Содержание

Генераторы электроэнергии. Автономка и классификация

Автономное электроснабжение на сегодняшний день набирает популярность у юридических и частных лиц. Чаще всего такой вид энергообеспечения применяется на производственных предприятиях, где принципиально важна организация беспрерывной работы механизмов.

Кроме того, применение таких систем оправдано в обеспечении непрерывной энергоподачи в медицинских учреждениях, где от оборудования, работающего на электричестве зависит сохранность человеческой жизни. Возникновение частых перебоев с подачей электричества зависит от износа центральных электрических сетей.

Автономные генераторы обладают длительным сроком бесперебойной эксплуатации. Еще одним преимуществом таких конструкций является сравнительно низкая стоимость топлива.

Генераторы электроэнергии: классификация

Автономная электростанция представляет собой механизм, состоящий из двигателя и генератора электрического тока. Все существующие генераторы электроэнергии можно разделить на три группы по типу используемого в их работе топлива.

Различают двигатели, работающие на:

  • Дизельном топливе.

Бензогенераторы

Являются самой востребованной разновидностью. Такой тип оборудования используют в разы чаще его аналогов, работающих на другом топливе. Они рассчитаны на небольшой период использования, обладают малыми габаритами, низкой стоимостью и простотой в эксплуатации. Такой генераторы электроэнергии можно использовать для длительного обеспечения здания электричеством, однако, это будет экономически невыгодно, в связи с достаточно высокой стоимостью топлива и его большим расходом.

Дизель-электрическая станция

Считается наиболее удачным вариантом для обеспечения энергией больших площадей таких, как крупные производственные предприятия, строительные площадки, офисы и другие крупногабаритные объекты. В состав таких станций может входить несколько установок.

Разработка проекта и установка систем автономного электроснабжения

Разработкой проекта станции может заниматься только специально обученный работник. Это связано с тем, что полученная в результате система должна отвечать всем требованиям и нормам и соответствовать всем правилам. От этого зависит действенность и безопасность ее работы. Все показатели установки должны строго соответствовать всем параметрам питающей электросети. Это должно происходить не только в оптимальных условиях работы, но и в критических ситуациях при большой нагрузке.

В любой системе должны быть учтены все требования ее использования, обладать уровнем генерируемых электро-полей, вибрации и шума в пределах норм. Особое внимание разработчикам следует уделить системе пожаробезопасности, а также достойным уровнем защищенности работников от поражения током. Кроме того, все части установки должным образом необходимо защитить от воздействия окружающей среды: осадков, перепадов температур и других негативных климатических явлений.

1) Первый этап – разработка проекта установки. К его осуществлению необходимо привлекать инженеров высокой квалификации. Планирование проекта должно происходить по индивидуальному подходу, с учетом всех особенностей и факторов окружающей среды, а также желаний клиента. При верном подходе, установка такой станции обойдется максимально дешево, а ее работа будет бесперебойной.

2) Второй этап – выбор и покупка оборудования. Оно должно четко соответствовать всем требованиям плана. От того. Насколько качественными будут все элементы зависит прочность и длительность безаварийного использования всей системы. В этом случае экономия будет лишней. Покупка более дорогостоящего оборудования сможет сократить расходы на его последующее обслуживание и ремонт.

3) Третий этап – сборка и установка установки. К выполнению этих работ также лучше привлечь специалистов. Действия по установке должны проводиться профессионалами под наблюдением мастера высокой квалификации. Они смогут не только качественно выполнить его монтаж, но и настроить в соответствии с потребностями клиента. Также они произведут тестовый запуск установки, который позволит вовремя выявить и устранить все неполадки системы.

Похожие темы:

electrosam.ru

Как выбрать автономный генератор электрической энергии

 →  Советы, Техника

Всеми мы иногда сталкиваемся с необходимостью иметь дополнительный источник электрической энергии. Решив приобрести электростанцию, начинаем думать, где и как купить. Но, есть люди, которые не представляют что такой генератор, и как он работает. Сегодня рынок переполнен разного рода и типов генераторов. Поэтому в данной статье приводим краткую информацию, которая может оказаться полезным для тех, кто решил приобрести электростанцию. Помните, что продажа генераторов — это дело профессионалов, не стоит совершать такую покупку в сомнительной фирме.

Генераторы бывают для бытового назначения и промышленные. Бытовые генераторы следует приобретать для решения бытовых проблем, таких как временное освещение, обеспечить временную работу электрических устройств и т. п. Иначе надо приобретать промышленный генератор. В принципе большой разницы между ними нет, как правило, промышленные электростанции более мощные и естественно стоят дороже. По виду топлива, на основе которого они работают их можно подразделять на дизельные, бензиновые и газовые. По виду выходного напряжения электрические генераторы можно подразделять на генераторы постоянного и переменного типа а, по типу конструкции на стационарные и нестационарные. Наиболее популярны генераторы переменного тока.

Главной характеристикой генератора является его выходная мощность. Перед приобретением подобных устройств нужно как следует подумать над тем, что собираемся подключать к приобретённому генератору.

Допустим, вам надо всего лишь обеспечить освещение на небольшом помещении на некоторое время или вы собираетесь подключать к генератору много различных бытовых электрических приборов. После того как вы точно установили виды и количество приборов, которых вы собираетесь обеспечить работу с помощью генератора –то, необходимо установить потребляемую мощность этих приборов и затем их просуммировать. Таким образом, величину мощности на которое должен быть рассчитан приобретаемый аппарат. Ещё один момент, при запуске генератора он нуждается в «толчке». Иначе говоря, мощность генератора на выходе должна быть больше чем суммарная мощность всех подключаемых видов нагрузок.

В случае когда, мощность на выходе генератора будет недостаточным– то просто генератор может не выдержать нагрузку и выйти из строя. Как было сказано выше электрогенераторы могут работать на бензине или на дизтопливе. Как тип лучше? Бензиновые генераторы маломощные и очень компактные и надёжные. Их единственным недостатком является использование более дорогого вида топлива – бензина и имеют относительно низкие шумовые показатели. В отличие от бензиновых, дизельные генераторы более мощные и потребляют дизтопливо, которое стоит дешевле и могут работать непрерывно продолжительное время. Шумовые показатели у них немного выше, чем у бензогенераторов.

Если вы собираетесь использовать генератор исключительно для питания электронных приборов, то бесспорное преимущество здесь имею генераторы инверторного типа.

Сегодня учёными изобретателями даже придуманы генераторы электростанции, которые могут быть одновременно и печкой для отопления и генератором. Имеются теплогенераторы походного типа для работы которых необходимо всего лишь разжечь костёр и вы будете обеспечены электрической энергией.


Опубликовано: 09.03.2014


© Копирование материала разрешено только с указанием активной ссылки на Readmas.ru


ПОХОЖИЕ СТАТЬИ:

readmas.ru

цены, изготовление своими руками и все подробности

От электричества зависит множество удобств в жилых и бытовых зданиях. Однако перебои энергии не редкое дело в городах и пригородах. Для удаленных от цивилизации населенных пунктов проблема тем более насущна — иногда провести электросеть там попросту невозможно. В таких случаях остро встает вопрос независимой выработки тока.

Автономное электроснабжение способно обеспечивать постройки энергией в нужном количестве. При этом не возникает коротких замыканий, соблюдается стабильность напряжения, аварийные ситуации практически не происходят. Подключение подобного оборудования не настолько сложное, как зависимое от общих сетей и, зачастую, окупается за более быстрые сроки.

Выбор личного источника электричества – ответственное занятие, требующее изучения нюансов. Особенно это касается случаев, когда система изготавливается своими руками.

Альтернативных ресурсов существует не так много, но каждый из них имеет свои плюсы и минусы под определенные ситуации.

Какие бывают системы автономного электроснабжения?

Все источники независимого электричества делятся на генераторы, аккумуляторы и солнечные батареи.

Генераторы

Работают на сжигании дизеля, бензина, угля, газа или иного вещества.

Используют ветровую энергию для преобразования в электричество. Сюда же можно отнести гидроэнергию, основанную на заборе воды, и геотермальные источники.

Солнечные батареи

Действуют за счет поглощения и накопления тепла солнечных лучей.

