Содержание

порядок измерения контура, приборы и оформление документации

Заземление — это намеренное электрическое соединение частей и узлов электрооборудования с заземляющим устройством. При помощи такого устройства осуществляют защиту от поражения электрическим током путем снижения напряжения до безопасного значения при прикосновении человека или животного. Измерение сопротивления растеканию тока заземлителя необходимо для определения соответствия устройства защиты техническим нормам.

Принцип проведения измерения

Измерение сопротивления заземляющих устройств проводят с периодичностью, установленной на предприятии, но не реже одного раза в 12 лет. Для более точного измерения создают искусственную электрическую сеть.

Рядом с испытуемым контуром в грунт встраивают вспомогательное устройство, которое называют токовым электродом, и его тоже подключают к сети. А также устанавливают электрод, по которому определяют падение напряжения в сети.

Чтобы измерить и получить более достоверные данные, в момент проведения процесса должны быть оптимальные погодные условия. То есть сопротивление почвы в этот момент должно быть максимальным. При этом должны быть выполнены следующие условия:

  • электрод, с которого будут снимать показания, располагают строго между заземляющей конструкцией и дополнительным электродом;
  • расстояние между элементами должно равняться пятикратной глубине закладки заземлителя;
  • при замере системы заземлителей во внимание принимается диагональ с наибольшей длиной.

Кроме того, дополнительно проводят замеры сопротивления изоляции.

Применяемые приборы

В связи с тем, что бытовой тестер не способен обеспечить высокое напряжение, его использовать для этой процедуры нельзя. Обычно используют приборы, которые давно выпускает промышленность, но существуют и новые модели, работающие по новым электронным технологиям. Все они характеризуются низким потреблением тока от встроенного питания. Среди них

стоит отметить следующие модели:

  1. Ф4103-М1 — популярный прибор для выполнения работ по замеру контуров разных геометрических форм и размеров. Погрешность измерений прибором составляет 4%, а частота тока — от 265 до 310 Гц. Питание аппарата осуществляется от 9 батареек А373, при этом потребление тока не превышает 160 мА.
  2. М-416 — эксплуатация этого аппарата для измерения осуществляется довольно давно. Отличается высокой точностью снимаемых показаний и надежностью в работе. Кроме замеров сопротивления заземления, этим измерителем можно определить удельное сопротивление грунта. Диапазон измерений составляет от 0,1 до 1000 Ом.
  3. Fluke 1625−2 GEO — является более современным прибором, способным проводить измерение с помощью одних зажимов. В этом случае заземляющие электроды не используются. Кроме замеров сопротивления заземления, можно проверять и защиту от молний.

Помимо этого, можно отметить следующие модели: MRU-101, ИС-20/1, ИС-10 и др.

Порядок выполняемых работ

Чтобы измерить сопротивление заземления, кроме прибора, следует подготовить два отрезка арматуры или трубы. Они будут выполнять роль токового и потенциального электрода. Кроме того, необходимо подготовить провода соответствующей длины. Замер проводят, учитывая особенность сборки конструкции контура, а именно применяют две схемы:

  1. Для проверки несложной схемы заземления электроды подключают линейно. Потенциальная заготовка должна находиться в 20 м от заземления, а токовый — в 12 м от потенциального электрода.
  2. В случае со сложными схемами такой метод использовать не рекомендуется, так как он не будет соответствовать разрешенным нормам. При измерении заземления контура определяют наибольшую его диагональ. Потенциальный устанавливают на расстоянии равном пяти диагоналям, а в 20 м от него забивают токовый электрод.

В качестве аппарата для измерения используют прибор М-416, так как он является самым распространенным и надежным. Его работа основана на принципе компенсационного метода, он должен быть проверен и иметь соответствующую запись в паспорте.

Сначала прибор необходимо отрегулировать, установив переключатель в положение 5 Ом. Затем, управляя реохордой, отрегулировать стрелку ближе к нулю. Затем отсоединяют контур от заземляющего проводника, а прибор подключают к соответствующим электродам.

Окончание заземлителя, который будут проверять, тщательно зачищают, чтобы исключить посторонние помехи при проверке, а затем к нему подсоединяют прибор. В зависимости от получения показаний сопротивления

прибор подсоединяют двумя или четырьмя проводами.

В первом случае предполагают регулировку сопротивления более 5 Ом, а во втором оно должно быть ниже этого значения. Как правильно подключать проводники прибора к заземлению, показано в его паспорте.

После подключения проводников нажимают соответствующую кнопку, предварительно обнулив показания. В итоге на шкале реохорда будет отражено значение сопротивления заземлителя.

Оформление результатов

Обязательно после проведенных измерений оформляют соответствующий документ. Все записи проводятся на специальном бланке определенной формы. В нем указываются:

  • наименование объекта;
  • схема монтажа заземляющих электродов и их соединений;
  • план контура заземления;
  • способ определения сопротивления.

Кроме того, в соответствующей графе указывают наименование прибора, которым осуществлялись все замеры.

Обязательно все показания замера сопротивления контура заземления заносятся в паспорт устройства. Специалисты оформляют отдельный протокол, в котором отражают показания испытаний переходных сопротивлений.

Они указывают на возможные потери при прохождении тока, связанные со сварочными, болтовыми и другими видами соединения всего контура заземления. Эту процедуру выполняют обычно специальным прибором — микроомметром.

Проводить все эти измерения и выдавать результаты показаний может только специальная лаборатория, зарегистрированная в органах стандартизации. Эта организация выдает решение по дальнейшему использованию заземляющего устройства.

220v.guru

Измерение сопротивления растеканию тока заземлителя — Вода в доме

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

Сегодня я расскажу Вам, как произвести измерение сопротивления заземления или, если сказать точнее, то заземляющего устройства (ЗУ).

В прошлой статье я Вам подробно рассказывал про монтаж заземляющего устройства на примере жилого многоквартирного дома.

Так вот, после окончания монтажных работ, необходимо проверить качество выполнения этих работ. Доказательством тому является измерение сопротивления заземляющего устройства, которое должно быть не больше значений, указанных в нормативно-технической литературе: ПТЭЭП (п.26.4, табл. 35 и табл.36.) и ПУЭ (п.1.7.101 и Глава 1.8, табл.1.8.38).

Но как произвести измерение его сопротивления? Читайте ниже.

Подготовка к работе

Перед началом работ по измерению сопротивления заземляющего устройства по мере возможности и доступности необходимо произвести осмотр видимой его части без вскрытия грунта. При осмотре оценивается состояние контактных соединений, наличие антикоррозийного покрытия и отсутствие обрывов.

Качество сварных швов проверяется простукиванием молотком, а ослабление болтовых соединений — с помощью гаечных ключей.

Также во время осмотра нужно убедиться в том, что монтаж заземляющего устройства, сечения заземлителей и заземляющих проводников, монтаж шины ГЗШ и правильность подключения к ней заземляющего проводника и проводников системы уравнивания потенциалов (СУП) соответствуют проекту и требованиям ПУЭ.

Почитайте для информации о том, как правильно выполняется разделение PEN проводника на PE и N, т.е. как правильно перейти от системы заземления TN-C на систему заземления TN-C-S.


Знакомство с прибором М416 и его технические характеристики

Если при визуальном осмотре не выявились какие-либо замечания и нарушения, то можно приступать к проведению замера. Для этого в «парке приборов» нашей электролаборатории имеется переносной электроизмерительный прибор М416, который включен в Госреестр средств измерений РФ под номером 2746-71. Межповерочный интервал (МПИ) у него составляет 1 год.

