отдельных участках.

Штриховые линии, изображающие экран, рассматриваются как условное изображение элементов, и поэтому к ним допускается присоединение других соединительных линий, показывающих подключение, например, соединение экрана с корпусом электрического устройства.

В электрических устройствах, работающих на сверхвысоких частотах, для передачи энергии электромагнитных волн применяют коаксиальный кабель, обладающий достаточно высокой помехозащищенностью.

Коаксиальный кабель имеет круглое сечение и представляет собой центральный и внешний проводники, которые закрыты внешней защитной оболочкой, защищающей кабель от механических повреждений.

Центральный проводник выполняется целиком из меди или из стали с медным покрытием, и располагается точно по оси внешнего проводника, чем и объясняется название «коаксиальный».
Внешний проводник представляет собой гибкую токопроводящую оплетку (экран) из медной проволоки или алюминиевой фольги с оплеткой из омедненного алюминия.

Благодаря экранирующему действию внешнего проводника электромагнитное поле в коаксиальном кабеле сосредоточено в пространстве между двумя проводниками, что обеспечивает абсолютную защиту от влияния внешних электромагнитных волн и исключает потери электромагнитного поля. Получается, что кабель практически не излучает радиоволн.

Широкое применение коаксиальный кабель получил в системах эфирного, кабельного и спутникового телевидения, в системах видеонаблюдения, в компьютерных сетях, в системах связи и т.п.

На принципиальных схемах коаксиальный кабель изображают сплошным кружком с касательным к нему отрезком линии. Сплошной кружок подчеркивает, что внешняя оболочка является непроницаемой для электромагнитных волн.

К коаксиальному кабелю также как и к экранирующему проводнику допускается электрическое присоединение других линий, показывающих подключение, например, с заземлением или с общим проводом.

Если линия электрической связи выполнена кабелем лишь частично, то знак видоизменяют: касательную линию к кружку направляют только в одну сторону. В примере на рисунке ниже показано, что с правой стороны знака коаксиальная линия отсутствует.

Ну вот, в принципе и все, что хотел сказать про соединительные провода и линии электрической связи.
Удачи!

Литература:

1. ГОСТ 2.721-74 Обозначения условные графические в схемах. Обозначения общего применения.

2. Згут М.А. Условные обозначения и радиосхемы.

3. Клюев А.С. Техника чтения схем автоматического управления и технологического контроля.

sesaga.ru

Как читать принципиальные схемы 🚩 как читать электронные схемы 🚩 Компьютеры и ПО 🚩 Другое

Автор КакПросто!

Принципиальная схема являет собой модель из условных графических и буквенно-цифровых обозначений и связей между элементами электрической цепи. Связи могут быть электрические, магнитные и электромагнитные. Принципиальная схема составляется на начальном этапе проектирования электроустройства. Именно в ней определяется исчерпывающий состав элементов и связей, а также дается представление о принципах функционирования изделия.

Статьи по теме:

Инструкция

При изучении принципиальной схемы определите полюсы электрической цепи и установите направление тока – от «плюса» к «минусу». Выявите составляющие схемы: контакты, резисторы, диоды, конденсаторы и прочие элементы, входящие в цепь. Если схема содержит несколько цепей, читать их следует по одной, рассматривая каждую последовательно.

Вначале чтения схемы определите все включенные в цепь системы электропитания. Найдите источник энергии, реле, электромагниты, если они предусмотрены. Определите вид всех источников, используемый ток (постоянный или переменный), его фазу или полярность.

При изучении схемы вам нужно иметь представление о работе каждого элемента цепи отдельно, начиная с простейших составляющих. Резистор — пассивный элемент электрической цепи и предназначен, как правило, для рассеивания мощности, падения напряжения. На схемах он используется для обозначения функции сопротивления и отображается в виде прямоугольника. Конденсатор же, наоборот, накапливает электрическую энергию переменного тока, его знак – две параллельные линии. Ознакомьтесь со всеми пояснениями и примечаниями, данными на схеме. При наличии в устройстве электродвигателей или иных электроприемников проведите их анализ. Рассмотрите все цепи данных элементов от одного полюса источника питания к другому. Заметьте в этих цепях расположение резисторов, диодов, конденсаторов и других составляющих схемы. Сделайте вывод о практическом значении каждого элемента схемы и о нарушении работы электроустройства при блокировке или отсутствии какой-либо из частей его цепи.

Уточните расположение защитных приборов: реле максимального тока, предохранителей и автоматических регуляторов, а также элементов коммутации. На принципиальной схеме электроустройства могут быть обозначены надписи, указывающие на зоны защиты каждого из элементов, найдите их и сопоставьте с другими данными цепи.

Совет полезен?