Аккумуляторы

Сами заряжаются от электричества и в его отсутствие отдают накопленный резерв.

Как выбрать для квартиры, дома, дачи?

Выбрать подходящее автономное электроснабжение дома не так сложно, если учитывать некоторые параметры.

Первое на что нужно опираться — количество и характер систем, потребляющих энергию. Обычно к списку таких систем относятся кондиционирование, отопление, насосное водоснабжение из скважины. Также необходимо учитывать число часто пользуемых бытовых электроприборов и холодильное оборудование. Все перечисленное требует бесперебойного питания, что может предоставить любой независимый источник.

Вторым этапом выбора станет вычисление общей мощности. Показатели потребления каждого прибора складываются между собой. Итоговое автономное электроснабжение загородного дома, дачи или квартиры должно превышать полученную сумму на 20-30%.

На тип планируемой системы влияет и роль, отведенная ей: полное обеспечение или резервное питание. Не все источники могут длительно отдавать переработанное электричество без зависимости от внешних факторов.

Выделенный бюджет определит дороговизну системы, ее производителя, или натолкнет на мысль об изготовлении своими руками.

С бестопливными генераторами придется обратить внимание на окружающий ландшафт, климат.

Идеальным вариантом является выбор сразу двух альтернативных подпиток разного вида. Тогда будет существовать подстраховка на все случаи жизни. Специалисты советуют держать генератор на горючем топливе (с запасом самого топлива) и один из инверторов, поглощающих природные силы ветра, солнца, воды или пара. Отдельное применение аккумуляторов практикуется редко из-за быстро расходуемого ресурса и невозможности перезарядки без непосредственно электричества. Однако, как еще один запасной вариант, это вполне подойдет для квартиры или частного дома с централизованной сетью.

Подробный рассказ о готовом комплекте

Плюсы и минусы источников АЭ

Топливные генераторы

Такие генераторы требуют немалого запаса горючего, который нужно постоянно пополнять за собственные деньги. Чаще всего такой тип используют для смешанной энерговыработки бесперебойного режима, когда генератор активируется при «засыпании» основной сети. В случаях с применением только генератора, требуется иметь минимум 2 единицы техники, чтобы избежать перегрузок поочередным включением.

Бестопливные генераторы

Неплохой вариант для совместительства с иными источниками, если не смущаться громоздких размеров. В микро модификациях существуют только гидротурбины. Все типы считаются безопасными для экологии, но требуют подключения дополнительного оборудования. Ветряные модели зависимы от скорости потока воздуха (не менее 14 км/ч).

Солнечные батареи

Самый экологически чистый способ добыть электричество альтернативным путем. Батареи, действующие на основе солнечных лучей, могут не просто обеспечить любое типовое здание питанием, но и выработать излишек. На практике отличаются большой площадью солнечных панелей, часто покрывают целые крыши или стены для качественной мощности и нуждаются в дополнительном оснащении. Вся система может занимать даже отдельное помещение около 5-6 кв.м (не считая самих солнечных батарей). Зависимы от ландшафта, климатических условий, соотношения количества пасмурных и солнечных дней.

Солнечные батареи показаны на видео

Аккумуляторы

Подходят только для аварийного снабжения энергией. Не способны длительно работать без подпитки. Большинство моделей способно отдавать заряд только в присутствии инвертора для повышения напряжения (например, с 12 до 220V).

Виды энергии и их решения

Базовые источники автономного энергоснабжения являются возобновляемыми. Они безопасны для людей, находящихся вблизи, и окружающей среды. Каждый тип энергии имеет собственный принцип действия, требует оборудования уникальной конструкции.

Ветер

Подходит даже местностям с малым количеством солнца. Генераторы на такой основе забирают воздух через турбины, установленные на 3-6 метровых башнях примерно 3 см диаметром. Для городских районов высота башни возрастает и становится не менее 10 м. Столь длинный свободный отрезок необходим для преодоления препятствий от соседних зданий. Для частного дома процесс с установкой доставляет меньше трудностей. На использование ветровой турбины может потребоваться письменное разрешение управляющих органов. Причинами тому служат производимый шум, громоздкий вид и способность мешать птичьим миграциям.

Вода

Концепция реализуема для домов с близлежащими реками или озерами. Забор производится за счет одиночной турбины или их группы (часто большой протяженности). Масштабный вариант выгоден при пользовании коллективно (например, целой деревней или несколькими соседними частными домами). Микроформа подойдет обособленной семье, живущей непосредственно на берегу. Масштабы меньше дамб не считаются разрушающими экологию, поэтому не требуют разрешения (исключения заповедные зоны и местные регламенты).

Солнце

Солнечную энергию можно получать двумя методами. Первый способ использует панели с фото-вольтовыми клетками. Основой служит принцип поглощения лучей зеркалами. Свет преломляется под определенным наклоном и нагревает жидкость системы. Второй вариант предполагает принцип преобразования тепла в переменный ток через фото-ячейки. Они могут быть портативными или размещаться на крышах.

Энергия на солнечных батареях больше всего подойдет засушливым регионам с жарким климатом, но может использоваться везде. Максимальная продуктивность достигается установкой панелей под угол падения солнечных лучей 20-50 градусов. Разрешений на эксплуатацию не требует.

Решение на солнечных батареях продемонстрировано на видео

Геотермальные источники

Геотермальная энергия получается после переработки пара и горячей воды на уровне ниже земли. При обратной закачке используется конденсат, что делает источник наиболее стойким. Для частного дома геотермальные резервуары применить достаточно сложно. Их эксплуатация ограничена временем полного остывания. Для крупного масштаба принцип реализуем легче – система из бура, насосов и генератора будет перерабатывать электричество более продуктивно. Может потребоваться разрешение на бурение.

Биомасса

Энергия биомассы выпускается сжиганием биологического материала – жмыха, соломы, природного газа, навоза, масел, древесины и т.д. Для частных домов и дач этот способ допустим, но не слишком выгоден. Топливо дорогое, его нужно постоянно пополнять. Генераторы газа тоже не отличаются дешевизной. Кроме того, метод характеризуется высоким уровнем выбросов серы, азота, углеродного следа в атмосферу во время горения.

Решение с биомассой станет выгодным только при использовании отходных или вторичных источников: пропана, перегноя, метана. Гибридная система дизеля и газа – еще лучший вариант с экономической точки зрения.

Выгодно или нет?

Выгода автономных ресурсов энергоснабжения для личного пользования проявляется при установке только качественного оборудования.

Дешевые хлипкие комплекты могут сломаться быстрее, чем оправдают половину своей стоимости. Если же проектировка, расчеты, сборка и монтаж выполнены по правилам, система уже в первые годы продемонстрирует свои плюсы:

  1. отсутствие каких-либо социальных норм потребления электричества;
  2. безопасность для систем и приборов ввиду отсутствия скачков напряжения;
  3. уверенность в качестве и количестве планируемой энергии;
  4. длительный эксплуатационный срок;
  5. независимость от роста тарифов;
  6. наличие ресурсов даже при местных авариях на подстанциях.

Отталкивающим фактором при всей выгоде может стать необходимость регулярной чистки комплекса, иногда замена элементов.

Пример готового решения

Изготовление системы своими руками

Для использования внутри квартиры или на даче в аварийных случаях своими руками можно собрать аккумулятор. Несколько бытовых аккумуляторов параллельно объединяются, подключаются к зарядному устройству, устанавливается инвертор. Пока работает централизованное энергоснабжение, электричество копится в батареях, включенных в розетку. Когда ток исчезает, инвертор поставляет его в проводку. Можно использовать как переносное устройство.

Для создания своими руками питания целого дома на постоянной или длительной основе потребуется более серьезный подход. Здесь предпочтительно оборудовать помещение на роль котельной, где будет стоять основа техники. Потребуются генератор, мощные аккумуляторы (можно несколько автомобильных), котлы, инверторы, несколько солнечных панелей под выбранную систему. При наличии определенных знаний такая работа стоит свеч и выйдет дешевле многих готовых установок.

Однако и риск допустить ошибку расчетов и подключения тоже не мал.