Данный прибор применяется для замера сопротивления заземления, удельного сопротивления грунта и активного сопротивления. Принцип его работы основан на компенсационном методе измерения с использованием вспомогательного заземлителя и потенциального электрода (зонда).

Технические характеристики измерителя М416:

  • предел измерений от 0,1 до 1000 (Ом)
  • температура эксплуатации от -25°С до +60°С
  • вес около 3 (кг)
  • габаритные размеры 245х140х160 (мм)
  • питание прибора осуществляется с помощью 3 элементов питания размером D (R20 или 373) напряжением 1,5 (В)

У меня даже сохранился «родной» экземпляр батарейки под названием «Элемент» от 1984 года выпуска.

С помощью комплекта элементов питания можно провести не меньше 1000 измерений.

Вот так выглядит лицевая панель измерителя М416, на которой расположены:

  • переключатель диапазонов измерения
  • ручка реохорда
  • кнопка включения прибора
  • выводы (1-2-3-4) для подключения соединительных проводов
  • шкала

Корпус прибора М416 выполнен из пластмассы. Прибор имеет откидную крышку и специальный ремень для переноски.

Для измерений сопротивления ЗУ можно использовать и другие, более современные приборы, но к сожалению, пока в нашей электролаборатории их нет. Как только появится что-то новенькое, то я сразу же напишу о нем статью-обзор — подписывайтесь на новости сайта, чтобы не пропустить интересное.


Когда нужно проводить измерения сопротивления заземляющего устройства?

Чтобы при измерении сопротивления заземления получить достоверные показания, их необходимо проводить в период наибольшего высыхания (летом в сухую погоду) или промерзания грунта (зимой), т.е. при наибольшем удельном сопротивлении грунта (ПТЭЭП, п.2.7.13).

Если замер проводился в другие погодные условия, то в полученный результат необходимо внести поправочный сезонный коэффициент Кс. Об этом я расскажу Вам в отдельной статье — подпишитесь на новости сайта, чтобы не пропустить выход новых статей.

 

Проведение работ

Порядок проведения работ по измерению сопротивления заземляющего устройства (ЗУ) с помощью измерителя М416.

1. Проверяем наличие, и в случае отсутствия устанавливаем, комплект элементов питания 3х1,5 (В), соблюдая полярность. Отсек питания расположен в нижней части прибора.


2. Устанавливаем прибор М416 на ровной поверхности строго в горизонтальном положении.

3. Производим калибровку прибора. Для этого переключатель диапазонов измерения необходимо поставить в положение «Контроль 5Ω». Затем нажать на красную кнопку и, вращая ручку реохорда, установить стрелку прибора на ноль. На шкале должно быть показание 5±0,3 (Ом). Если так, то продолжаем измерения, если нет, то перепроверяем заряд и полярность элементов питания. Если с ними все нормально, то отдаем прибор в ремонт.

4. Чтобы уменьшить влияние сопротивления соединительных проводов между выводами (1), (2) и Rх на результат измерения, прибор необходимо расположить как можно ближе к измеряемому заземлителю.

5. Выбираем необходимую схему подключения прибора.

Для грубых измерений сопротивления ЗУ или относительно больших сопротивлений (больше 5 Ом) выводы (1) и (2) соединяют перемычкой. Измеритель М416 при этом подключают по трехзажимной схеме. При такой схеме в результат измерения входит сопротивление соединяемого провода между Rx и выводом (1).

  • Rх — измеряемое сопротивление заземлителя или заземляющего устройства
  • Rз — зонд
  • Rв — вспомогательный заземлитель

Если Вам необходимо более точно провести измерение сопротивления заземлителя (ЗУ меньше 5 Ом), то применяют четырехзажимную схему подключения прибора, сняв перемычку между выводами (1) и (2). При такой схеме исключается погрешность от соединительных проводов и контактных соединений.

  • Rх — измеряемое сопротивление заземлителя или заземляющего устройства
  • Rз — зонд (потенциальный электрод)
  • Rв — вспомогательный заземлитель

Для подсказки, четырехзажимная схема подключения указана на крышке прибора.

Для заземлителей, выполненных в  виде сложных контуров с протяженными периметрами, применяются аналогичные схемы подключения измерителя М416, только между Rх и Rз должно быть расстояние не менее 5-кратного расстояния между двумя наиболее удаленными заземлителями плюс 20 (м).


Вот пример сложного контура заземления (обозначен на схеме зеленой пунктирной линией) одного из Торгового центра, где мы проводили измерения.

6. Стержни зонда и вспомогательного заземлителя нужно забивать в плотный не насыпной грунт на глубину не меньше, чем на 0,5 (м).

Расстояние между стержнями указаны на приведенных выше схемах.

В качестве Rз и Rв можно применять металлические стержни или трубы диаметром не менее 5 (мм).

Чтобы избежать значительного переходного сопротивления между заземлителем и забитыми стержнями, их необходимо забивать прямыми ударами без раскачивания. Для этого придется «потрудиться» с помощью вот такой кувалды.

В качестве соединительных проводов можно использовать медные провода сечением не менее 1,5 кв.мм.

7. Место соединения проводов к заземлителю необходимо очистить от краски, например, с помощью напильника.

К этому же напильнику с другой его стороны подсоединен медный провод сечением 2,5 кв.мм, т.е. напильник также является и щупом для соединения заземлителя с выводом (1) при трехзажимной схеме подключения прибора М416.


8. После выбора схемы и подключения прибора переходим к измерению. Переключатель диапазонов измерения ставим в положение «х1» (умножение на один). Нажимаем на красную кнопку и, вращая ручку реохорда, устанавливаем стрелку прибора на ноль.

Если сопротивление заземлителя больше 10 (Ом), то переключатель диапазонов необходимо установить в положение «х5», «х20» или «х100».

9. Результат находим путем умножения показания шкалы реохорда на установленное положение переключателя диапазонов «х1», «х5», «х20» или «х100».

В нашем примере переключатель прибора М416 установлен в положении «х1», а значит полученное значение 1,9 нужно умножить на 1, т.е. измеренное сопротивление заземлителя составляет 1,9 (Ом).

10. После завершения работ заносим полученные данные в протокол соответствующей формы.

Периодичность проведения измерений

Периодичность проверки сопротивления заземлителя или контура заземления производится по утвержденному графику предприятия, а также после ремонта или его реконструкции. Более подробно об этом Вы можете почитать в нормативно-технической литературе ПТЭЭП (п.2.7.8. — 2.7.15).

А Вы каким прибором измеряете сопротивление заземления? Хотелось бы услышать реальные отзывы, т.к. планирую в ближайшее время обновить М416 на что-нибудь более современное.

P.S. Если Вы самостоятельно не можете произвести измерения, то воспользуйтесь услугой электролаборатории.

zametkielectrika.ru

Как измерить сопротивление растеканию заземлителя?

Это сопротивление обычно измеряют по методу амперметра и вольтметра, используя портативные приборы ИКС-1, МС-08, М-416 и др. Если этих приборов нет, сопротивление растеканию заземлителя может быть измерено при помощи обычных амперметра и вольтметра по схеме, приведенной на рисунке 1, а.