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Как читать электрические схемы — Energy

Как читать электрические схемы

Главное предназначение постоянной схемы электроснабжения – максимально полное и всеохватывающее отображение взаимосвязи приборов электроустановки – средств автоматизации, вспомогательная аппаратура и последовательность их работы и принцип действия. Выяснить как читать проекты по электрике – это значит понять принцип работы всей электросистемы, увидеть работу системы автоматизации, так же поняв как читать электрические схемы вы сможете разобраться в пусконаладочных работах и использовании электросистемы.  

Научиться читать электрические схемы – значит понять, как происходит проектирование электроснабжения. Ведь в готовом проекте подключения электричества прописаны все элементы электросистемы дома – монтажные планы, чертежи и таблицы щитовых и других органов управления, отображение соединений внешней проводки, схем подключений. Поэтому учимся читать электрические схемы, это поможет нам разобраться в проектировании систем автоматизированных технологических процессов, которые как правило выполняют принципиальные электросхемы и отдельных деталей и автоматизированных механизмов, как пример – схема сигнализации в резервуаре, механизм управления задвижкой и т.п.

Учимся читать электрические схемы

Пример проекта электроснабжения квартиры

 

 

Для начала необходимо разобраться в предназначениях электрических схем, в их функциях и данных, которые там прописаны.

Каждая электросхема может быть основой для будущих разработок, от нее будут отталкиваться при проработке других документов основных монтажных схем щитовых и электроблоков. Для того чтобы понимать, как правильно читать электросхемы, необходимо знать, что они подразделяются на два вида – типовые и нетиповые. Типовая электросхема наиболее распространена, обычно выполняет одну или несколько функций.

Зачастую принципиальная электросхема имеет в своем содержании условные обозначения элементов коммутации. В этом случае отображаются задача каждого из них, либо задача нескольких электроприемников, объединенных одними и теми же (или схожими) функциями. Обычно это разнообразные коммутационные приборы и устройства соединяющих их линий. Обычно при чтении электросхемы видны все линии электросвязи между разными блоками и конструктивными элементами всей системы.  

В любой электрической схеме отображены следующие данные:

— Графические рисунки всех деталей и функциональных элементов электросистемы;

— Отдельные детали устройств, использующиеся в других системах этой схемы, либо же определенные части приборов, которые работают в данной схеме, но располагаются в других элементах и связаны одной цепочкой технологически;

— Диаграммы, отображающие переключения контактов, управленческих цепочек, системы сигнализации, а также поясняющие обозначения;

— Полный список задействованного в схеме оборудования;

— Все чертежи данной электросистемы.

Для того, чтобы научиться читать электрические схемы, необходимо заглянуть государственным стандартам, которые регулируют правила оформления электрических схем и проекты электроустановок:

— ГОСТы 2.701-84, 2.702-75, 2.708-81 прописывают главные и обобщающие нормативы выполнения и оформления электросхем;

— ГОСТы 2.709-72 и 2.710-81 имеют в своем содержании требования обозначения цепей и их буквенно цифровые абревиатуры.

Правда, есть более простой способ – необходимо тщательно изучить несколько десятков графических изображений, изображений на позициях и надписей на примерах простейших электросхем. Освоение 30-50 процентов этих данных – залог почти полного понимания и успешного прочтения электросхем.  

Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:

Поделитесь ссылкой

 

Дата публикации:
31.10.2014

energy-systems.ru

Правила чтения электросхем и чертежей

Автор DUNDUK На чтение 4 мин. Опубликовано

Для того чтобы правильно читать электросхемы и чертежи, человеку нужно знать: условные обозначения контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п.; условные обозначения, с которыми часто приходиться сталкиваться в силу своей профессии; схемы наиболее распространенных узлов электроустановок; свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Дробление общей схемы на простые цепи. Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия. Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, лампа, обмотка реле и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.).

При чтении электрической схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны. Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

  • не хватает энергии для срабатывания аппарата;
  • в схему проникает «лишняя» энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата;
  • не хватает времени для совершения заданных действий;
  • аппаратом задана установка, которая не может быть достигнута;
  • совместно применены аппараты, резко отличающиеся по свойствам;
  • не учтены коммутационная способность, уровень изоляции аппаратов и проводки,
  • не погашены коммутационные перенапряжения;
  • не учтены условия, в которых электроустановка будет эксплуатироваться;
  • при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

  1. Определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано.
  2. Дробят схему на простые цепи и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.
  3. Строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии.
  4. Оценивают последствия вероятных неисправностей: не замыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка.
  5. Нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.
  6. Проверяют схему па отсутствие ложных цепей.
  7. Оценивают надежность электропитания и режим работы оборудования.
  8. Проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами (ПУЭ, СНиП и т. п.).

elektrikdom.com

Отправить ответ

avatar
  Подписаться  
Уведомление о