Вывод

Проблема автономного энергоснабжения актуальна для многих жилых территорий без развитой инфраструктуры. В большинстве случаев такой подход помогает экологии, в перспективе может сэкономить много денежных средств. Выбор конкретной системы зависит от потребностей дома, доступных природных ресурсов и планируемых трат.

Целесообразность использования определяется личными взглядами, но увеличивается при резервной роли АЭ.

generatorexperts.ru

Автономный бестопливный генератор электроэнергии

Бестопливный генератор электроэнергии

Стационарный электрический шихтованный электромагнитный сердечник, набранный из тонких листов до получения необходимой высоты набора, имеющий закрытые пазы, радиально распределенные, в которых расположены вместе две трехфазные обмотки, одна в центре, другая на периферии, с целью получения вращающегося электромагнитного поля.

Подводя временно трехфазный ток к одной из указанных обмоток, и, таким образом, получаем индуцированное напряжение на второй обмотке; исходя из этого, имеем выходящую энергию намного больше, чем входную. С выхода схемы энергия по обратной связи подается на вход и временный источник питания после отключается. Генератор будет работать самостоятельно неопределенно долго, постоянно вырабатывая большой избыток энергии.

Описание рисунков

Рис.1 показывает первый вариант настоящего изобретения.

где: 1- внешний сердечник;

2- внутренний сердечник;

3- обмотки возбуждения;

4а- якорные (приемные) обмотки;

5а, 5в, 5с, 6- клеммы фазных обмоток возбуждения и нейтрали.

 

 

Рис.2 показывает схему размещения внутренних обмоток для варианта настоящего изобретения, показанного на рис.1.

где: 4в- схема соединения якорных (приемных) обмоток;

7а, 7в, 7с, 8- клеммы фазных якорных обмоток и нейтрали.

 

 

 

Рис.3 показывает единый наборный сердечник для второго варианта настоящего изобретения.

где: 9- сердечник;

10- пазы для обмоток.

 

 

Рис.4 показывает разделенный наборный сердечник, состоящий из двух частей для второго варианта настоящего изобретения.

где: 9а- внутренний сердечник;

10- внешний сердечник.

 

 

Рис.5 показывает схему размещения обмоток второго варианта изобретения, сделанного из наборных сердечников, показанных на рис.3 и 4.

где: 2- клеммы фазных якорных (приемных) обмоток;

11- ферромагнитный сердечник;

12- клеммы трехфазных обмоток возбуждения;

13, 14, 15- фазные обмотки возбуждения;

16- месторасположение фазных обмоток возбуждения;

17- месторасположение фазных якорных (приемных) обмоток;

18, 19, 20- фазные якорные (приемные) обмотки.

 

 

Рис.6 показывает пример распределения магнитного поля, производимого настоящим изобретением.

 

 

Рис.7 показывает вращение магнитного поля, производимого настоящим изобретением.

 

 

Рис.8 показывает полную систему настоящего изобретения.

где: 24- временный внешний источник питания;

25- электронный преобразователь (инвертор) постоянного напряжения в переменное трехфазное напряжение;

26- входные клеммы постоянного тока питания инвертора;

27- отбор мощности в виде постоянного тока;

28- выход переменного трехфазного напряжения из инвертора;

29- выходные клеммы генератора;

30- выходные клеммы обратной связи от генератора;

31- диодный выпрямитель;

32- выход постоянного напряжения после выпрямителя.

 

 

Рис.9 показывает расширенную схему второго варианта настоящего изобретения, показанного на рис. 3 и 4.

где: 11- ферромагнитный сердечник;

12- клеммы трехфазных обмоток возбуждения;

13, 14, 15- фазные обмотки возбуждения;

16- месторасположение фазных обмоток возбуждения;

17- месторасположение фазных якорных (приемных) обмоток;

18, 19, 20- фазные якорные (приемные) обмотки.

21- выходные клеммы генератора;

33- временный трехфазный внешний источник питания;

34- линия обратной связи генератора;

35- трансформатор для питания обмоток возбуждения;

36- трехфазный фазорегулятор;

37- размыкатель обратной связи генератора.

 

Ссылка к поданному заявлению.

(0001) Существующая заявка требует приоритета от U.S. Временное Применение № серии 60/139.294, поданная 15 июня 1999 года.

(0002) Основание изобретения

(0003) Настоящее изобретение относится главным образом к области электрических энергогенерирующих систем. Конкретнее, настоящее изобретение относится к самопитающим (автономным) электроэнергогенерирующим устройствам.

(0004) Описание настоящего изобретения.

(0005) С тех пор, как Никола Тесла изобрел и запатентовал свою полифазную систему для генераторов, индуктивных двигателей и трансформаторов, никакого существенного усовершенствования не было сделано в области поля.

Генераторы производят многофазные напряжения и токи посредством механического вращательного движения, чтобы вынудить магнитное поле вращаться поперек радиально расположенных обмоток генератора. Основой системы индукционных двигателей было получение электромагнитного вращающегося поля, которое принуждает напряжения и токи производить электродвижущие силы, пригодные к использованию как механическая энергия или мощность. Наконец, трансформаторы управляли бы напряжениями и токами, чтобы делать их удобными для использования и передачи на длинные расстояния.

(0006) Во всех существующих электрических генераторах небольшое количество энергии, обычно меньше чем 1% выходной мощности больших генераторов, используется для возбуждения механически вращающихся электромагнитных полюсов, которые индуцируют напряжения и токи в проводниках, имеющих относительное движение между вращающимися и неподвижными полюсами.

(0007) Остальная часть энергии, расходуемая в процессе получения электричества, необходима, чтобы перемещать обмотки в пространстве и компенсировать потери системы: механические потери, потери на трение, потери на щетках, потери на сопротивление воздуха, потери реакции якоря, потери воздушного промежутка, потери на синхронное реактивное сопротивление, потери на вихревые токи, потери гистерезиса. Все они вместе являются причиной того, что во входной потребляемой энергии системы преобладает избыток механической энергии, необходимый для генерации всегда арифметически меньшего количества электроэнергии.

 

РЕЗЮМЕ ИЗОБРЕТЕНИ

008) Непрерывный электрический генератор (далее НЭГ) состоит из стационарного цилиндрического электромагнитного сердечника, набранного из тонких листовых пластин до образования цилиндра, в пазах которого расположены две трехфазные обмотки, не имеющие возможности двигаться или смещаться относительно друг друга. Когда одна из обмоток соединяется с временным трёхфазным источником питания, ею создается вращающееся электромагнитное поле, и это поле будет пересекать неподвижные катушки вторичных обмоток, индуктируя в них напряжения и токи. Таким же образом и в той же степени, как и в обычных генераторах, приблизительно один процент и менее от выходной мощности будет необходим для возбуждения и поддержания вращающегося магнитного поля.

(0009) В НЭГ нет никаких механических потерь, потерь трения, потерь сопротивления воздуха, потерь на щетках, потерь реакции якоря и потерь воздушного промежутка, так как нет никакого механического движения любого вида. Имеются лишь следующие потери: синхронные реактивные (индуктивные) потери, потери на вихревые токи и гистерезис, которые присущи конструкции и материалам генератора, но в той же самой степени, как и для обычных генераторов.

(0010) Один процент и менее полной энергии, произведенной существующими генераторами, идет на создание их собственного магнитного поля; механическая энергия, которая превышает суммарную выходную энергию существующих генераторов, используется, чтобы заставить это поле вращаться в процессе генерации электрического тока из этого поля. В НЭГ нет никакой потребности в движении, так как поле фактически уже вращается электромагнитным образом, следовательно, надобность в механической энергии отпадает. При сходных соотношениях токов возбуждения, сечений сердечника и конструкции обмоток, НЭГ значительно более эффективен, чем существующие генераторы, что также значит, что он может произвести значительно больше энергии, чем ему нужно для управления. НЭГ может запитывать себя сам по обратной связи, и генератор, после отключения временного (пускового) источника питания, переходит в автономный режим работы.