В качестве источника измерительного тока может быть использован сварочный или любой другой трансформатор, у которого вторичная обмотка не имеет электрической связи с первичной. Потенциальный и токовый электроды располагают так, как это показано на рисунке 116, б. В приведенной схеме расстояния даны для измерения сопротивления растеканию заземлителя потребительской подстанции, выполненного в виде замкнутого контура. При измерении сопротивлений растеканию одиночных заземлителей, предназначенных для повторных заземлений нулевого провода линии электропередачи, указанные расстояния могут быть уменьшены в 2 раза.

При измерении сопротивления растеканию заземлителя прибором МС-08 его располагают в непосредственной близости от места подключения к испытываемому заземлителю и собирают одну из схем, приведенных на рисунке 116, в или 116, г, которые отличаются одна от другой только тем, что в схеме г из показания прибора необходимо вычесть значение сопротивления соединительного проводника, идущего от заземлителя до клемм 1 и Е. После сборки схемы регулируют сопротивления потенциальной цепи. Для этой цели переключатель диапазона ставят в положение «Регулировка» и, вращая ручку генератора с частотой около двух оборотов в секунду, добиваются при помощи регулировочного реостата установки стрелки прибора на красную черту. Если установить стрелку на красную черту не удается, значит, сумма сопротивлений заземлителя и потенциального электрода больше 1000 Ом и нужно уменьшить сопротивление потенциального электрода. Для этого прибегают к местному увлажнению земли подсоленной водой, более глубокому заложению потенциального электрода или применению нескольких параллельно соединенных стержней, забиваемых в землю на расстоянии 3…4 м один от другого.

После регулировки потенциальной цепи приступают непосредственно к измерению. Для этого переключатель диапазонов переводят в положение «X 1». что соответствует диапазону измерений 10… 1000 Ом, и, вращая ручку генератора, измеряют сопротивление растеканию заземлителя. Если при этом стрелка попадает на нерабочую часть шкалы (0…10 Ом), то переходят на меньший диапазон измерений, переводят переключатель диапазонов в положение «Х0,1» или «Х0,01».

Вопросы по электрике — Как измерить сопротивление растеканию заземлителя?

gardenweb.ru

Нормативные показатели при измерении сопротивления растекания тока контура заземления

В каждом виде электрических испытаний присутствуют свои нормы, с которыми сравниваются фактические показатели. Измерение сопротивления растекания тока контура заземления не является исключением – здесь также имеются свои стандартные уровни. Они могут быть различными в зависимости от характеристик установки, а также от других факторов:

 

Может ли измеряться норма для измерения сопротивления растекания тока контура заземления?

В некоторых случаях данные нормы приходится корректировать на уровень удельного сопротивления грунта. Для некоторых объектов разработаны специальные таблицы, в которых указывается зависимость нормативного сопротивления от типа грунта, в котором находится подземная часть заземляющей линии.

В остальных же случаях приходится руководствоваться несложной пропорцией. В качестве базового уровня принимается показатель 100 Ом*метр, характерный для суглинков и черноземов. Все остальные типы грунтов требуют корректировки в зависимости от их фактического удельного сопротивления. К примеру, для песчаных и подзолистых почв оно равно 300-350 Ом*метр. Соответственно, измерение растекания контура заземления потребует умножения приведенных выше нормативов на коэффициент, равный 3-3,5.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

energy-systems.ru

Заземление – это соединение электроприбора с землей, выполняющее функцию защиты людей и имущества от поражения удельным током при возникновении скачков напряжения или выхода оборудования из строя. В простых случаях для этой цели используется металлический стержень, в более сложных — специальный установочный комплекс, разработанный по спроектированной схеме.

Проверка сопротивления заземляющего устройства и его контуров – важный процесс, необходимый для устранения потенциальной опасности удара электрическим током при подключении прибора к источнику питания. Соединение системы с землей или грунтом гарантирует снижение напряжения до безопасного для жизни значения. Но с течением времени могут возникнуть неполадки, связанные с износом оборудования и порчей изоляции. Именно поэтому необходимо проводить проверку качества и измерять показания контуров заземления с учетом всех требований нормативных документов (ПУЭ, ПТЭЭП).

В соответствии с нормами, измерение сопротивления растеканию тока заземления для электроустановок с нейтралью должно составлять:

Линейное напряжениеИсточник однофазного токаИсточник трехфазного тока
2 Ом380В660В
4 Ом220В380В
8 Ом127В220В

Компания «Норма-ЭЛ» предлагает измерение сопротивления заземляющего устройства от квалифицированных специалистов. Мы работаем с выездом на любые объекты — квартиры, частные дома, предприятия, склады, офисы и т.д. По результатам измерительных и эксплуатационных испытаний мы предоставим вам подробный технический отчет и экспертное заключение, а также рекомендации по устранению выявленных проблем.

norma-l.ru

Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

samelectrik.ru

Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

Как работает заземляющее устройство

В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

Как заземление защищает человека

При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

Как возникает неисправность у заземляющего устройства

В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

Принципы, заложенные в измерение сопротивления заземляющего устройства

В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

Метод амперметра и вольтметра

Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

Компенсационный метод

Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

При этом способе тоже используется установка основного и вспомогательного электродов в почву.

Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

U1=I1∙rx.

Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

U2=I2∙rаб.

Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

Тогда получим: I1∙rx=I2∙rаб.

Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

Приборы для измерения сопротивления заземляющего устройства

За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

Методика выполнения замера сопротивления заземлительного устройства

После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

Замер сопротивления трехпроводным методом

Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

Соединительный проводник подключают к прибору и струбцине.

На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

Замер сопротивления четырехпроводным методом

Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

Замер сопротивления заземлителя с применением токоизмерительных клещей

При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

В заключение

Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи! 

electrik.info


vodavdome.website

Измерение сопротивления растекания заземляющего устройства

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ПРОВЕДЕНИЮ

ИСПЫТАНИЙ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Общие положения

1.1 Настоящие методические указания определяют порядок оценки состояния заземляющих устройств на соответствие техническим нормам, установленным в нормативно-технических документах в соответствии с Методическими указаниями по контролю состояния заземляющих устройств электроустановок. РД 153-34.0-20.525-00.

1.2 Знание настоящих методических указаний обязательно для персонала СССРРР, РМР, СЛЭ, СПС занимающегося контролем состояния заземляющих устройств.

1.3 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, устанавливаются на основании РД 34.45-51.300-97 и утвержденных многолетних графиков.

Нормативные ссылки

В настоящих методических указаниях использованы ссылки на следующие документы:

ÿ Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001 РД 153-34.0-03.150-00;

ÿ Объем и нормы испытаний электрооборудования РД 34.45-51.300-97;

ÿ Инструкция по применению и испытанию средств защиты, используемых в электроустановках. СО 153-34.03.603-2003;

ÿ Правила технической эксплуатации электрических станций и сетей Российской Федерации: Утверждены Приказом Министерства энергетики Российской Федерации от 19 июня 2003, № 229;

ÿ Правила устройства электроустановок – издание 6-е;

ÿ Правила устройства электроустановок – издание 7-е;

ÿ Сборник методических пособий по контролю состояния электрооборудования, Москва СПО ОРГРМР 1997 г;

ÿ Методические указания по контролю состояния заземляющих устройств электроустановок. РД 153-34.0-20.525-00.

Объем и периодичность испытания заземляющих устройств

4.1 Для получения как можно более достоверных результатов измерения следует производить в период наибольшего удельного сопротивления грунта. Сопротивление заземляющего устройства определяется умножением измеренного значения на поправочные коэффициенты, учитывающие конфигурацию устройства, климатические условия и состояние грунта.