(0011) Как и любой другой генератор, НЭГ может возбудить свое собственное электромагнитное поле, используя минимальную часть произведенной собой же электроэнергии. НЭГ только нуждается в запуске посредством подсоединения его трехфазной обмотки индуктора к трехфазному внешнему источнику питания на время, необходимое для пуска, и после отключения от временного источника работа НЭГ будет происходить так, как было здесь описано. НЭГ будет постоянно генерировать большое количество электроэнергии согласно своей конструктивной мощности.

(0012) НЭГ может быть разработан и рассчитан с применением всех существующих на сегодня математических формул и соотношений, используемых при разработке и расчете современных электрических генераторов и двигателей. В расчетах применяются все законы и соотношения, используемые для подсчетов электромагнитной индукции и генерации.

(0013) За исключением Закона Сохранения Энергии, который, по большому счету, является не математическим уравнением, а теоретической концепцией, и по этой же самой причине не играющий никакой роли в математическом исчислении работы электрического генератора любого типа, НЭГ соблюдает все законы физики и электротехники. Существование НЭГ обязывает нас пересмотреть Закон Сохранения Энергии. По моему личному убеждению, электричество никогда не получалось из механической энергии, которую мы вкладываем в машину для перемещения масс и преодоления сопротивлений. Механическая система фактически обеспечивает канал для уплотнения электричества. НЭГ обеспечивает более эффективный канал для электричества.

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ.

(0023) Настоящее изобретение- НЭГ , способный вырабатывать больше энергии, чем потреблять, и который обеспечивает себя производимой электроэнергией. Основная идея состоит в индуцировании электрического напряжения и тока без любого физического движения посредством использования вращающегося магнитного поля, полученного на трехфазном статоре, временно подключенного к трехфазному источнику питания, в размещенных неподвижных проводниках на пути указанного вращающегося магнитного поля, исключая надобность в механических силах.

(0024) Основной вариант системы представлен на рисунке 1, который показывает первый вариант настоящего изобретения. На рисунке показан стационарный ферромагнитный сердечник 1 с трехфазными обмотками возбуждения 3, расположенными под углами в 1200 и соединенными в “звезду” 6, чтобы обеспечить вращающееся электромагнитное поле, которое в данном случае будет двухполюсным. Внутри сердечника 1 расположен второй стационарный сердечник 2 из ферромагнетика, без зазора между ними, то есть без воздушного промежутка. Этот второй сердечник имеет стационарные трехфазные обмотки 4А (рис.1), и 4В (рис.2), расположенные относительно внешних обмоток возбуждения 3 так, как показано на рисунках 1 и 2. Между этими двумя сердечниками нет никакого движения, также нет и воздушного промежутка между ними. Осей на сердечниках нет, так как нет вращения самих сердечников. Оба сердечника могут быть изготовлены из сложенных изолированных пластин или из изолированного и спрессованного ферромагнитного порошка (феррита). Система работает в обоих направлениях, индуцируя трехфазные напряжения и токи на стационарных катушках 4А внутренних обмоток 4В, выводя трехфазные токи на клеммы Т17А, Т27В и Т37С с внутренних обмоток 4В. Когда трехфазное напряжение подается на клеммы А5А, В5В и С5С, токи будут иметь одну и ту же величину, но они будут сдвинуты по времени на угол в 1200. Эти токи производят магнитодвижущие силы (МДС), которые, в свою очередь, создают вращающийся магнитный поток. Конструкция может варьироваться в широких пределах, так как она повторяет конструкцию современных альтернаторов (генераторов) и трехфазных моторов, однако в основе лежит один принцип: стационарное, но постоянно вращающееся магнитное поле, индуцирующее напряжения и токи в неподвижных катушках, расположенных на пути вращающегося магнитного поля. Схема показывает двухполюсное устройство обеих обмоток, но может быть использовано и множество других устройств, как в обычных двигателях и генераторах.

(0025) Рис.2 показывает размещение трехфазных внутренних обмоток 4В, которые обеспечивают практически симметричные напряжения и токи вследствие сдвига в 1200. Это подобно двухполюсной компоновке. Множество других трех- или полифазных компоновок может быть использовано. Везде, где проводник пересекает вращающееся магнитное поле, будет индуцироваться напряжение, снимаемое с клемм. Взаимные соединения обмоток зависят от устройства системы. В данном случае, мы получим трехфазное напряжение на клеммах Т17А, Т27В и Т37С и на нейтрали 8. Выходное напряжение зависит от плотности вращающегося магнитного потока, числа витков приемных обмоток, частоты приложенного тока (вместо скорости вращения) и длины проводника, пересекаемого полем, как и в любых других генераторах.

(0026) Рис.3 показывает второй вариант настоящего изобретения, в котором генератор изготовлен из набора одинаковых изолированных пластин, сложенных вместе в цилиндр до получения необходимой высоты. Этот вариант также может быть изготовлен из цельного куска феррита. Одни и те же пазы (окна) 10 будут содержать в себе внутренние и внешние обмотки 3, т.е. приемные обмотки и обмотки возбуждения (см. рис. 5). В данном случае показан 24- пазовый сердечник, но количество пазов может широко отличаться в зависимости от потребностей и конструктива.

(0027) Рис.4 показывает две части одной пластины для еще одного варианта настоящего изобретения. Для практического применения каждая пластина может быть разделена на две части: 9А и 9В, как показано, с целью облегчения намотки катушек. Потом эти части вставляются друг в друга без зазоров, как если бы они были единым целым.

(0028) Пластины, описанные выше, могут быть изготовлены из тонких (толщиной 0.15 мм и менее) изолированных листов 9 (или 9А и 9В) из материала с высокой магнитной проницаемостью и низкими потерями на гистерезис, такого, как, например, Hiperco 50A или аналогичного, для уменьшения потерь, или из прессованного электрически изолированного ферромагнитного порошка, который имеет более низкие потери на вихревые токи и гистерезис, что может сделать генератор более эффективным.

(0029) Принцип действия генератора.

НЭГ, как описано и показано на нижеследующих рисунках, разработан и предназначен для производства мощного вращающегося электромагнитного поля с низкими токами возбуждения. Используя слоистые материалы, типа вышеупомянутого Hiperco 50A, мы можем получить вращающиеся магнитные поля индукцией более 2 Тесла, так как нет никаких потерь воздушного промежутка, механических потерь, потерь сопротивления воздуха, потерь реакции якоря и т.п., указанных выше. Это может быть получено подачей трехфазного напряжения на клеммы А, В, С 12 обмоток возбуждения 13, 14 и 15 (5А, 5В и 5С на рис. 1), размещенных через угол 1200 по отношению друг к другу (см. рис. 50) с внешнего источника питания.

(0030) Рис. 5 показывает пространственное размещение индукционных обмоток 13, 14 и 15 также, как и приемных обмоток 18А, 18В, 19А, 19В, 20А и 20В. Обе: и индуцирующие и приемные обмотки размещаются в одних и тех же пазах 10 или 16 и 17 одинаковым образом. Даже при том, что система работает в обоих направлениях, лучшая конфигурация, думается, следующая: обмотки возбуждения 13, 14 и 15 – в центре, а приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В – на периферии, т.к. малые обмотки более предпочтительны для возбуждения очень сильного вращающегося магнитного поля, благодаря низким потерям процесса, а с другой стороны, большие и мощные обмотки нужны для извлечения всей энергии, которую обеспечивает система. Обе обмотки соединены в “звезду” (не показано), но они могут соединяться и другими способами, как на других генераторах. Все вышесказанное справедливо и для варианта устройства, показанного на рисунках 1 и 2.

(0031) Обмотки возбуждения 13, 14 и 15 разработаны и рассчитаны таким образом, чтобы генератор мог запускаться от обычного трехфазного напряжения (230 В 60 Гц, например). Если местные напряжения в сети не подходят, можно управлять напряжением до получения желанного уровня с помощью трехфазного трансформатора, электронного преобразователя или инвертора и т.д. Как только мы получим нужное мощное магнитное поле, вращающееся и пересекающее неподвижные приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В, трехфазное напряжение может быть снято с клемм Т1, Т2, Т3 и N21 пропорционально плотности магнитного потока, количеству витков в катушках, частоты генерации (вместо угловой скорости вращения индуктора), длины проводников, пересекаемых вращающимся полем, как и в любом другом генераторе. Выходные токи будут трехфазными токами (или многофазными в зависимости от конструкции), и мы можем получить нейтраль 21, если используем соединение “звездой”, как в любых других генераторах.