Для заземлителей, находящихся в промерзшем грунте или ниже глубины промерзания, введение поправочного коэффициента не требуется. При завышенных результатах сопротивлений заземляющих устройств, приведенных в РД 153-34.45-51.300-97, они сопоставляются с данными измерений удельного сопротивления грунта.

4.2 Основными параметрами, характеризующими состояние заземляющих устройств (ЗУ), являются: сопротивление растеканию, соответствие их конструктивного выполнения требованиям ПУЭ, качество и надежность соединений элементов заземляющих устройств, соответствие сечения и проводимости элементов требованиям ПУЭ и проектным данным, интенсивность коррозионного разрушения.

4.3 Прочие неэлектрические характеристики заземляющих устройств, а именно качество неразъемных соединений, целость элементов, находящихся в земле, проверяется путем визуального осмотра (со вскрытием грунта в случае необходимости), простукиванием молотком. Количественная оценка степени коррозионного износа производится выборочно по участкам контролируемого элемента заземлителя путем измерения характерных его размеров.

Измерения производятся штангенциркулем, глубиномером после удаления с поверхности элемента продуктов коррозии.

4.4 Проверка производится путем простукивания мест соединений молотком и осмотром для выявления обрывов и других дефектов. Кроме того, может производиться измерение переходных сопротивлений (при исправном состоянии контактного соединения сопротивление не превышает 0,05 Ом).

4.5 Проверка состояния цепей и контактных соединений между заземлителями и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством производится после каждого ремонта естественного заземлителя, но не реже 1 раза в 12 лет.

4.6 Наибольшие допустимые значения сопротивления заземляющих устройств приведены в табл. 1.

4.7 На подстанциях измерения производятся после присоединения естественных заземлителей.

4.8 На воздушных линиях электропередачи измерения производятся:

а) при напряжении выше 1 кВ:

– на опорах с разрядниками, разъединителями и другим электрооборудованием — после монтажа, ремонтов, а также в эксплуатации не реже 1 раза в 12 лет;

– выборочно у 2% опор от общего числа опор с заземлителями в населенной местности, на участках ВЛ с наиболее агрессивными или плохо проводящими грунтами — после монтажа, ремонтов, а также в эксплуатации не реже 1 раза в 12 лет;

– на тросовых опорах ВЛ 110 кВ и выше при обнаружении на них следов перекрытий или разрушений изоляторов электрической дугой;

б) при напряжении до 1 кВ:

– на опорах с заземлителями грозозащиты — после монтажа, ремонтов, а также в эксплуатации не реже 1 раза в 6 лет;

– на опорах с повторными заземлениями нулевого провода — после монтажа, ремонтов, а также в эксплуатации не реже 1 раза в 6 лет;

– выборочно у 2% опор от общего количества опор с заземлителями в населенной местности, на участках ВЛ с наиболее агрессивными или плохо проводящими грунтами — после монтажа, ремонтов, а также в эксплуатации не реже 1 раза в 12 лет.

 

Таблица 1

Характеристика заземляемого объекта Характеристика заземляющего устройства Сопротивление, Ом
  1. Электроустановки напряжением выше 1 кВ, кроме ВЛ 1)
Электроустановка сети с эффективно заземленной нейтралью Искусственный заземлитель с подсоединенными естественными заземлителями 0,5  
Электроустановка сети с изолированной нейтралью при использовании заземляющего устройства только для установки выше 1 кВ Искусственный заземлитель вместе с подсоединенными естественными заземлителями 250/I 2), но не более 10  
Электроустановка сети с изолированной нейтралью при использовании заземляющего устройства для электроустановки до 1 кВ Искусственный заземлитель с подсоединенными естественными заземлителями 125/I 2), при этом должны быть выполнены требования к заземлению установки до 1 кВ
Подстанция с высшим напряжением 20-35 кВ при установке молниеотвода на трансформаторном портале Заземлитель подстанции   4, без учета заземлителей, расположенных вне контура заземления ОРУ
Отдельно стоящий молниеотвод Обособленный заземлитель
2. Электроустановки напряжением до1 кВ с глухозаземленной нейтралью, кроме ВЛ 3)
Электроустановка с глухозаземленными нейтралями генераторов или трансформаторов или выводами источников однофазного тока Искусственный заземлитель с подключенными естественными заземлителями и учетом использования заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух при напряжении источника, В:    
трехфазный однофазный  
Заземлитель, расположенный в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока при напряжении источника, В:    
трехфазный однофазный  

 

 

Таблица 1 (продолжение)

Характеристика заземляемого объекта Характеристика заземляющего устройства Сопротивление, Ом
3.ВЛ напряжением выше 1 кВ 4)
Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, железобетонные и металлические опоры ВЛ 35 кВ и такие же опоры ВЛ 3-20 кВ в населенной местности, а также заземлители электрооборудования, установленного на опорах ВЛ 110 кВ и выше Заземлитель опоры при удельном эквивалентном сопротивлении p, ОМ м: до 100; более 100 до 500; более 500 до 1000; более 1000 до 5000; более 5000   10 5) 15 5) 20 5) 30 5) 6 10-3p 5)  
Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, железобетонные и металлические опоры ВЛ 35 кВ и такие же опоры ВЛ 3-20 кВ в населенной местности, а также заземлители электрооборудования, установленного на опорах ВЛ 110 кВ и выше Заземлитель опоры при удельном эквивалентном сопротивлении p, ОМ м: до 100; более 100 до 500; более 500 до 1000; более 1000 до 5000; более 5000   10 5) 15 5) 20 5) 30 5) 6 10-3p 5)  
Электрооборудование, установленное на опорах ВЛ 3-35 кВ Заземлитель опоры   250/I 2), но не более 10  
Железобетонные и металлические опоры ВЛ 3-20 кВ в ненаселенной местности   Заземлитель опоры при удельном сопротивлении грунта р, Ом/м: до 100; более 100     30 5) 0,3p 5)
Трубчатые разрядники и защитные промежутки ВЛ 3-110 кВ   Заземлитель разрядника или защитного промежутка при удельном сопротивлении грунта р, Ом м: не выше 1000; более 1000    
4. ВЛ напряжением до 1 кВ 3)
Опора ВЛ с устройством грозозащиты Заземлитель опоры для грозозащиты    
Опоры с повторными заземлителями нулевого рабочего провода   Общее сопротивление заземления всех повторных заземлений при напряжении источника, В:      
трехфазный однофазный  
Заземлитель каждого из повторных заземлений при напряжении источника, В:  
трехфазный однофазный  

1) Для электроустановок выше 1 кВ при удельном сопротивлении грунта р более 500 Ом м допускается увеличение сопротивления в 0,002р раз, но не более десятикратного.

 

2) I— расчетный ток замыкания на землю, А. В качестве расчетного тока принимается:

— в сетях без компенсации емкостного тока — ток замыкания на землю;

— в сетях с компенсацией емкостного тока:

ÿ для заземляющих устройств, к которым присоединены дугогасящие реакторы;

ÿ ток, равный 125% номинального тока этих реакторов;

ÿ для заземляющих устройств, к которым не присоединены дугогасящие реакторы, ток замыкания на землю, проходящий в сети при отключении наиболее мощного из дугогасящих реакторов или наиболее разветвленного участка сети.

 

3) Для установок и ВЛ напряжением до 1 кВ при удельном сопротивлении грунта р более 100 Ом м допускается увеличение указанных выше норм в 0,01p раз, но не более десятикратного.

 

4) Сопротивление заземлителей опор ВЛ на подходах к подстанциям должно соответствовать требованиям Правил устройства электроустановок.

 

5) Для опор высотой более 40 м на участках ВЛ, защищенных тросами, сопротивление заземлителей должно быть в 2 раза меньше приведенных в таблице.

Измерение сопротивления растекания заземляющего устройства

5.1 Измерение проводиться с использованием приборов типа Ф-4103 или ИС-10.

5.2 При измерении сопротивления заземляющего устройства направление разноса электродов выбрать так, чтобы соединительные провода не проходили вблизи металлоконструкций и параллельно трассе ЛЭП. При этом расстояние между токовым и потенциальным проводами должно быть не менее 1 м. Присоединение проводов к ЗУ выполнять на одной металлоконструкции, выбирая места подключения на расстоянии (0,2 – 0,4м) друг от друга.

Рис. 1 Схема измерения сопротивления заземляющего устройства. Рис. 2 График измерения сопротивления заземляющего устройства.

где, Lзт – расстояние от края заземляющего устройства до токового электрода.

5.3 Измерительные электроды Rп2 и Rт2 размещать по однолучевой схеме. Токовый электрод (Rт2) установить на расстоянии Lзт не менее 3хД от края испытуемого устройства (Д – наибольшая диагональ заземляющего устройства), а потенциальный электрод (Rп2) – поочередно на расстояниях (0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8) Lзт.

5.4 Измерения сопротивления заземляющих устройств проводить при установке потенциального электрода в каждой из указанных точек. По данным измерений построить кривую «б» зависимости сопротивления ЗУ от расстояния потенциального электрода до заземляющего устройства.

5.5 Полученную кривую «б» сравнить с кривой «а», если кривая «б» имеет монотонный характер (такой же, как у кривой «а») и значения сопротивлений ЗУ, измеренные при положениях потенциального электрода на расстояниях 0,4 Lзт и 0,6 Lзт, отличаются не более, чем на 10% от значения измеренного при 0,5 Lзт, то места забивки электродов выбраны правильно и за сопротивление ЗУ принимается значение полученное при расположении потенциального электрода на расстоянии 0,5 Lзт.

5.6 Если кривая «б» отличается от кривой «а» (не имеет монотонного характера), что может быть следствием влияния подземных или наземных металлоконструкций, то измерения повторить при расположении токового электрода в другом направлении от заземляющего устройства.

5.7 Если значения сопротивления ЗУ, измеренные при положениях потенциального электрода на расстоянии 0,4 Lзт и 0,6 Lзт, отличаются более чем на 10%, то повторить измерения сопротивления ЗУ при увеличенном в 1,5 – 2 раза расстоянии от ЗУ до токового электрода.

5.8 Если отсутствует возможность перемещения токового электрода на большее расстояние, возможен следующий выход. Проводятся две серии измерений при rэт = 2Д и rэт = 3Д. Кривые наносятся на один график. Точка пересечения кривых принимается за истинное значение сопротивления заземлителя.

 

5.9 Измерения прибором Ф-4103 проводить в следующей последовательности:

5.9.1. Установить измеритель на ровной поверхности и снять крышку, при необходимости закрепить ее на боковой поверхности корпуса.

5.9.2. Проверить напряжения источника питания. Для этого закоротить зажимы Т1, П1, П2, Т2, установить переключатели в положения КЛБ и «0,3», а ручку КЛБ – в крайнее правое положение. Нажать кнопку ИЗМ. Если при этом лампа КП не загорается, напряжение питания в норме.

5.9.3. Проверить работоспособность измерителя. Для этого, в положении КЛБ переключателя, установить ноль ручкой УСТ О, нажать кнопку ИЗМ, ручкой КЛБ установить стрелку на отметку «30».

5.9.4. Подключить провода от Rп2 и ЗУ соответственно к зажимам П2 и П1.

5.9.5. Проверить уровень помех в поверяемой цепи. Для этого установить переключатели в положение ИЗМ II и «0,3» и нажать кнопку ИЗМ. Если лампа КПм не загорается, то уровень помех не превышает допустимый для диапазона 0÷0,3 Ом (3 В) и необходимо перейти в диапазон 0÷1 Ом, где допустимый уровень помех 7 В. Если в этом случае лампа не загорается, можно проводить измерения на всех диапазонах (кроме 0÷0,3 Ом).

5.9.6. При кратковременном повышении уровня помех выше допустимого провести повторный контроль по истечении некоторого времени.

5.9.7. Измерить сопротивление потенциального и токового электродов по двухзажимной схеме рис. 3. (схема измерения сопротивления токового электрода указана пунктиром) Для этого установить диапазон измерения ориентировочно соответствующий измеряемому сопротивлению электрода, затем установить нуль и откалибровать измеритель. Перевести переключатель в положение ИЗМ II и отсчитать значение сопротивления. Если оно превышает допустимое значение, указанное в таблице 4 для выбранного диапазона измерения, его необходимо уменьшить.

5.9.8. Подключить измеритель в схему измерения в соответствии с рис. 1.

5.9.9. Установить необходимый диапазон измерений, затем провести установку нуля и калибровку. Если при проведении калибровки стрелка находится левее отметки «30» – уменьшить сопротивление токового электрода.

5.9.10. Перевести переключатель РОД РАБОТ в положение ИЗМ II и отсчитать значения сопротивления.

5.9.11. Если стрелка под воздействием помех совершает колебательные движения, устранить их вращением ручки ПДС f.

5.9.12. При необходимости перейти на другой диапазон измерения, переключить ПРЕДЕЛЫ W в необходимое положение.

5.9.13. Установить нуль и откалибровать измеритель.

5.9.14. Перевести переключатель РОД РАБОТ в положение ИЗМ II и отсчитать значение сопротивления.

5.9.15. Произвести измерения заземляющего устройства в соответствии с пунктами 5.2-5.8.

5.9.16. Измерение сопротивления точечного заземлителя проводить при Lзт не менее 30 м.

 

5.10 Измерения прибором ИС-10 проводить в следующей последовательности:

5.10.1. Кнопкой «РЕЖИМ» выбрать четырёхпроводный метод измерения.

5.10.2. Подключить измеритель в схему измерения в соответствии с рис. 1.

5.10.3. При наличии напряжения помехи, прибор измерит её амплитудное значение в вольтах, и результат отобразит на индикаторе. В этом случае необходимо найти оптимальное направление расположения измерительных электродов, при котором величина напряжения помехи будет минимальной. Это позволит получить наиболее достоверные результаты последующих измерений.

5.10.4. Произвести измерения заземляющего устройства в соответствии с пунктами 5.2-5.8.

5.10.5. Для проведения измерений необходимо нажать кратковременно кнопку «Rx / ↵», после чего появится надпись «ИЗМЕРЕНИЕ» и в течение нескольких секунд произойдет измерение сопротивления объекта. После окончания индикации результата измерения прибор перейдёт в режим измерения напряжения по входам П1 и П2.

5.10.6. В случае если сопротивление объекта более 10 кОм, на индикаторе появится сообщение «ВНЕ ДИАПАЗОНА».

5.10.7. В случае если в токовой цепи измерения есть дефекты не позволяющие поддерживать даже минимальный измерительный ток (плохой контакт между электродом и землёй, высокое удельное сопротивление грунта или обрыв цепи) на индикаторе появится сообщение «НЕТ ЦЕПИ».

5.10.8. Измерение сопротивления точечного заземлителя проводить при Lзт не менее 40 м.

stydopedia.ru

Занятие №4. Методика измерений сопротивления растеканию тока анодного заземления

Номер пункта программы
Продолжительность темы, час

Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному полюсу источника постоянного тока.