(0032) Выходные переменные напряжения и токи – совершенные синусоидальные кривые, разделенные во времени и полностью симметричные. Напряжения и токи, полученные этим способом, пригодны к использованию любым существующим методом. Любые напряжения могут быть получены, в зависимости от конструкции.

0033) Рис. 6 показывает образец магнитного потока, произведенного трехфазной обмоткой возбуждения 13, 14 и 15. Этот поток подобен потоку в статорах индукционных двигателей. Так как нет воздушного зазора, все части магнитного потока гомогенны (неразрывны) вне зависимости от используемого материала. Сердечник изготовлен из тонких изолированных пластин с высокой магнитной проницаемостью и низкими потерями на гистерезис; потери на вихревые токи минимальны благодаря небольшой толщине пластин. Нет никаких встречных потоков и реакции якоря, следовательно, магнитный поток может быть близким к потоку насыщения сердечника, а получен он может быть относительно небольшим током возбуждения или малой входной энергией. Благодаря сдвигу во времени между тремя фазами и пространственному распределению обмоток возбуждения, вращающееся магнитное поле может быть получено в сердечнике, как показано на рис. 7.

(0034) После запуска генератора небольшую часть полученной энергии подают на вход (рис. 8 и 9), чтобы питать катушки возбуждения 3 (на рис.1) или 13, 14 или 15 (на рис.5), как и в любом другом генераторе с самовозбуждением. Естественно, напряжения и фазы должны быть совершенно идентичны и симметричны, и если необходимо, то напряжения обратной связи могут быть обработаны и изменены различными трансформаторами, электронными регуляторами, фазорегуляторами (для коррекции фаз) или другими видами контроллеров напряжения и фаз.

(0035) Один возможный метод заключается в использовании электронного преобразователя 25, который первоначально выпрямляет линейное напряжение с двух или трех фаз переменного тока 24 в постоянный ток электронным выпрямителем 26 и после, электронным способом, преобразует постоянный ток 27 в переменный трехфазный ток 28 для получения трехфазных токов, сдвинутых по времени на 1200 для возбуждения электромагнитных полей А, В и С. Некоторые преобразователи или инверторы используют однофазное (двухпроводное) питание, в то время как другие используют только трехфазное питание. Настоящий вариант использует преобразователь на 3 кВА, который может быть запитан двумя источниками по 220 В.

(0036) Вращающееся магнитное поле, полученное токами, протекающими через трехфазные обмотки возбуждения 13, 14 и 15, вызывает напряжение , подающееся на клеммы Т1, Т2, Т3 и N29 (7А, 7В, 7С, 8 на рис.2). После, выходное напряжение по проводам 30 возвращается назад в систему, преобразуясь в обратный переменный ток, который выпрямляется диодным выпрямителем 31 в постоянный ток 32 и после подается на клеммы электронного инвертора 26 (см. рис.8). После того как обратная связь замкнулась, НЭГ может быть отключен от временного источника 24 и дальше производить электроэнергию автономно.

(0037) На рис.9 показан второй вариант НЭГ. Основные принципы остаются такими же, как для описанного выше генератора, так и для показанного на рис. 1 и 2. Главные отличия заключаются в форме пластин и в пространственном распределении обмоток, как описано и показано ранее. Изменения в цепях обратной связи, использовании инверторов и фазосдвигающих трансформаторов также показаны.

(0038) Ферромагнитный сердечник 11 набран из цельных пластин 9, как показано на рис.3 (или из разделенных для удобства, как показано на рис.4), до получения желаемой высоты. Пазы 10, как показано ранее, содержат обе обмотки: возбуждения 13, 14, и 15 и приемные (якорные) 18А, 18В, 19А, 19В, 20А и 20В в тех же самых окнах 10 или 16 и 17. Выводные провода трех фаз 12 ведут к трехфазным обмоткам возбуждения 13, 14 и 15. Они запитаны: первоначально от временного источника 33 и от трехфазного выходного источника 34, как только генератор выйдет на самогенерацию.

(0039) Обмотки возбуждения 13, 14 и 15 имеют двухполюсное устройство, но много других трехфазных или многофазных устройств могут быть использованы для получения вращающегося электромагнитного поля. Эти обмотки соединены в “звезду” (не показано) тем же самым способом, как в варианте на рис. 1, 2 и 8, но могут быть соединены и другими способами. Обмотки возбуждения 13, 14 и 15 расположены на внутренней части 16 пазов 10.

(0040) Якорные (приемные) обмотки 18В, 19А, 19В, 20А и 20В имеют двухполюсное устройство, точно повторяя устройство обмоток возбуждения 13, 14 и 15, но много других различных устройств могут быть применены в зависимости от конструкции и назначения. Приемные (якорные) обмотки должны быть рассчитаны в направлении того, чтобы генератор имел наименьшие возможные синхронные реактивные и активные сопротивления. Поэтому большая часть выработанной энергии должна уходить в нагрузку, а не расходоваться на внутренних сопротивлениях. Эти обмотки соединяются в “звезду” для образования нейтрали 21, таким же самым способом, как и в варианте изобретения, показанного на рис.2, но могут быть соединены и по- другому, в зависимости от потребности. Якорные (приемные) обмотки расположены во внешней части 17 пазов 10.

(0041) Выходящие провода трех фаз и нейтрали 21 идут от якорных обмоток 18В, 19А, 19В, 20А и 20В. Вращающееся магнитное поле. созданное в сердечнике (см. рис. 6 и 7) обмотками возбуждения 13, 14 и 15, индуцирует напряжение, подводимое к клеммам Т1, Т2 и Т3 плюс нейтрали 29. С каждого трехфазного вывода 21 снимается по проводам 34 обратное напряжение для самозапитки системы.

(0042) Временный трехфазный источник питания 33 для запуска системы подключается к клеммам А, В и С 12. Н.Э.Г. должен мгновенно запуститься от внешнего трехфазного источника, а потом отключиться от него.

(0043) Даже при том, что выходное вторичное линейное напряжение может быть точно рассчитано и получено на якорных (приемных) обмотках, напряжение, необходимое для питания обмоток возбуждения ( в зависимости от конструкции), может быть получено с трехфазного регулируемого трансформатора или с другого преобразователя напряжения 35, включенного между входом и выходом для более точного регулирования возвращаемого напряжения.

(0044) Расположенный после регулируемого трансформатора 35, трехфазный трансформатор- фазорегулятор будет корректировать и выравнивать любой сдвиг фаз в углах напряжений и токов до того, как подать питание на обмотки возбуждения. Эта система работает аналогично изображенной на рис. 8, которая использует преобразователь 25.

ак только напряжение и фазы совпадут с временным источником 33, выходные цепи 34 соединяются с входными цепями А, В и С 12 по цепи обратной связи 37 и временный источник 33 после отключается. НЭГ останется работать неопределенно долго без подвода энергии от внешнего источника, обеспечивая постоянно большой выход энергии.

(0046) Выходящая электроэнергия, вырабатываемая в этой системе, использовалась, чтобы произвести свет и тепло, запитывались многофазные двигатели, генерировались одно- и многофазные напряжения и токи промышленных частот, преобразовывались напряжения и токи посредством трансформаторов, выпрямлялись многофазные токи в постоянный ток так же хорошо, как и для других использований. Электричество, полученное описанным выше способом, столь же универсально и совершенно, как и электричество, получаемое обычными электрогенераторами. Но НЭГ автономен и не зависит от какого-либо другого внешнего источника энергии, он запитан сам от себя; он может быть использован везде без ограничений, он может быть сконструирован любого размера и обеспечивать выработку любого количества электроэнергии постоянно, согласно своей конструкции.

(0047) НЭГ является и будет очень простой машиной. Краеугольными камнями системы являются: ультранизкие потери неподвижных генерирующих систем и очень низкие конструктивные потери на синхронные реактивные сопротивления.