В качестве анодных заземлителей установок катодной защиты применяются железокремниевые, углеграфитовые, эластомерные, стальные и чугунные электроды, помещенные в грунт или коксовую засыпку.

Для исключения вредного влияния ЭХЗ на окружающую среду анодные заземления, располагаемые в горизонтах питьевой воды, должны быть выполнены из малорастворимых материалов: углеродосодержащих, магнетита или высококремнистого чугуна.

Измерение сопротивления растекания анодных заземлителей производится с использованием измерителей сопротивления заземления ИС-20, ИСЗ-1, (все приборы должны быть откалиброваны в соответствующих государственных органах).

В качестве электродов применяются металлические стержни диаметром 10-12 мм и длиной 1,2 метра, погруженные в землю на глубину не менее 0,5 метра.

Соединительные провода сечением от 4 мм2 и длиной до 300 м.

Измерительные электроды рекомендуется размещать по однолучевой схеме, так чтобы между измерительными электродами и анодным заземлением не было металлических подземных коммуникаций.

При длине анодного заземлителя Lа.з, потенциальный электрод относят на расстояние а=2Lа.з., токовый электрод – на расстояние b= 3Lа.з. (рис. 6.1).

Рисунок 6.1 – Схема измерения сопротивления растекания при прямой укладке АЗ

 

Если протяжённый анод уложен в грунт не по прямой, то токовый электрод относят на расстояние больше или равное D (где D – наибольшая диагональ заземляющего устройства рис. 6.2).

Рисунок 6.2 – Схема измерения сопротивления растекания при дугообразной укладке АЗ

Расстояние между измерительными электродами и анодным заземлением необходимо принимать согласно рисунка 6.3, соблюдая соотношения величин.

На время измерений провод, идущий от анодного заземления, необходимо отсоединить от плюсовой клеммы преобразователя катодной защиты. После проведения измерений провод от анодного заземления следует надежно подсоединить к плюсовой клемме преобразователя.

 

 

Рисунок 6.3 – Схема измерения сопротивления растеканию сосредоточенных АЗ

 

За величину сопротивления растекания принимаются показания прибора (Ом).

 

При измерении сопротивления растекания глубинного анодного заземлителя (ГАЗ) расстояние между электродами и анодным заземлением необходимо принимать согласно рисунка 6.4.



Рисунок 6.4 – Схема измерения сопротивления растеканию глубинных АЗ

 

За величину сопротивления растекания принимаются показания прибора (Ом).

 

6.1 Контрольные вопросы

1. Требования к электродам заземления и соединительным проводникам при определении сопротивления растекания тока АЗ.

2. На чем основан принцип измерения сопротивления растекания тока?

3. Привести схему измерения сопротивления растеканию глубинных АЗ. Для чего необходимо определять это сопротивление?

7 Занятие №5. Методы диагностирования и определения мест повреждений протяженных АЗ

Номер пункта программы
Продолжительность темы, час

Измерение растекания тока секции протяженного анодного заземлителя

Перед проведением измерений СКЗ переводится в режим автоматического поддержания тока защиты.

Диагностирование работоспособности линии протяженных АЗ длиной более 4 км проводится при токе УКЗ не менее 500 мА на каждую диагностируемую секцию АЗ.

Измерения тока выполняют, снимая показания с амперметра, устанавливаемого в разрыв цепи протяженного АЗ.

Измерения выполняются в следующей последовательности:

– измеряется ток между дренажным кабелем СКЗ и протяженным АЗ левого плеча защиты УКЗ;

– на соединительных КИП измеряется ток в цепи между подводящей секцией и отводящей секцией протяженного АЗ;

– повторяют измерения для правого плеча УКЗ.

 

 

Плотность защитного тока на каждой секции протяженного АЗ, мА/м, определяется по формулам:

Ic = Iн – Iк, (7.1)

 

где Iн – измеренное значение тока катодной защиты в начале секции, мА;

Iк – измеренное значение тока катодной защиты в конце секции, мА;

Iс – сила тока секции, мА,

 

Iу = Iс / Lc, (7.2)

 

где Iу – линейная плотность тока секции, мА/м;

Lc – длина секции, м.

Определяется запас токоотдачи секции протяженного АЗ для оценки технического состояния.



Отсутствие тока между секциями протяженного АЗ или изменение направления тока свидетельствует о повреждении подводящей секции.

При уменьшении тока между секциями протяженного АЗ более чем в 4 раза относительно тока между предыдущими секциями необходимо уточнить наличие повреждения измерением электрического сопротивления подводящей секции.

Для конечных секций и расположенных за поврежденными секциями оценку целостности проводить по результатам измерения сопротивления протяженного АЗ.

Результаты всех выполненных измерений заносятся в протокол, оформляемый в соответствии с Приложением Д1.

Измерение сопротивления секции протяженного анодного заземлителя

Средства контроля, вспомогательные устройства:

– микроомметр постоянного тока;

– измеритель сопротивления заземления;

– катушка с измерительным геофизическим сталемедным проводом сечением не менее 0,35 мм2 и длиной не менее 600 м.

Перед проведением измерений отключается секция протяженного АЗ от подводящих и отводящих секций протяженного АЗ и соединительных кабелей.

Измеряется сопротивление измерительного кабеля на катушке.

Подключается вывод измерительного кабеля на катушке к выводу в начале секции протяженного АЗ и катушка устанавливается рядом с КИП в конце секции протяженного АЗ. При измерениях сопротивления по переменному току измерительный провод должен быть полностью размотан с катушки.

Подключается микроомметр (измеритель сопротивления заземления) к выводу конца секции протяженного АЗ и к концевому выводу катушки.

Измеряется сопротивление цепи измерительного кабеля на катушке и протяженного АЗ не менее трех раз.

Значение электрического сопротивления, протяженного АЗ определяется в результате обработки измеренных сопротивлений по формуле:

 

Rаз = Rц – Rк, (7.3)

 

где Rаз – сопротивление протяженного анодного заземлителя, Ом;

Rц – среднее значение сопротивления цепи измерительного кабеля на катушке и протяженного АЗ, Ом;

Rк – сопротивление измерительного кабеля на катушке, Ом.

cyberpedia.su

Измерение сопротивления заземления

Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.

Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.

 

Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.

 

Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.

 

 

Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу

 

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  •  Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному  методу

 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему “клещи”.
  • К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному  методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему “клещи”.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземления с измерительными клещами и передающими клещами

 

 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить измерительными клещами и подключить  к разъему П1.
  • Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
  • Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
  • Начать измерение, нажав кнопку Rx.

 

Измерение удельного сопротивления грунта

 


Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.

 

Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом.  При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.

 

Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов,  удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.

deomera.ru

Измерение сопротивления заземляющих устройств

 

 

1.         Назначение и область применения

            1.1      Настоящий документ методика «Измерение сопротивления заземляющих устройств» устанавливает методику выполнения проверки элементов заземляющего устройства и измерения сопротивления заземляющего устройства на соответствие проекту и требованиям НД.

1.2    Настоящий документ разработан для применения персоналом электролаборатории в Краснодаре и Краснодарском крае ООО “Энерго Альянс” при проведении приемо-сдаточных, периодических и ремонтных  испытаний.