(0048) Приемные (якорные) обмотки должны быть рассчитаны исходя из того, что генератор должен иметь минимально возможные активное (омическое) сопротивление и наименьшее синхронное реактивное сопротивление. Исходя из этого, большая часть выходной мощности будет уходить в нагрузку, а не расходоваться на преодоление внутренних сопротивлений.

 

Патентная формула заключается в следующем:

1. НЭГ, включающий в себя:

- сердечник, имеющий множество пазов;

- возбуждение заключается в производстве стационарного вращающегося электромагнитного поля, читай индукция возбуждения должна пронизывать множество пазов;

- электромагнитная индукция состоит в наведении электрической энергии, читай индукция наведения должна присутствовать во множестве пазов, также наведенная индукция должна быть источником энергии для питания обмоток возбуждения;

2. НЭГ, описанный в 1 пункте, имеет цельный, нераздельный сердечник;

3. НЭГ, описанный в 1 пункте, может также состоять из:

- внутренней части;

- внешней части, причем внутренняя и внешняя части должны быть собраны вместе без зазоров и неподвижно друг относительно друга.

4. НЭГ, описанный в 1 пункте, может иметь сердечник, набранный из множества пластин.

5. НЭГ, описанный в 1 пункте, может иметь сердечник, изготовленный из ферритового порошка, спрессованного, отформованного и изолированного.

6. НЭГ, описанный в 1 пункте, может иметь цилиндрическую цельную центральную часть.

7. НЭГ, описанный в 1 пункте, имеет множество пазов (щелей), расходящихся в стороны от цилиндрической центральной части к внешнему краю сердечника.

8. НЭГ, описанный в 1 пункте, в котором возбуждение происходит в первом (внешнем) ряду электрических обмоток.

9. НЭГ, описанный в 1 пункте, в котором наведение (индукция) происходит во втором (внутреннем) ряду электрических обмоток.

10. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток имеет двухполюсное устройство.

11. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток имеет двухполюсное устройство.

12. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 1200 относительно друг друга.

13. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 1200 относительно друг друга.

14. НЭГ, описанный в 7 пункте, в котором обмотки возбуждения расположены в пазах вблизи цилиндрической центральной части.

15. НЭГ, описанный в 7 пункте, в котором приемные (якорные) обмотки расположены в пазах в противоположной стороне от цилиндрической центральной части.

16. НЭГ, описанный в 1 пункте, кроме того, включает в себя систему обратной связи для отбора мощности от приемных катушек для собственных нужд генератора.

17. НЭГ, описанный в 16 пункте, в котором источник питания отключается, как только заработает система обратной связи для отбора мощности для питания обмоток возбуждения.

18. НЭГ, описанный в 16 пункте, кроме того, включает в себя регулятор, служащий для регулировки выходной мощности.

19. НЭГ, описанный в 16 пункте, кроме того, включает в себя фазорегулятор для регулирования сдвига фаз на выходе источника питания.

 

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

vashesamodelkino.ru

принцип действия, основные модели автономных электростанций для генерации электроэнергии

Очень часто дачники маленьких городов сталкиваются с отсутствием электроэнергии. Причем отключение происходит внезапно и иногда на продолжительное время. Большинство из них приобретают генераторы для дачи (переменного тока различного исполнения). Очень часто выбор генератора затруднен из-за отсутствия достоверной информации. Необходимо разобрать основные модели и их особенности применения.

Сведения о генераторах

Генераторы — это устройства, выполняющие преобразование одного вида энергии в другой. Генераторы тока преобразовывают энергию, вращающую вал, в электрическую. Электрический ток появляется в проводнике при помощи электромагнитного поля, которое создает электродвижущая сила (далее ЭДС).

Если в однородном магнитном поле проводник совершает равномерные или равноускоренные движения, то в нем появляется ток, полученный при помощи электромагнитного поля. Этот процесс называется электромагнитной индукцией. На этом принципе основана работа большинства устройств: трансформаторы, дроссели, катушки индуктивности, RC-контуры, трансформаторы, автотрансформаторы, электродвигатели и генераторы тока.

Устройство генератора переменного тока

Конструктивно практически все виды генераторов переменного тока (ГПТ) одинаковы, но все же есть некоторые отличия, заключающиеся в разновидности источника внешней энергии для вращения вала. Состоит он из следующих частей:

  1. Корпуса.
  2. Статорных обмоток.
  3. Якоря, являющимся подвижной частью.
  4. Коробки для снятия напряжения (U), полученного при генерации.

Корпус — это основная часть, к которой крепятся все основные узлы машины и устанавливаются подшипники для уменьшения действия различных сил, вызывающих разрушение устройства. Корпус преимущественно изготавливается из высокопрочной стали или сплава. Однако в некоторых моделях бюджетного плана он изготавливается из обычного металла, имеющего очень низкие показатели срока службы. Он служит еще и для защиты основных узлов от различного рода механических повреждений, попадания воды и пыли, которые существенно снижают показатели срока службы.

Статорная катушка, имеющая магнитные полюса (еще называются обмотками статорной катушки), выполняется из специальной электротехнической стали. Этот тип стали способен снизить влияние вихревых токов на проводник, при которых он нагревается и выходит из строя.

Ротор приводится в движение сторонней силой, благодаря чему и отличаются модели ГПТ между собой. Разность потенциалов или U поступает через щетки и кольца в коробку, а затем из нее происходит дальнейшее распределение между потребителями электрической энергии.

Принцип работы

Работа ГПТ основана на явлении электромагнитной индукции. Ротор выполняет роль электромагнита, образующего магнитное поле. Это поле вращается и создает напряжение в обмотках статорных катушек. После этого со статора снимается напряжение, которое можно получить из распредкоробки. В моделях, где U снимается с ротора, используются медные кольца, на которые передается ток через графитовые щетки. Кроме того, все ГПТ отличаются конструктивно друг от друга. Существует два основных класса полюсов:

  1. Неподвижные (вращение осуществляет только ротор).
  2. Подвижные.

Генераторы с подвижным типом полюсов чаще применяются, так как обладают большим коэффициентом полезного действия (КПД) и генерацией сравнительно больших значений тока (I) при сравнительно маленьких габаритах. Графическое представление генерируемого тока в моделях этой модификации близко к синусоиде. ГПТ с подвижными полюсами также делятся на несколько типов по варианту возбуждения: независимое, самовозбуждение и использование магнитов с постоянным полем.

Роторная часть генераторов с независимым возбуждением приводится сторонним источником других видов энергий: механической, тепловой, водяной, солнечной и так далее. При самовозбуждении происходит питание выпрямленным током самого ГПТ. При использовании магнитов образуется магнитное поле с постоянным магнитным потоком (Ф). Все виды генераторов имеют различные технические характеристики (ТХ), по которым и нужно ориентироваться при покупке агрегата.

Технические характеристики

ГПТ отличаются между собой основными параметрами: типом привода ротора, возбуждением, генерируемыми электрическими составляющими (U, I, мощность) и частотой. Для регуляции U необходимо менять значение потока Ф. Для осуществления этой операции нужно подключить последовательно к генератору, в зависимости от модели, регулятор и стабилизатор U.

Если нужно произвести подключение двух и более ГПТ в сеть, то следует их синхронизировать. Для этого применяется синхроскоп. Он подключается последовательно к ГПТ и регулирует I при возбуждении в статорных катушках. Он состоит из лампы накаливания и вольтметра.

При синхронизации лампа моргает интенсивнее при завершении процесса синхронизации (происходит приближение к оптимальному значению I). Следует следить за показаниями вольтметра, которые должны быть равны нулевому значению.

Основное предназначение

Генераторы отличаются и используются в разнообразных сферах применения. Различают несколько видов генераторов: газовый, инверторный, дизельный, синхронный, асинхронный,электрохимический.

Сейчас распространены инверторные ГПТ, так как производят качественный тип электрической энергии. Основной принцип этого генератора сводится к следующим моментам:

  1. Вырабатываемый ток выпрямляется при помощи выпрямителя.
  2. Выпрямленный ток аккумулируется в батареях.
  3. При помощи инвертора происходит преобразование постоянного тока в переменный.

Применяется очень часто дизельный, бензиновый и газовый ГПТ. Эти ГПТ преобразуют химическую энергию (топливо является химической смесью) в электрическую. Во время сгорания происходит преобразование теплового вида энергии и получение напряжения.

Якорь синхронного ГПТ представляет собой постоянный магнит с определенным количеством полюсов. Их может быть от 2 и выше, причем значение всегда кратно 2. Во время пуска ГПТ ротор генерирует электрическое поле. В результате этого возникает ток в обмотках статора.

Критерии выбора

Для правильного выбора нужной модели следует знать основные слабые и сильные стороны каждого ГПТ. Кроме того, нужно знать особенности применения в конкретных условиях и выходные параметры, среди которых существенными являются мощность и ток.

Основными преимуществами синхронных ГПТ являются обеспечение стабилизированного напряжения, возможность переносить перегрузки в течение непродолжительного периода. В результате этого появляется возможность запускать электродвигатели. Однако конструкция открыта и в нее попадают пыль, влага и грязь. В этом виде используются графитовые щеточные узлы, которые довольно быстро изнашиваются. Асинхронные имеют закрытый корпус и их устройство основано на безщеточной технологии, следовательно, они долговечнее. Однако существует ограничение при эксплуатации этого ГПТ — они плохо переносят подключение устройств с высокими пусковыми токами.

Нужно обратить внимание на тип нагрузки, на который рассчитан ГПТ. По типу нагрузки делятся на активные и индуктивные. При активных нагрузках применяются генераторы незначительной мощности, вырабатывающие электричество для дальнейшего его преобразования в световую или тепловую энергию. ГПТ с индуктивным типом нагрузки применяются в том случае, если нужно запитать электродвигатель. Эти модели следует выбирать с определенным запасом мощности.

По назначению устройства можно разделить на обычные, инверторные и сварочные. Инверторные отличаются от обычных наличием выпрямителя, преобразователя или самого инвертора и микропроцессора. Этот тип используется для питания высокочувствительной аппаратуры, например, компьютерной техники, камер видеонаблюдения. Сварочные применяются при работах, если нет возможности запитать сварочник от сети.

Если в ГПТ используется сторонний источник энергии для вращения вала, то они делятся на бензиновые, дизельные, газовые и газобензиновые.

Бензиновый генератор электроэнергии стоит значительно дешевле дизельного, но его эксплуатация и техническое обслуживание обходится дороже. Одним существенным недостатком дизельного ГПТ является его цена, которую можно заплатить за качество устройства.

Газотурбинные ГПТ обладают низким уровнем шума и довольно высоким КПД. Стоит использовать только в том случае, если помещение газифицировано. Они очень удобны в обслуживании и имеют довольно длительный срок эксплуатации. Единственным минусом является их цена, которая намного дороже, чем у дизельных. Еще одним видом ГПТ на топливе является комбинированное решение при использовании двух видов топлива. Газобензиновые ГПТ используют бензин и газ в виде топлива, но имеют довольно высокую цену. Они являются одним из самых дорогих видов подобных автономных генераторов электроэнергии для дачи.

При выборе электрического генератора для дачи следует обратить внимание на количество тактов. Существуют 2- и 4-тактные. Преимуществом первых является их довольно простая и недорогая конструкция, а вторые более экономичны по расходу топлива. Кроме того, 2-тактные очень требовательны к качеству масла и топлива, а 4-тактные нетребовательны к параметрам топлива, но обладают сложной и дорогостоящей конструкцией.

Важной характеристикой является количество цилиндров (как правило, от 1 до 4). От этого параметра зависит мощность и КПД, естественно, при увеличении количества цилиндров увеличивается прямо пропорционально и стоимость электростанции для дачи.

Количество оборотов ротора имеет значение и генераторы электричества для дачи делятся на низкооборотные (до 2500 оборотов в минуту) и с высоким количеством оборотов (свыше 2500 об/мин). Низкооборотные довольно дорогие и обладают значительным весом, а вторые можно приобрести по сравнительно низкой цене. Высокооборотные являются компактными, но срок службы значительно ниже, чем у низкооборотников.

Кроме того, ГПТ с низкими оборотами расходуют меньше топлива и обладают сравнительно низким уровнем шума. При выборе следует обратить особое внимание на тип охлаждения. Оно бывает следующих видов: воздушное и жидкостное. Агрегаты с жидкостным охлаждением рассчитаны на длительную работу, что и делает их идеальным решением для запитки потребителей при долговременном пропадании электроэнергии, а при воздушном охлаждении они не рассчитаны на длительную работу.

Запуск ГПТ осуществляется в следующих режимах: ручном, стартерном и комбинированном. Ручной является оптимальным и надежным, а при стартерном типе запуска требуется дополнительно аккумуляторная батарея, которую необходимо постоянно подзаряжать. Эту процедуру можно производить при работающем ГПТ. В современных моделях используется комбинированный тип запуска, но не во всех. Этот параметр поднимает стоимость агрегата.

Кроме того, при выборе ГПТ нужно учесть режим работы агрегата. Если генератор будет работать до 600 часов в год, то нужно выбирать высокооборотные модели, а в случае при работе более 600 часов в год — низкооборотные.

Главным критерием является мощность агрегата. Для дачи подойдет устройство до 5 кВт, но все зависит от потребителей. В большинстве случаев для этих целей приобретают модели с мощностью до 20 кВт. Для точного определения необходимой мощности нужно просуммировать мощности всех потребителей и эту сумму умножить на коэффициент, равный 1,4.

Если же агрегат будет питать электродвигатели или сварочный аппарат, то нужно к полученной мощности всех потребителей прибавить мощности электродвигателя и сварочного аппарата. Мощность двигателя можно найти на самом корпусе изделия, но не следует забывать о кратковременном значении этой величины.

Мощность электродвигателя является произведением U на I, потребляемый им. Этот ток является номинальным, при запуске он увеличивается в 7 раз и, следовательно, максимальная кратковременная мощность в 7 раз больше обычной.

При сварке инверторным аппаратом нужно исходить из его характеристик, в которых указана мощность при работе аппарата.

Таким образом, выбрать электрический генератор для дачи переменного напряжения довольно просто. Для этого нужно определить его основные задачи, произвести выбор наиболее значимых критериев. Покупать следует качественную модель, так как это жизнь и неизвестно для каких целей он понадобится со временем.

pion.guru

Статический автономный генератор электроэнергии | Проект Заряд

Вот мы и закончили проводимые нами совместные работы по проверке некоторых технологий, опытов и устройств, о которых мы неоднократно писали ранее и которые дались нам не с первой попытки и с огромными проблемами и трудностями. Ну да обо всем по порядку… Материала накоплено очень много, начинаем его обрабатывать и будем им с Вами делиться, как и обещали. Пока же занимаемся обработкой и подготовкой материала по собственным опытам, опубликуем несколько пришелших нам за это время писем и сообщений.   Письмо первое, публикуем «как есть». Никаких дополнительных материалов, доказательств, подтверждений, видео или даже фото у нас пока нет. Надеемся, что приведенный ниже текст это не очередная попытка приобрести например недвижимость коста дорада и никакая не уловка и не мошенничество, а автор имеет действующий образец и в скором времени предоставит тому доказательства.

Разработан очень простой по конструкции и надежный генератор электроэнергии, не имеющий ни одной подвижной детали, и могущий работать полностью автономно, после запуска от небольшого аккумулятора, производя во много раз большую мощность, чем потребляет сам. Т.е. способен, ничего видимо не потребляя, производить электроэнергию для потребителя. Нужно понимать, что это не «вечный двигатель»,а устройство, способное поглощать энергию из окружающего нас пространства, преобразовывать ее в электричество, и отдавать потребителю. Ближайший аналог, всем известный тепловой насос. Который производит гораздо больше тепла, чем потребляет электроэнергии.