 

2.         Термины и определения

 

В данной методике используются следующие термины и определения, принятые согласно ПУЭ изд. 7 и комплекса стандартов ГОСТ Р 50571.16 – 2007:

2.1 Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

2.2   Защитное заземление – заземление, выполняемое в целях электробезопасности.

2.3 Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

2.4 Защитное зануление в электроустановках напряжением до 1 кВ – преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

2.5 Заземлитель – проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

2.6 Искусственный заземлитель – заземлитель, специально выполняемый для целей заземления.

2.7 Естественный заземлитель – сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

2.8 Заземляющий проводник – проводник, соединяющий заземляемую часть (точку) с заземлителем.

2.9   Заземляющее устройство – совокупность заземлителя и заземляющих проводников.

2.10 Зона нулевого потенциала (относительная земля) – часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.

2.11 Зона растекания (локальная земля) – зона земли между заземлителем и зоной нулевого потенциала.

Термин земля, используемый в главе, следует понимать как земля в зоне растекания.

2.12  Замыкание на землю – случайный электрический контакт между токоведущими частями, находящимися под напряжением, и землей.

3.13 Напряжение на заземляющем устройстве – напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

2.14 Напряжение прикосновения – напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Ожидаемое напряжение прикосновения – напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.

2.15 Напряжение шага – напряжение между двумя точками на поверхности земли, на расстоянии 1 м одна от другой, которое принимается равным длине шага человека.

2.16 Сопротивление заземляющего устройства – отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

2.17 Эквивалентное удельное сопротивление земли с неоднородной структурой – удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Термин удельное сопротивление, используемый в главе для земли с неоднородной структурой, следует понимать как эквивалентное удельное сопротивление.

2.18 Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

2.19 Защитное заземление – заземление, выполняемое в целях электробезопасности.

2.20 Рабочее (функциональное) заземление – заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).3.1  Заземление — преднамеренное электрическое соединение этой части с заземляющим устройством.

2.21 Главная заземляющая шина – шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.

 

3. Характеристика измеряемой величины, нормативные значения измеряемой величины

 

Объектом измерения являются заземляющие устройства

Измеряемой величиной являются геометрические размеры заземлителей, сопротивление заземляющего устройства.

3.1 Требования к заземляющему устройству.

3.1.1 Заземляющие устройства могут быть объединенными или раздельными для защитных или функциональных целей в зависимости от требований, предъявляемых электроустановкой.

3.1.2 Заземляющие устройства должны быть выбраны и смонтированы таким образом, чтобы:

— значение сопротивления растеканию заземляющего устройства соответствовало требованиям обеспечения защиты и работы установки в течение периода эксплуатации;

— протекание тока замыкания на землю и токов утечки не создавало опасности, в частности, в отношении нагрева, термической и динамической стойкости электроустановки;

— были обеспечены необходимая прочность или дополнительная механическая защита в зависимости от заданных внешних факторов по ГОСТ 30331.2/ГОСТ Р 50571.2.

3.1.3 Должны быть приняты меры по предотвращению повреждения металлических частей из-за электролиза.

3.2 Заземлители.

3.2.1 В качестве заземлителей могут быть использованы находящиеся в соприкосновении с землей:

— металлические стержни или трубы;

— металлические полосы или проволока;

— металлические плиты, пластины или листы;

— фундаментные заземлители;

— стальная арматура железобетона;

— стальные трубы водопровода в земле при выполнении условий 3.2.5;

— другие подземные сооружения, отвечающие требованиям 3.2.6.

Примечание. Эффективность заземлителя зависит от конкретных грунтовых условий, и поэтому в зависимости от этих условий и требуемого значения сопротивления растеканию должны быть выбраны количество и конструкция заземлителей. Значение сопротивления растеканию заземлителя может быть рассчитано или измерено.

3.2.2 Тип заземлителей и глубина их заложения должны быть такими, чтобы высыхание и промерзание грунта не вызывали превышения значения сопротивления растеканию заземлителя свыше требуемого значения.

3.2.3 Материал и конструкция заземлителей должны быть устойчивыми к коррозии.

3.2.4 При проектировании заземляющих устройств следует учитывать возможное увеличение их сопротивления растеканию, обусловленное коррозией.

3.2.5 Металлические трубы водопровода могут использоваться в качестве естественных заземляющих устройств при условии получения разрешения от водоснабжающей организации, а также при условии, что приняты надлежащие меры по извещению эксплуатационного персонала электроустановки о намечаемых изменениях в водопроводной системе.

Примечание. Желательно, чтобы надежность заземляющих устройств не зависела от других систем.

3.2.6 Металлические трубы других систем, не относящихся к упомянутой в 3.2.5 (например, с горючими жидкостями или газами, систем центрального отопления и т. п.), не должны использоваться в качестве заземлителей для защитного заземления.

Примечание. Это требование не исключает их включения в систему уравнивания потенциалов в соответствии с ГОСТ 30331.3/ГОСТ Р 50571.3.

3.2.7 Свинцовые и другие металлические оболочки кабелей, не подверженные разрушению коррозией, могут использоваться в качестве заземлителей при наличии разрешения владельца кабеля и при условии, что будут приняты надлежащие меры по извещению эксплуатационного персонала электроустановки о всяких изменениях, касающихся кабелей, которые могут повлиять на его пригодность к использованию в качестве заземлителя.

Заземлители и заземляющие проводники в электроустановках  в соответствии с ПУЭ п. 1.7.101 табл. 1.7.4. должны иметь размеры не менее приведенных в таблице 1.

 

Таблица 1. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле.

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм2

Толщина стенки, мм

1

2

3

4

5

Сталь черная

 

 

 

 

 

 

 

 

Сталь оцинкованная

 

 

 

 

 

 

 

Медь

Круглый:

-для вертикальных заземлителей

-для горизонтальных заземлителей

Прямоугольный

Угловой

Трубный

 

Круглый:

-для вертикальных заземлителей

-для горизонтальных заземлителей

Прямоугольный

Угловой

Трубный

 

Круглый

Прямоугольный

Трубный

Канат многопроволочный

 

16

 

10

 

32

 

 

12

 

10

 

25

12

 

12

20

1,8*

 

 

 

100

100

 

 

 

 

75

 

50

35

 

 

 

4

4

3,5

 

 

 

 

3

2

 

2

2

 

* Диаметр каждой проволоки.

Сечение горизонтальных заземлителей для электроустановок напряжением выше 1кВ выбирается по термической стойкости (исходя из допустимой температуры нагрева 400 С).

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под воздействием тепла трубопроводов и т.п.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

В случае опасности коррозии заземлителей должно выполняться одно из следующих мероприятий:

–   Увеличение сечения и заземлителей с учетом расчетного срока их службы,

–   Применение оцинкованных заземлителей,

–   Применение электрической защиты.

В качестве искусственных заземлителей допускается применение заземлителей из электропроводящего бетона.

 

 

4.         Условия испытаний (измерений)

 

4.1 При  выполнении измерений и испытаний, согласно руководству пользователя прибором ИС-20, специалисты нашей электролаборатории в Краснодаре соблюдают следующие условия:

температура окружающего воздуха  – 250С до +600С,

относительная влажность (95 ±3%) при температуре 350С,

измерение  сопротивления  заземляющих  устройств рекомендуется проводить в периоды наименьшей проводимости грунта, в засушливое летнее время при наибольшем высыхании грунта или в периоды промерзания грунта зимой,

при производстве измерений в другом состоянии грунта, при обработке результатов измерений следует вводить поправочный коэффициент, учитывающий его состояние. Значение поправочного коэффициента к1, к2, к3 приведено в приложении 1, при измерениях зимой (в периоды промерзания грунта) поправочный коэффициент не применяют.

4.2      Измерения проводят в светлое время суток. Производить измерения на заземляющих устройствах во время грозы, дождя, мокрого тумана и снега, а также в темное время суток запрещается.

4.2      Прибор располагается в горизонтальном положении.

 

5.         Метод  испытаний (измерений)

 

5.1      Измерение сопротивления заземляющего устройства который основан на компенсационном методе с применением вспомогательных заземлителей и потенциального электрода (зонда) при помощи прибора ИС-20.

5.2      Измерение геометрических размеров выполняют методом прямых измерений.

5.3      Степень разрушения элементов заземлителей оценивают при контрольном вскрытии контура визуально.

 

6.  Производство измерений

 

6.1      Измерение сопротивления заземления по четырехпроводному методу. Данный метод исключает из результата измерений сопротивление измерительных кабелей и переходные сопротивления в местах их подключения, что является важным в случае, когда измеряемое сопротивление имеет малую величину.

6.1.1   Кнопкой «Режим» выбрать четырехпроводный метод измерения.

6.1.2   Отсоединить заземляющее устройство от системы заземления. Определить максимальную диагональ (d) заземляющего устройства (ЗУ).

Соединить ЗУ при помощи измерительных кабелей с гнездами Т1 и П1. Потенциальный штырь П2 установить в грунт на расстоянии 1,5 d, но не менее 20м от измеряемого ЗУ (см. рисунок 1)

 

       

 

Рисунок 1. – Схема подключения и вид индикатора при измерении

сопротивления заземления четырёхпроводным методом

Т1,Т2  – токовые зажимы;

П1,П2 – потенциальные зажимы;

ЗУ – измеряемое заземляющее устройство;

d – наибольшая диагональ заземляющего устройства.

При наличии напряжения помехи, прибор измерит ее амплитудное значение в вольтах и результат отобразит на экране. В этом случае необходимо найти оптимальное направление расположения измерительных штырей, при котором величина напряжения помехи будет минимальной. Это позволит получить наиболее достоверные результаты последующих измерений. 

Токовый штырь Т2 установить в грунт на расстоянии более 3d, но не менее 40 м от ЗУ.

Подключить соединительный кабель к разъему Т2 прибора. Произвести серию измерений сопротивления заземления при последовательной установке потенциального штыря П2 в грунт на расстоянии 10, 20, 30, 40, 50, 60, 70, 80 и 90% от расстояния до токового штыря Т2.

ЗУ, токовый и потенциальный измерительные штыри обычно выстраивают в одну линию.

Далее строится график зависимости сопротивления от расстояния между ЗУ и потенциальным штырем П2. Если кривая монотонно возрастает и имеет в средней части достаточно горизонтальный участок (при расстояниях 40 и 60% разница значений сопротивления меньше 10%), то за истинное принимается значение сопротивления при расстоянии 50%.

 

                                  

 

 

 

 

В противном случае все расстояния до штырей необходимо увеличить в 1,5-2 раза или изменить направление установки штырей для уменьшения влияния надземных или подземных коммуникаций.

 

6.2      Измерение сопротивления заземления по трёхпроводному методу (3П)

 

Кнопкой  «Режим»   выбрать трёхпроводный метод измерения.

Подключить измерительный кабель 1,5 м к гнезду П1.

 

Рисунок 2 – Схема подключения и вид индикатора при измерении

сопротивления заземления трёхпроводным методом

 

Измерение проводить аналогично четырехпроводному методу, но при этом измеренное значение сопротивление ЗУ будет включать в себя сопротивление измерительного кабеля,

подключенного к гнезду П1.

 

7.    Контроль точности результатов испытаний (измерений)

 

7.1      Контроль точности результатов измерений обеспечивается раз в два года поверкой средств измерений в органах Госстандарта РФ и проверкой соответствия размеров вспомогательных технических средств перед выполнением измерений. Выполнение измерений прибором с просроченным сроком поверки не допускается.

 

8. Требования к квалификации персонала

 

8.1 К выполнению измерений и испытаний допускают лиц, прошедших специальное  обучение и аттестацию с присвоением  группы по электробезопасности не ниже III  при работе в электроустановках до 1000 В, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В.

8.2 Измерение сопротивления заземляющего устройства должен проводить только квалифицированный персонал в составе бригады, в количестве не менее 2 человек.

 

9. Требования к обеспечению безопасности при выполнении испытаний (измерений) и экологической безопасности

 

9.1 При проведении измерений персонал должен соблюдать требования ПОТЭЭ, инструкций по производственной санитарии, требования инструкций по технике безопасности.

9.2 Забивать электроды в землю необходимо исправным молотком (ударная часть без сколов и трещин, рукоять без повреждений) только в рукавицах.

9.3 При сборке измерительных схем следует соблюдать последовательность соединения проводов токовой и потенциальной цепи. Сначала необходимо присоединить провод к вспомогательному электроду  и лишь затем к прибору.

9.4      Испытания не наносят вреда окружающей среде.

 

10. Оформление результатов измерений

 

По результатам измерений электролабораторией в Краснодаре ООО “Энерго Альянс” составляется протокол. 

 

 Приложение 1

Поправочные коэффициенты к значению измеренного

сопротивления заземлителя для полосы РФ

 

Тип заземлителя

Размеры

Заземлителя, м

t = 0,7 – 0,8 м

t = 0,5 м

К1

К2

К3

К1

К2

К3

Горизонтальная

Полоса

L = 5

4,3

3,6

2,9

8,0

6,2

4,4

L = 20

3,6

3,0

2,5

6,5

5,2

3,8

Заземляющая сетка

или контур

S = 400 м²

2,6

2,3

2,0

4,6

3,8

3,2

S = 900 м²

2,2

2,0

1,8

3,6

3,0

2,7

S = 3600 м²

1,8

1,7

1,6

3,0

2,6

2,3

Заземляющая сетка  или контур с вертикальными электродами длиной 5 м

S = 900 м²   

n > 10 шт.

1,6

1,5

1,4

2,1

1,9

1,8

S  = 3600 м²

n > 15 шт.

1,5

1,4

1,3

2,0

1,9

1,7

Одиночный вертикальный заземлитель

L = 2,5 м

2,00

1,75

1,50

3,80

3,00

2,30

L = 3,5 м

1,60

1,40

1,30

2,10

1,90

1,60

L = 5,0 м

1,30

1,23

1,15

1,60

1,45

1,30

 

где  t – глубина заложения в землю горизонтальной части заземлителя или верхней части       вертикальных заземлителей;

       L – длина горизонтальной полосы или вертикального заземлителя;

       S – площадь заземляющей сетки или контура;

       n – количество вертикальных электродов.

Указания к применению коэффициентов:

К1 – применяется при измерениях на влажном грунте или когда к моменту измерения предшествовало выпадение большого количества осадков;

К2 – применяется на грунте средней влажности или когда к моменту измерения предшествовало выпадение небольшого количества осадков;

К3 – применяется на сухом грунте или когда к моменту измерения предшествовало выпадение незначительного количества осадков.

 

 

 

el-lab-23.ru

Норма сопротивления контура заземления | Элкомэлектро

О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления – 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 – 35 кВ сетей с изолированной нейтралью – 250/Ip, но не более 10 Ом, где Ip – расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 – 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

www.megaomm.ru

Добавить комментарий

Ваш адрес email не будет опубликован.