Но предлагаемый генератор гораздо проще, дешевле, надежнее теплового насоса, и производит сразу электроэнергию. По своей сущности данный генератор очень напоминает обычный силовой трансформатор. Это замкнутый магнитопровод с катушками и электронный блок управления. Магнитопровод может быть изготовлен как из обычной трансформаторной стали, так и иных ферромагнитных материалов. Разумеется, есть ноу-хау, которые тут не раскрываются, но благодаря которым возможна работа устройства по специальному алгоритму. Сложность изготовления данного устройства очень небольшая. Не требуется никакого особого оборудования, кроме стандартного, для резки, и шихтовки трансформаторной стали, а также склейки пакетов и их шлифовки. Что и делается при изготовлении почти всех трансформаторов. Блок управления тоже очень простой, и состоит всего из нескольких недорогих и доступных элементов. В мире разработано очень много конструкций статических генераторов электроэнергии, основанных на переключении магнитного потока в сердечнике. Например конструкции Наудина, Флинна… Но они имеют огромные недостатки. Магнитопровод их должен выполняться из особого дорогого и недолговечного материала, имеют дорогие редкоземельные магниты, работоспособность данных генераторов все еще под вопросом. Мне пока неизвестны случаи удачного повторения данных конструкций. Сами авторы смогли получить избыточную энергию только на нагрузке нелинейного характера, в узком диапазоне мощности. Предлагаемый генератор может работать в любом необходимом диапазоне мощностей. Принцип его работы не переключение магнитного потока из одной половины сердечника в другую(что вообще считается невозможным по всем известным законам),а 100% модуляция магнитного потока, без влияния цепей управления на силовую катушку. Т.е. магнитный поток во всем магнитопроводе то максимален, то отсутствует полностью. За счет изменения магнитного потока в силовой катушке и вырабатывается электрический ток. Как в любом электромагнитном генераторе. Нагрузка совершенно не влияет на цепь управления. Поэтому даже при коротком замыкании силовой катушки нет повышения потребляемого тока самим генератором. Кроме того, предлагаемый генератор, не требует вообще никаких магнитов. Пока генераторы данного типа не предназначены для генерации больших мощностей. Максимум несколько киловатт. Причина в материале сердечника. На железе трудно построить малогабаритный генератор большой мощности. А нужные материалы гораздо дефицитней, или их трудно обрабатывать. Поэтому нужно заказывать сразу на заводе-изготовителе(например ферриты). На начальном этапе работ это нерационально. Но при должном совершенствовании, данные генераторы вполне смогут отдавать мощность примерно 1квт/кг веса сердечника и даже больше. Стоимость такого генератора вероятно не превысит 200 евро/квт мощности. Данный генератор ничего не излучает, кроме слабого магнитного поля(как обычные трансформаторы),а также почти не издает шума(очень тихое гудение или писк). На высоких частотах вообще никакого звука не будет слышно. Использование данных генераторов возможно практически в любой сфере человеческой деятельности. Это и питание радиоаппаратуры, особенно в удаленных местах, космической технике, подводной и пр. Отопление и энергоснабжение коттеджей и домов, это источник питания для электромобилей(или на первых порах для подзарядки аккумуляторов с целью удлинения пробега),можно использовать на водном транспорте, и многое иное. Просто невозможно перечислить… Были проведены опыты по исследованию отдельных частей, составляющих данный генератор. Например испытаны катушки, дающие магнитное поле гораздо более сильное, чем известные, при одинаковых параметрах обмоток, и мощности, подаваемой в них. Но в отличии от обычных катушек, которые, при воздействии на них внешнего переменного магнитного поля вырабатывают электроэнергию, данные катушки ничего не вырабатывают! Т.е. они не реагировали на внешнее магнитное поле, даже достаточно сильное. Подобные катушки и являются основой данного генератора. Испытывались и катушки — антиподы: они наоборот, будучи помещены во внешнее переменное магнитное поле вырабатывали электроэнергию, но при подаче на их обмотку тока, не создавали магнитного поля. Данную разновидность катушек тоже можно использовать в данном генераторе.

Для осуществления проекта ищу надежного и порядочного партнера, могущего на первом этапе вложить в проект не менее 5000-10000 евро, имеющего нужную производственную базу и специалистов(или могущий обеспечить производство всех нужных работ). Опытный образец нетрудно изготовить за один месяц. Сколько потребует его доводка, и создание промышленных образцов не берусь сказать. Скорее всего, нужно идти поэтапно. Вначале малые генераторы на железе, а после на иных, более совершенных материалах. Окупаемость вполне возможно в течении 18-24 месяцев, а то и раньше. Слишком много факторов на это влияет. Например, можно довести образец до промышленного уровня и продать крупной корпорации. Есть такие желающие на примете. Можно создать АО и постепенно развиваться. Есть и другие варианты. Это можно будет решить совместно с партнером. Что касается прав на разработку, то предлагаю оставить за автором минимум 50,1% ,а партнеру 49,9%. Иначе может быть вариант, когда разработка ложится «под сукно». Это, разумеется, не касается прибыли, я согласен на 10% от продажной стоимости устройств. Но и это конкретно будет обсуждаться с конкретным человеком, который пожелает вложить средства.

Шурыгин Юрий Александрович.  

От редакции: Во избежании каких либо недоразумений и мошенничества, мы пока не публикуем почты автора, т.к. пока не имеем никаких подтверждений изложенных выше предположений и фактов…

zaryad.com

Генераторы для современных автономных электростанций

Перед тем, как обсуждать генераторы, необходимо прежде всего разобраться, что представляет собой автономная электростанция. Это совокупность различных устройств и приборов, использующихся с целью получения электрической энергии для бытовых и производственных нужд.

Электродвигатель и генератор, надежно соединенные друг с другом и прочно закрепленные на стальной раме, осуществляют переработку подающегося топлива и преобразование сгенерированной тепловой энергии в электроток. В качестве топлива может использоваться бензин, дизель или природный газ.

Двигатель, являющийся обязательным конструктивным элементом дизельной или бензиновой автономной электростанции, оборудуется особой системой повышенной сложности. С ее помощью осуществляется плавный запуск агрегата и предотвращение всевозможных перепадов напряжения. Тщательно продуманное и эффективное использование смазки и топлива, стабилизация частоты, охлаждающая система и фильтрация отработанных газообразных веществ обеспечивают автономным электростанциям все большую популярность на современном рынке.
Источник питания, обладающий более совершенной и современной конструкцией, чем его более ранние аналоги, отличается простотой в эксплуатации и не требует регулярного профилактического ремонта. Кроме того, его можно использовать при любой температуре воздуха, что является одним из его главных преимуществ.

Использование автономных электростанций

Если автономную электростанцию планируется использовать исключительно с бытовой целью, то в этом случае достаточно будет маломощного переносного генератора. Грамотный предварительный расчет даст возможность определить, какое конкретно оборудование лучше всего подойдет для текущих потребностей. Обязательно суммируются мощности всех устройств, бытовых приборов и приспособлений, которые планируется подключать к генератору автономной электростанции.

Одним из важнейших параметров, которые необходимо учитывать при эксплуатации автономной электростанции, является качество тока. Современные автономные электростанции, оборудованные эффективными и надежными генераторами, обеспечивают высокие показатели этого параметра. Это позволяет спокойно подключать к ним самые разнообразные цифровые устройства, например, персональные компьютеры. Никаких поломок, отключений и других неприятных моментов при эксплуатации такого оборудования никогда не возникнет.

Если автономные электростанции планируется использовать с производственной целью, то для них следует применять как можно более мощные генераторы. Только так можно обеспечить бесперебойную работу подключаемого к системе оборудования и электродвигатели.

Характерная особенность современных генераторов для автономных электростанций — это наличие надежной влаго- и пылезащиты. Но не стоит забывать, что срок службы такого оборудования напрямую зависит прежде всего от соблюдения правил его эксплуатации. Максимально увеличить долговечность генераторов можно за счет выполнения регулярного и качественного их профилактического ремонта, хранения оборудования в сухом помещении с эффективной вентиляцией и периодической замены смазки.

Современные генераторы автономных электростанций отличаются практически полной бесшумностью в работе. Это позволяет не отвлекать окружающих людей от выполняемой работы, например, строителей от возведения дома или продавцов от просьб покупателей.

Стоит отметить, что к генераторам современных автономных электростанций можно подключать даже акустические системы профессионального применения, а также различную музыкальную аппаратуру, использующуюся на всевозможных мероприятиях и торжествах вне зоны обслуживания линий централизованной энергосистемы.

Рекомендуем прочесть:

www.solar-battery.com.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *