Содержание

Формула мощности в физике

Содержание:

Определение и формулы мощности

Определение

Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.

$$P=\frac{\Delta A}{\Delta t}(1)$$

В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени. Тогда вводят мгновенное значение мощности:

$$P=\lim _{\Delta t \rightarrow 0} \frac{\delta A}{\Delta t}=\frac{d A}{d t}$$

где $\delta A$ – элементарная работа, которую выполняет сила, $\Delta t$ – отрезок времени в течение, которого данная работа была выполнена. Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время $\Delta t$.

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

$$P=\bar{F} \bar{v}=F_{\tau} v$$

где $F_{\tau}$ – проекция силы $\bar{F}$ на направление вектора скорости ( $\bar{v}$).{k} \bar{F}_{i} \cdot \bar{v}_{i}(5)$$

где $\bar{v}_{i}$ – скорость перемещения точки, к которой приложена сила $\bar{F}_{i}$.

В случае поступательного движения твердого тела со скоростью $\bar{v}$ мощность можно определить при помощи формулы:

$$P=\overline{F v}(6)$$

где $\bar{F}$ – главный вектор внешних сил.

Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:

$$P=\bar{M} \bar{\omega}(7)$$

где $\bar{M}$ – главный момент внешних сил по отношению к точке О, $\bar{omega}$ – мгновенная угловая скорость вращения тела.

Единицы измерения мощности

Основной единицей измерения мощности силы в системе СИ является: [P]=вт (ватт)

В СГС: [P]=эрг/с.

1 вт=107 эрг/( с).

Примеры решения задач

Пример

Задание. Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и под воздействием приложенной силы движется поступательно.{5}\right)$

Слишком сложно?

Формула мощности не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем формулу для мгновенной мощности вида:

$$P=\bar{F} \cdot \bar{v}(2.1)$$

Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:

$$F=m g(2.2)$$

В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:

$$v=v_{0}+g t=g t(2.3)$$

где v0=0.

Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное движение (из начальных условий y0=0, v0=0):

$$y=y_{0}+v_{0} t+\frac{g t^{2}}{2}=\frac{g t^{2}}{2}=\frac{h}{2} \rightarrow t=\sqrt{\frac{h}{g}}(2.{3} h}$

Читать дальше: Формула плотности вещества.

Формула мощности тока в физике

Содержание:

Электрический ток, на каком угодно участке цепи совершает некоторую работу (А). Допустим, что у нас есть произвольный участок цепи (рис.1) между концами которого имеется напряжение U.

Работа, которая выполняется при перемещении заряда равного 1 Кл между точками A и B (рис.1) будет равна U. В том случае, если через проводник протекает ток силой I за время равное $\Delta t$ по указанному выше участку пройдет заряд (q) равный:

$$q=I \Delta t(1)$$

Следовательно, работа, которую совершает электрический ток на данном участке, равна:

$$A=U \cdot I \cdot \Delta t(2)$$

Надо отметить, что выражение (2) является справедливым при I=const для любого участка цепи (в таком участке могут содержаться проводники 1–го и 2–го рода).

Определение и формула мощности тока

Определение

Мощность тока – есть работа тока в единицу времени:

$$P=\frac{A}{\Delta t}$$

Формулой для вычисления мощности можно считать выражение:

$$P=U \cdot I=I^{2} R(4)$$

В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:

$$P=\left(\varphi_{1}-\varphi_{2}\right) I+\varepsilon I$$

где $\left(\varphi_{1}-\varphi_{2}\right)$ – разность потенциалов, $\varepsilon$ – ЭДС источника, который включен в цепь.{2}(6)$$

где j – плотность тока, $\rho$ – удельное сопротивление.

Единицы измерения мощности тока

Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.

В СГС: [P]=эрг/с.

1 Вт=107 эрг/( с).

Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).

Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.

Примеры решения задач

Пример

Задание. Какой должна быть сила тока, которая течет через обмотку электрического мотора для того, чтобы полезная мощность двигателя (PA) стала максимальной?Какова максимальная полезная мощность? Если двигатель постоянного тока подключен к напряжению U, сопротивление обмотки якоря – R.

Решение. Мощность, которую потребляет электроприбор, идет на нагревание (PQ) и совершение работы (PA):

$$P=P_{Q}+P_{A}(1.{2}}{P_{2}}}$$

Читать дальше: Формула напряжения электрического поля.

Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?

Автор Даниил Леонидович На чтение 6 мин. Просмотров 12.6k. Опубликовано Обновлено

Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.

Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.

Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.

Что такое мощность в электричестве: просто о сложном

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.

Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.

Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Как рассчитать электрическую мощность в быту

Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.

Отсюда получим формулы для расчета мощности (P):

  • U*I;
  • I2*R;
  • U*I*cos(фи).

В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.

Как измерить электрическую мощность дома

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.

Ваттметр

Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.

Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.

Формулы расчета мощности для однофазной и трехфазной схемы питания

Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).

Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).

Как работает схема трехфазного электроснабжения

Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.

Как узнать ток, зная мощность и напряжение

Для вычисления тока электросети по мощности и напряжению используют формулы:

  • I=P/U – постоянный ток;
  • I=P/(U*cos(фи)) — однофазная сеть;
  • I=P/(1,73*U*cos(фи)) — трехфазная сеть.

Для простоты расчетов значение фи принимают равной 0,95.

Как узнать напряжение, зная силу тока

Для расчета напряжения используют формулы:

U=P/I – постоянный ток;

U=P/(I*cos(фи)) — однофазная сеть;

U=P/(1,73*I*cos(фи)) — трехфазная сеть.

Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I – постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Интересная инфа по теме

Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.

Заключение

Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.

Мощность электрического тока - Основы электроники

Обычно электрический ток сравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт (Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

формула, мгновенный и средний расчет силы.

Термин «мощность» в физике имеет специфический смысл. Механическая работа может выполняться с различной скоростью. А механическая мощность обозначает, как быстро совершается эта работа. Способность правильно измерить мощность имеет важное значение для использования энергетических ресурсов.

Физический смысл мощности

Разные виды мощности

Для формулы механической мощности применяется следующее выражение:

N = ΔA/Δt.

В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.

Существует три величины, которыми можно выразить мощность: мгновенная, средняя и пиковая:

  1. Мгновенная мощность – мощностной показатель, измеренный в данный момент времени. Если рассмотреть уравнение для мощности N = ΔA/Δt , то мгновенная мощность представляет собой ту, которая берется в чрезвычайно малый промежуток времени Δt. Если имеется построенная графическая зависимость мощности от времени, то мгновенная мощность – это просто считываемое с графика значение в любой взятый момент времени. Другая запись выражения для мгновенной мощности:

N = dA/dt.

  1. Средняя мощность – мощностная величина, измеренная за относительно большой временной отрезок Δt;
  2. Пиковая мощность – максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение определенного временного промежутка. Стереосистемы и двигатели автомобилей – примеры устройств, способных обеспечить максимальную мощность, намного выше их средней номинальной мощности. Однако поддерживать эту мощностную величину можно в течение короткого времени. Хотя для эксплуатационных характеристик устройств она может быть более важной, чем средняя мощность.

Важно! Дифференциальная форма уравнения N = dA/dt универсальна. Если механическая работа выполняется равномерно в течение времени t, то средняя мощность будет равна мгновенной.

Из общего уравнения получается запись:

N = A/t,

где A будет общая работа за заданное время t. Тогда при равномерной работе вычисленный показатель равен мгновенной мощности, а при неравномерной –средней.

Формулы для механической мощности

В каких единицах измеряют мощность

Стандартной единицей для измерения мощности служит Ватт (Вт), названный в честь шотландского изобретателя и промышленника Джеймса Ватта. Согласно формуле, Вт = Дж/с.

Существует еще одна единица мощности, до сих пор широко используемая, –  лошадиная сила (л. с.).

Интересно. Термин «лошадиная сила» берет свое начало в 17-м веке, когда лошадей использовали для поднятия груза из шахты. Одна л. с. равна мощности для поднятия 75 кг на 1 м за 1 с. Это эквивалентно 735,5 Вт.

Мощность силы

Уравнение для мощности соединяет выполненную работу и время. Поскольку известно, что работа выполняется силами, а силы могут перемещать объекты, можно получить другое выражение для мгновенной мощности:

  1. Работа, проделанная силой при перемещении:

A = F x S x cos φ.

  1. Если поставить А в универсальную формулу для N, определяется мощность силы:

N = (F x S x cos φ)/t = F x V x cos φ, так как V = S/t.

  1. Если сила параллельна скорости частицы, то формула принимает вид:

N = F x V.

Мощность вращающихся объектов

Процессы, связанные с вращением объектов, могут быть описаны аналогичными уравнениями. Эквивалентом силы для вращения является крутящий момент М, эквивалент скорости V – угловая скорость ω.

Если заменить соответствующие величины, то получается формула:

N = M x ω.

M = F x r, где r – радиус вращения.

Для расчета мощности вала, вращающегося против силы, применяется формула:

N = 2π x M x n,

где n – скорость в об/с (n = ω/2π).

Отсюда получается то же упрощенное выражение:

N = M x ω.

Таким образом, двигатель может достичь высокой мощности либо при высокой скорости, либо, обладая большим крутящим моментом. Если угловая скорость ω равна нулю, то мощность тоже равна нулю, независимо от крутящего момента.

Видео

Оцените статью:

Формула для нахождения мощности - Морской флот

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Что такое мощность электрического тока

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность электрического тока через напряжение и ток

Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа.

Мощность является физической величиной, равной, как правило, скоростью изменения энергии целой системы. Если говорить более конкретно о том, чему равна мощность, то можно сказать, что она напрямую зависит от соотношения выполненной за определенный срок времени работы и размера этого самого промежутка времени. Существует понятие средней и мгновенной мощности. То есть, если речь идет о мощности системы в некотором промежутке времени, то это – средняя мощность. Если же рассматривается мощность на данный момент, то это – мгновенная мощность. Отсюда получаем следующую формулу:

N (мощность) = Е (энергия)/ t (время)

Следовательно, интеграл, полученный из показателей мгновенной мощности за отдельный срок времени равен полному объему использованной в течение данного периода времени энергии.

В качестве единицы измерения данной величины принято использовать ватт. Учитывая предыдущую формулу можно сказать, что 1 Ватт = 1 Дж / 1 с. Еще одной популярной единицей для измерения величины мощности считается лошадиная сила.

Что такое мощность в механике?

Сила, действующая на тело, находящееся в движении, выполняет работу. В таком случае, мощность определяется скалярным произведением вектора силы и вектора скорости, с которой система движется в пространстве. То есть:

В данной формуле F – это сила, v – это скорость, a – это угол связывающий вектор скорости и вектор силы.

Если речь идет о вращательном движении тела, то уместна следующая формула:

N = M * w = (2П * М * n) / 60

В данной формуле M – это момент силы, w – это угловая скорость, П – это число Пи, а n – это количество оборотов в установленную единицу времени (в минуту).

От чего зависит мощность электрической энергии?

Термин электрической мощности характеризует скорость изменения или передачи электрической энергии. Изучая сеть переменного тока, кроме понятия "мгновенная мощность", которое соответствует традиционно физическому определению, принято использовать и активную мощность. Активная мощность равна среднему показателю мгновенной мощности за период времени, показателю, которым определяется реактивная мощность, соответствующая энергии, перемещающейся между источником и потребителем без диссипации и полному значению мощности, которое определяется произведением активного значения тока и напряжения, не учитывая сдвиг фаз.

Мощность – физическая величина, равная отношению проделанной работы к определенному промежутку времени.

Существует понятие средней мощности за определенный промежуток времени Δt . Средняя мощность высчитывается по этой формуле: N = ΔA / Δt , мгновенная мощность по следующей формуле: N = dA / dt . Эти формулы имеют довольно обобщенный вид, так как понятие мощности присутствует в нескольких ветках физики – механике и электрофизике. Хотя основные принципы расчета мощности остаются приблизительно такими же, как и в общей формуле.

Измеряется мощность в ваттах. Ватт – единица измерения мощности, равная джоулю, деленному на секунду. Кроме ватта, существуют и другие единицы измерения мощности: лошадиная сила, эрг в секунду, масса-сила-метр в секунду.

  • Одна метрическая лошадиная сила равна 735 ваттам, английская – 745 ватт.
  • Эрг – очень малая единица измерения, один эрг равен десять в минус седьмой степени ватт.
  • Один масса-сила-метр в секунду равен 9,81 ваттам.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Мощность в механике

Мощность в механике напрямую зависит от силы и работы, которую эта сила выполняет. Работа же является величиной, характеризующей силу, приложенную к какому-либо телу, под действием которой тело проходит определенное расстояние. Мощность высчитывается по скалярному произведению вектора скорости на вектор силы: P = F * v = F * v * cos a (сила, умноженная на вектор скорости и на угол между вектором силы и скорости (косинус альфа)).

Так же можно посчитать мощность вращательного движения тела. P = M * w = π * M * n / 30 . Мощность равна (М) моменту силы, умноженному на (w) угловую скорость или пи (п), умноженному на момент силы (М) и (n) частоту вращения, деленных на 30.

Мощность в электрофизике

В электрофизике мощность характеризует скорость передачи или превращения электроэнергии. Различают такие виды мощности:

  • Мгновенная электрическая мощность. Так как мощность – это работа, проделанная за определенное время, а заряд движется по определенному участку проводника, имеем формулу: P(a-b) = A / Δt . А-В характеризует участок, через который проходит заряд.2 / R .

  • Мощность переменного тока не поддается исчислению по формуле постоянного тока. В переменном токе выделяют три вида мощности:
  • Активная мощность (Р), которая равна P = U * I * cos f. Где U и I действующие параметры тока, а f (фи) угол сдвига между фазами. Данная формула приведена как пример для однофазного синусоидального тока.
  • Реактивная мощность (Q) характеризует нагрузки, создаваемые в устройствах колебаниями электрического однофазного синусоидального переменного тока. Q = U * I * sin f. Единица измерения – вольт-ампер реактивный (вар).
  • Полная мощность (S) равна корню квадратов активной и реактивной мощности. Измеряется в вольт-амперах.
  • Неактивная мощность – характеристика пассивной мощности присутствующей в цепях с переменным синусоидальным током. Равна квадратному корню суммы квадратов реактивной мощности и мощности гармоник. При отсутствии мощности высших гармоник равна модулю реактивной мощности.

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время, или

где N – мощность,
A – работа,
t – время.

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность , чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α

Формула мощности электрического тока. Как узнать, найти, вычислить, рассчитать мощность.

Электрическая мощность является одной из наиболее важных и значимых характеристик, которая показывает величину, силу той электротехники, систем, цепей, что работают, выполняя ту или иную функцию. Естественно, как и любая другая физическая величина электрическая мощность должна иметь свою меру, благодаря которой появляется возможность ее рассчитывать, делая заведомо точные, экономичные, эффективные устройства, системы и т.д. Для расчетов существуют определенные формулы, по которым и находятся нужные значения мощности.

Формула мощности тока (электрического) достаточно проста и выражается как произведение напряжения на силу тока. То есть, чтобы найти электрическую мощность достаточно просто напряжение умножить на ток. Если воспользоваться законом ома, то ее можно найти и через сопротивление. В этом случае электрическая мощность будет равна силе тока в квадрате умноженный на сопротивление или же напряжение в квадрате деленное на сопротивление.

Напомню, что при использовании формул подразумевается применение основных единиц измерения физических величин. В нашем случае основными единицами будут:

Электрическая мощность — Ватт;
Сила тока — Ампер;
Напряжение — Вольт;
Сопротивление — Ом.

Исходя из этого формула мощности электрического тока будет звучать так — 1 Ватт равен 1 Вольт умноженный на 1 Ампер. Думаю вы смысл поняли. Меньшими единицами измерения мощности является милливатты (1000 мВт = 1 Вт), большими единицами являются киловатты и мегаватты (1 кВт = 1000 Вт, 1 МВт = 1000 000 Вт). Милливатты это достаточно маленькая мощность, ее используют в электронике, радиотехнике. К примеру мощность слухового аппарата измеряется именно в милливаттах. Мощность в ваттах можно встретить в звуковых усилителях, у небольших блоках питания, мини электродвигателях. Киловатты это мощность, которая часто встречается в бытовых и технических устройствах (электрочайники, электродвигатели, обогреватели и т.д.). Мегаватты это уже достаточно большая мощность, ее можно встретить на электроподстанциях, электростанциях, у потребителях электроэнергии размером с город и т.д.

Если говорить о формуле более научной, которая электрическую мощность тока выражает через работу и время, то она будет звучать так — электрическая мощность равна отношению работы тока на участке цепи ко времени, в течении которого совершается эта работа.

То есть, работа деленная на время будет определять мощность. Кроме этого часто путают такие величины как ватты и ватт-час. В ваттах измеряется электрическая мощность — скорость изменения энергии (передачи, преобразования, потребления). А ватт-час являются единицей измерения самой энергии (работы). В ватт-часах выражается энергия, произведенная (переданная, преобразованная, потребленной) за определенное время.

Мощность также разделяется на активную и реактивную. Активная мощность — часть полной мощности, что удалось передать в нагрузку за период переменного тока. Она равна произведению действующих значений напряжения и тока на cosφ (косинус угла сдвига фаз между ними). Электрическая мощность, что не была передана в нагрузку, а привела к некоторым потерям (на излучение, нагрев) называется реактивной мощностью. Она равна произведению действующих значений напряжения и тока на sinφ (синус угла сдвига фаз между ними).

P.S. Электрическая мощность является одной из главных величин и характеристик, используемые в электротехнике. Именно ее мы узнаем при покупки того или иного электрического устройства. Ведь она определяет силу, с которой электротехника может работать. К примеру электродрель. Если мы купим дрель недостаточной мощности, то она просто не сможет обеспечить нам нормальную работу при сверлении. Хотя гнаться за слишком большой мощностью также не следует, ведь это ведет к излишней трате электроэнергии, за которую вы будете платить. Так что у всего должна быть своя мера и мощность.

Мощность

Количественная работа связана с силой, вызывающей смещение. Работа не имеет ничего общего с количеством времени, в течение которого эта сила вызывает смещение. Иногда работа выполняется очень быстро, а иногда - довольно медленно. Например, скалолазу требуется ненормально много времени, чтобы поднять свое тело на несколько метров вдоль скалы. С другой стороны, турист (который выберет более легкий путь в гору) может поднять свое тело на несколько метров за короткий промежуток времени.Эти два человека могут выполнять одинаковый объем работы, но путешественник выполняет ее значительно быстрее, чем скалолаз. Величина, связанная со скоростью выполнения определенного объема работы, называется мощностью. У туриста номинальная мощность выше, чем у скалолаза.

Мощность - это скорость выполнения работы. Это соотношение работы / времени. Математически это вычисляется с использованием следующего уравнения.

Мощность = Работа / время

или

P = Вт / т

Стандартная метрическая единица измерения мощности - Вт .Как следует из уравнения мощности, единица мощности эквивалентна единице работы, деленной на единицу времени. Таким образом, ватт эквивалентен джоулям в секунду. По историческим причинам, лошадиных сил иногда используется для описания мощности, выдаваемой машиной. Одна лошадиная сила эквивалентна примерно 750 Вт.

Большинство машин спроектировано и построено для работы с объектами. Все машины обычно характеризуются номинальной мощностью.Номинальная мощность указывает скорость, с которой эта машина может работать с другими объектами. Таким образом, мощность машины - это соотношение работы / времени для этой конкретной машины. Автомобильный двигатель - это пример машины, которой задана номинальная мощность. Номинальная мощность относится к тому, насколько быстро автомобиль может разгонять автомобиль. Предположим, что двигатель мощностью 40 лошадиных сил может разогнать автомобиль от 0 миль / час до 60 миль / час за 16 секунд. Если бы это было так, то автомобиль с четырехкратной мощностью в лошадиных силах мог бы выполнять такой же объем работы за четверть времени.То есть 160-сильный двигатель мог разогнать тот же автомобиль с 0 миль / час до 60 миль / час за 4 секунды. Дело в том, что при одинаковом объеме работы мощность и время обратно пропорциональны. Уравнение мощности предполагает, что более мощный двигатель может выполнять такой же объем работы за меньшее время.

Человек - это также машина с номинальной мощностью . Некоторые люди более полны власти, чем другие. То есть некоторые люди способны выполнять тот же объем работы за меньшее время или больше за то же время.Обычная физическая лаборатория включает в себя быстрый подъем по лестнице и использование информации о массе, росте и времени для определения личных возможностей ученика. Несмотря на диагональное движение по лестнице, часто предполагается, что горизонтальное движение является постоянным, и вся сила от ступенек используется для подъема ученика вверх с постоянной скоростью. Таким образом, вес ученика равен силе, которая действует на ученика, а высота лестницы - это смещение вверх. Предположим, что Бен Пумпинирон поднимает свое 80-килограммовое тело на 2.0-метровый подъезд за 1,8 секунды. Если бы это было так, то мы могли бы вычислить номинальную мощность Бена . Можно предположить, что Бен должен приложить к лестнице нисходящую силу 800 Ньютон, чтобы поднять свое тело. Поступая таким образом, лестница толкала тело Бена вверх с достаточной силой, чтобы поднять его тело вверх по лестнице. Также можно предположить, что угол между силой лестницы на Бена и смещением Бена равен 0 градусов. Используя эти два приближения, можно определить номинальную мощность Бена, как показано ниже.

Номинальная мощность Бена - 871 Вт. Он вполне лошади .

Другая формула мощности

Выражение для мощности - работа / время. А поскольку выражение для работы - это сила * смещение, выражение для мощности можно переписать как (сила * смещение) / время. Поскольку выражение для скорости - это смещение / время, выражение для мощности можно еще раз переписать как «сила * скорость».Это показано ниже.

Это новое уравнение мощности показывает, что мощная машина одновременно сильна (большая сила) и быстра (большая скорость). Мощный автомобильный двигатель - сильный и быстрый. Мощная сельскохозяйственная техника - прочная и быстрая. Сильный тяжелоатлет силен и быстр. Сильный лайнмен в футбольной команде силен и быстр. Машина , которая достаточно сильна, чтобы приложить большую силу, чтобы вызвать смещение за небольшой промежуток времени (т.е., большая скорость) - машина мощная.

Проверьте свое понимание

Используйте свое понимание работы и власти, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. Два студента-физика, Уилл Н. Эндейбл и Бен Пумпинирон, в зале для тяжелой атлетики. Уилл поднимает 100-фунтовую штангу над головой 10 раз за одну минуту; Бен поднимает 100-фунтовую штангу над головой 10 раз за 10 секунд.Какой студент больше всего работает? ______________ Какой ученик дает больше всего энергии? ______________ Объясните свои ответы.

2. В физической лаборатории Джек и Джилл взбежали на холм. Джек вдвое массивнее Джилл; тем не менее, Джилл преодолевает то же расстояние за половину времени. Кто работал больше всего? ______________ Кто доставил больше всего энергии? ______________ Объясните свои ответы.


3. Уставшая белка (масса около 1 кг) отжимается, прикладывая силу, поднимающую ее центр масс на 5 см, чтобы выполнить работу всего на 0,50 Дж. Если уставшая белка проделает всю эту работу за 2 секунды, то определите ее мощность.

4. При выполнении подтягивания студентка-физик поднимает ее 42.0-кг тело на дистанцию ​​0,25 метра за 2 секунды. Какую силу развивают бицепсы ученика?

5. Ежемесячный счет за электричество в вашей семье часто выражается в киловатт-часах. Один киловатт-час - это количество энергии, доставленное потоком 1 киловатт электроэнергии за один час. Используйте коэффициенты преобразования, чтобы показать, сколько джоулей энергии вы получаете, покупая 1 киловатт-час электроэнергии.

6. Эскалатор используется для перемещения 20 пассажиров каждую минуту с первого этажа универмага на второй. Второй этаж находится на высоте 5,20 метра от первого этажа. Средняя масса пассажира - 54,9 кг. Определите требуемую мощность эскалатора, чтобы переместить это количество пассажиров за это время.

Электрические формулы

Общие электрические единицы, используемые в формулах и уравнениях:

  • Вольт - единица электрического потенциала или движущей силы - потенциал требуется для передачи одного ампера тока через один ом сопротивления
  • Ом - единица сопротивления - один ом - это сопротивление, обеспечиваемое прохождению одного ампера при подаче одного вольт
  • ампер - единицы тока - один ампер - это ток, который один вольт может передать через сопротивление в один ом
  • Вт - единица электрической энергии или мощности - один ватт равен произведению одного ампера на один вольт - один ампер тока, протекающего под действием силы одного вольта, дает один ватт энергии
  • вольт ампер - произведение вольт и амперы, показанные вольтметром и амперметром - в системах постоянного тока вольт-ампер совпадает с ваттами или доставленной энергией - в системах переменного тока - t Вольт и ампер могут быть или не быть на 100% синхронными - при синхронности вольт-амперы равны ваттам на ваттметре - когда несинхронные вольт-амперы превышают ватты - реактивная мощность
  • киловольт-ампер - один киловольт-ампер - кВА - равно до 1000 вольт ампер
  • Коэффициент мощности - отношение ватт к вольт-амперам

Электрический потенциал - закон Ома

Закон Ома можно выразить как:

U = RI (1a) U = P / I (1b)

U = (PR) 1/2 (1c)

Скачать и распечатать Закон Ома

Электрический ток - Закон Ома

I = U / R (2a)

I = P / U (2b)

I = (P / R) 1/2 (2c)

Электрическое сопротивление - закон Ома

R = U / I (3a)

R = U 2 / P (3b)

R = P / I 2 (3c)

Пример - закон Ома

A 12-вольтная батарея обеспечивает питание с сопротивлением 18 Ом .

I = (12 В) / (18 Ом )

= 0,67 (A)

Электроэнергия

P = UI (4a)

P = RI 2 (4b)

P = U 2 / R (4c)

где

P = мощность (Вт / Вт, Дж )

U = напряжение (вольт, В)

I = ток (амперы, А)

R = сопротивление (Ом, Ом)

Скачать и распечатать закон Ома

Скачать и распечатать Закон Ома

Электроэнергия

Электроэнергия - это мощность, умноженная на время:

W = P t (5)

whe re

Вт = энергия (Вт, Дж)

t = время (с)

Альтернатива - мощность может быть выражена

P = Вт / т (5b)

Мощность потребление энергии потреблением времени.

Пример - потеря энергии в резисторе

Батарея 12 В подключена последовательно с сопротивлением 50 Ом . Мощность, потребляемая резистором, может быть рассчитана как

P = (12 В) 2 / (50 Ом)

= 2,9 Вт

Энергия, рассеиваемая за 60 секунд , может быть рассчитана

Вт = (2,9 Вт) (60 с)

= 174 Вт, Дж

= 0.174 кВт

= 4,8 10 -5 кВтч

Пример - электрическая плита

Электрическая плита потребляет 5 МДж энергии от источника питания 230 В при включении через 60 минут .

Номинальная мощность - энергия в единицу времени - печи может быть рассчитана как

P = (5 МДж) (10 6 Дж / МДж) / ((60 мин) (60 с / мин))

= 1389 Вт

= 1.39 кВт

Ток можно рассчитать

I = (1389 Вт) / (230 В)

= 6 ампер

Электродвигатели

КПД электродвигателя

μ = 746 P / P input_w (6)

где

μ = КПД

P hp = выходная мощность (л.с.)

P входная мощность_w )

или альтернативно

μ = 746 P л.с. / (1.732 VI PF) (6b)

Электродвигатель - мощность

P , 3 фазы = (UI PF 1,732) / 1,000 (7)

, где

P 3 фазы = электрическая мощность трехфазного двигателя (кВт)

PF = коэффициент мощности электродвигателя

Электродвигатель - ток

I 3-фазный = (746 P л.с. ) / (1 .732 В μ PF) (8)

где

I 3-фазный = электрический ток 3-фазного двигателя (амперы)

PF = коэффициент мощности электродвигателя

Формулы мощности в однофазных и трехфазных цепях постоянного и переменного тока

Формулы и уравнения мощности в цепях постоянного и переменного тока 1-Φ и 3-Φ

Возвращаясь к основам, ниже приведены простые формулы электрической мощности для Однофазные цепи переменного тока, трехфазные цепи переменного тока и цепи постоянного тока.Вы можете легко найти электрическую мощность в ваттах , используя следующие формулы электрической мощности в электрических цепях .

Базовая формула мощности в цепях переменного и постоянного тока

Формула мощности в цепях постоянного тока
  • P = V x I
  • P = I 2 x R
  • P = V 2 / R

Формулы мощности в однофазных цепях переменного тока
  • P = V x I x Cos Ф
  • P = I 2 x R x Cos Ф
  • P = V 2 / R (Cos Ф)

Формулы мощности в трехфазных цепях переменного тока
  • P = √3 x V L x I L x Cos Ф
  • P = 3 x V Ph x I Ph x Cos Ф
  • P = 3 x I 2 x R x Cos Ф
  • P = 3 (V 2 / R) x Cos Ф

Где:

Формулы питания переменного тока в сложных схемах:
Комплексная мощность и полная мощность:

Когда в цепи есть индуктор или конденсатор, wer становится комплексной степенью «S» , что означает, что он состоит из двух частей i.е. реальная и мнимая часть. Величина Комплексной мощности называется Полная мощность | S |.


Где

  • P - активная мощность
  • Q - реактивная мощность
Активная или реальная мощность и реактивная мощность:

Действительная часть - Комплексная мощность «S» известна как активная или активная мощность «P» , а мнимая часть известна как реактивная мощность «Q» .

  • S = P + jQ
  • P = V I cosθ
  • Q = V I sinθ

Где

θ - фазовый угол между напряжением и током.

Коэффициент мощности:

Коэффициент мощности «PF» - это отношение активной мощности «P» к полной мощности «| S |» . Математически коэффициент мощности - это косинус угла θ между активной и полной мощностью.


Где

| S | = √ (P 2 + Q 2 )

Другие формулы, используемые для коэффициента мощности, следующие:

Cosθ = R / Z

Где:

  • Cosθ = коэффициент мощности
  • R = сопротивление
  • Z = импеданс (сопротивление в цепях переменного тока i.е. X L , X C и R , известные как Индуктивное реактивное сопротивление , емкостное реактивное сопротивление и сопротивление соответственно).

Cosθ = кВт / кВА

Где

  • Cosθ = коэффициент мощности
  • кВт = фактическая мощность в ваттах
  • кВА = полная мощность в вольт-амперах или ваттах

Дополнительные формулы, используемые для коэффициента мощности.

Реальная мощность однофазного и трехфазного тока

Где

  • В действующее значение и I среднеквадратичное значение - это среднеквадратичное значение напряжения и тока соответственно.
  • В L-N и I L-N - это напряжение и ток между фазой и нейтралью соответственно.
  • В L-L и I L-L - это линейное напряжение и ток соответственно.
  • Cosθ - коэффициент мощности PF.
Реактивная мощность однофазного и трехфазного тока:

Где

θ = - фазовый угол, т.е. разность фаз между напряжением и током.

В следующей таблице показаны различные формулы мощности для цепей переменного и постоянного тока.

Количество постоянного тока переменного тока (1-фазный) переменного тока (3 фазы)

  • P = V x I
  • P = I 2 x R
  • P = V 2 / R
  • P = V x I x Cos Ф
  • P = I 2 x R x Cos Ф
  • P = V 2 / R (Cos Ф)
  • P = √3 x V L x I L x Cos Ф
  • P = 3 x V Ph x I Ph x Cos Ф
  • P = 3 x I 2 x R x Cos Ф
  • P = 3 (V 2 / R) x Cos Ф

Сопутствующие формулы and Equations Posts:

energy - Различные формулы для расчета мощности

Мощность обычно указывается как энергия / время, но на самом деле это немного расплывчато: какая энергия и в какое время?

Когда мы говорим об энергии, мы либо ссылаемся на систему / физический объект, для которого энергия является свойством, либо мы говорим об обмене энергией между двумя системами.

Время, когда говорят о власти, подразумевает процесс, происходящий в течение некоторого промежутка времени; например энергия системы изменяется в течение некоторого времени или, когда она доведена до мгновенного предела, мощность приближается к некоторому значению.

Уравнение

$ P = VI $

предполагает, что существует некоторый путь, по которому проходит ток; ток на пути равен $ I $, а разница напряжений на пути равна $ V $. Ток течет от высокого к низкому напряжению, поэтому мощность $ P $ - это потенциальная энергия движущихся зарядов (т.е.е. текущий) проигрывают, пересекая путь.

В отсутствие трения / тепла / других сил это привело бы к добавлению кинетической энергии к движущимся зарядам со скоростью $ -P $. Однако: всякий раз, когда мы делаем что-то интересное с электричеством (например, лампочки, компьютеры, запуск автомобиля), эта энергия, добавляемая к зарядам, забирается тем, для чего мы ее используем.

Это подводит нас к другим вашим уравнениям.

Если у нас есть резистивный элемент, подчиняющийся закону Ома **, то

$ V = I R $.2 / R $.

Теперь: чтобы перейти к другим полезным вопросам, например, сколько энергии потребляет лампочка, мы должны сделать некоторые предположения о том, как работает устройство. Обычно мы предполагаем, что установившееся состояние , то есть ток / напряжение не меняются с течением времени, что означает, что вся энергия, которую получают заряды, расходуется любым устройством, через которое мы пропускаем ток.

Другими словами, предположение, что мощность из этих формул - это мощность, используемая устройством, обычно безопасно, но только когда речь идет о системах в установившемся режиме.Исключение составляют случаи, когда мы говорим об источнике питания; в этом случае сохранение энергии говорит нам, что энергия, которую получают заряды, должна исходить от источника энергии.

Вкратце: $ P = VI $ всегда действителен при условии, что вы говорите о мощности, отдаваемой зарядам / взятой от источника питания, а два других уравнения справедливы только для резисторных элементов, которые подчиняются закону Ома (с тем же определение власти). Однако вы можете использовать их для других величин, если вам предоставлены правильные допущения, такие как системы устойчивого состояния.

** Обратите внимание, что для выполнения закона Ома не обязательно; сопротивление можно рассматривать как функцию, а не просто постоянное значение, и если вы знаете эту функцию, вы можете безопасно использовать формулы в любое время.

Формулы для расчета быстрой мощности

- Woodstock Power

Быстрые вычисления и формулы мощности

Расчет от кВт до кВА
Полная мощность S в киловольт-амперах (кВА) равна реальной мощности P в киловаттах (кВт), деленной на коэффициент мощности PF:
S (кВА) = P (кВт) / PF

Расчет кВА на кВт
Реальная мощность P в киловаттах (кВт) равна полной мощности S в киловольт-амперах (кВА), умноженной на коэффициент мощности PF:
P (кВт) = S (кВА) × PF

Вычисление из ампер постоянного тока в киловатты
Мощность P в киловаттах (кВт) равна току I в амперах (A), умноженному на напряжение В в вольтах (В), деленное на 1000:
P (кВт) = I (A) × V (V) /1000

Расчет однофазных ампер переменного тока в киловатты
Мощность P в киловаттах (кВт) равна коэффициенту мощности PF , умноженному на фазный ток I в амперах (A), умноженному на действующее значение напряжения В в вольтах (В), разделенных на 1000:
P (кВт) = PF × I (A) × V (V) /1000

Расчет трехфазного тока переменного тока в киловаттах

Расчет с линейным напряжением
Мощность P в киловаттах (кВт) равна квадратному корню из 3-х кратного коэффициента мощности FP , умноженного на фазный ток I в амперах (A), умноженный на линейный Действующее значение напряжения В LL в вольтах (В), деленное на 1000:
P (кВт) = 3 × PF × I (A) × В LL (В) /1000

Расчет с фазным напряжением
Мощность P в киловаттах (кВт) равна трехкратному коэффициенту мощности FP , умноженному на фазный ток I в амперах (A), умноженному на действующее значение напряжения между фазой и нейтралью V LN в вольтах (В), разделенных на 1000:
P (кВт) = 3 × PF × I (A) × V LN (V) / 1000

Электроэнергия - Веб-формулы

Электрическая мощность определяется по формуле:
P = V · I
Где V - напряжение, а I - ток.

Соответствующие единицы:
ватт (Вт) = вольт (В) · ампер (A)


Мощность также можно определить по следующим формулам:
P = I 2 · R R = P / I 2 I

9011 9011 R )
P = V 2 / R R = V
9011 V = √ ( P · R )


Подробнее о Electric Power 9011 6
Электроэнергия определяется как скорость, с которой работа выполняется источником эл.м.ф. в поддержании тока в электрической цепи. Практическая единица мощности - киловатт и лошадиные силы; где 1 киловатт = 100 ватт и 1 л.с. = 746 ватт.

Если сопротивления (например, электрические приборы) соединены последовательно, ток через каждое сопротивление будет одинаковым. Тогда мощность электрического прибора, P α R и P α V (поскольку V = IR), это означает, что при последовательной комбинации сопротивлений разность потенциалов и потребляемая мощность будут больше при большем сопротивлении .

Если сопротивления ( i.е. электроприборов) подключены параллельно, разность потенциалов на каждом приборе одинакова. Тогда P α 1 / R и I α 1 / R (как V = IR), что означает, что при параллельной комбинации сопротивлений потребляемый ток и мощность будут больше при меньшем сопротивлении.

Для заданного напряжения В, , если сопротивление изменяется с R на ( R / n ), а потребляемая мощность изменяется с P на nP , затем согласно P = V 2 / R , имеем:


P = V 2 / (R / n)) = n (V 2 / R) = nP, где R = R / n и P = nP

Когда приборы питания P 1 , P 2 , P 3 P n включены последовательно с источником напряжения, эффективная потребляемая мощность ( P s ) определяется по формуле:


1/ P s = 1 / P 1 + 1 / P 2 + 1 / P 3 +… + 1 / P n
Для n приборов, каждый из сопротивление R , последовательно соединены с источником напряжения В, рассеиваемая мощность P s тогда задается как:
(1) P s = V 2 / n R

Когда приборы питания

P 1 , P 2 , P 3 P n подключены параллельно к источнику напряжения, эффективная мощность потреблено ( P p ) затем определяется следующим образом:
P s = P 1 + P 2 + P 3 +… + P n
Для приборов n , каждое из которых имеет одинаковое сопротивление R , подключены параллельно к источнику напряжения В , рассеиваемая мощность тогда определяется как:
(2) P p = В 2 / ( R / n) = n V 2 / R

Из (1) и (2) мы имеем P p / P s = n 2 или просто записывается как : P p = n 2 P s .

В соответствии с приведенными выше формулами мы можем объяснить, что:


При группировке ламп серии по заданному источнику напряжения лампа большей мощности будет давать меньшую яркость и будет иметь меньший потенциал сопротивления на ней, но тот же ток , тогда как при параллельном группировании лампочек через данный источник напряжения лампа большей мощности даст большую яркость и позволит большему току проходить через нее, но будет иметь меньшее сопротивление и такую ​​же разность потенциалов на нем.

Электроэнергия
Электроэнергия определяется как общая выполненная работа или энергия, поставленная источником ЭДС. при поддержании тока в электрической цепи в течение заданного времени:
Электрическая энергия = электрическая мощность × время = P × t

Таким образом, формула для электрической энергии имеет вид:
Электрическая энергия = P × t = V × I × t = I 2 × R × t = V 2 t / R

S.I единица электрической энергии - джоуль (обозначается Дж), где 1 джоуль = 1 ватт × 1 секунда = 1 вольт × 1 ампер × 1 секунда
Коммерческая единица электрической энергии - киловатт-час ( кВт · ч ), где 1 кВтч = 1000 Вт h = 3,6 × 10 6 J = одна единица потребляемой электроэнергии .

Количество единиц потребляемой электроэнергии равно n = (общая мощность × время в часе) / 1000
Стоимость потребления электроэнергии в доме = количество.единиц потребленной электроэнергии × количество на одну единицу электроэнергии.

Теорема о максимальной мощности
В ней говорится, что выходная мощность источника тока максимальна, когда внутреннее сопротивление источника равно внешнему сопротивлению в цепи. Итак, если R - внешнее сопротивление цепи, а r - внутреннее сопротивление источника тока (то есть батареи), то выходная мощность максимальна, когда R = r.

Эта теорема применима ко всем типам источников ЭДС. и связан с выходной мощностью, а НЕ с рассеиваемой мощностью.

Если E - применяемая ЭДС. источника ЭДС. т.е. . батарея с внутренним сопротивлением r и R - внешнее сопротивление, тогда ток в цепи определяется как:
I = E / (R + r)

При максимальной выходной мощности R = r , поэтому имеем:
I = E / (r + r) = E / (2r)
и
максимальная выходная мощность:
P max = I 2 r = E 2 / (4r)

При коротком замыкании аккумулятора мощность равна нулю.В этом случае вся мощность батареи рассеивается внутри батареи из-за ее внутреннего сопротивления. Таким образом, мощность, рассеиваемая внутри батареи, определяется как: P = ( E / r) 2 × r = E 2 / r

КПД источника ЭДС.
КПД источника ЭДС. определяется как отношение выходной мощности (, т.е. - мощность на внешнем сопротивлении цепи, к входной мощности (т.е.мощность, потребляемая от источника ЭДС). Итак,

Где V = падение потенциала на внешнем сопротивлении R,
E = E.M.F. источника тока,
I = ток в цепи.

Если r - внутреннее сопротивление источника ЭДС, тогда
В = IR и E = I (R + r )
или

Когда мощность, полученная от источника, максимальна, тогда R = р. В данной ситуации имеем:

Таким образом максимальный КПД источника эл.м.ф. составляет 50%. Это означает, что для элемента только половина общей мощности, потребляемой из элемента, используется для полезных целей, тогда как другая половина рассеивается внутри элемента.

Пример 1:
Лифт должен поднимать 1000 кг на расстояние 100 м со скоростью 4 м / с. Какую в среднем мощность оказывает лифт во время этой поездки?
Решение:
Работу, проделанную лифтом на 100 метров, легко вычислить:
W = mgh = (1000) (9.8) (100) = 9,8 × 10 5 Джоулей.

Общее время поездки можно рассчитать по скорости лифта:
t = x / v = 100 м / 4 м / с = 25 с .

Таким образом, средняя мощность определяется по формуле: P = Вт / t = 9,8 × 10 5 / 25s = 3,9 × 10 4 Вт или 39 кВт.

Пример 2:
Считается, что объект в свободном падении достиг конечной скорости , если сопротивление воздуха становится достаточно сильным, чтобы противодействовать всему ускорению свободного падения, в результате чего объект падает с постоянной скоростью.Точное значение конечной скорости зависит от формы объекта, но для многих объектов оно может быть оценено на уровне 100 м / с. Когда объект весом 10 кг достиг предельной скорости, какую силу сопротивление воздуха оказывает на объект?

Решение: Для решения этой проблемы мы будем использовать уравнение P = Fv cos θ , Вместо обычного уравнения мощности, поскольку нам дана скорость объекта. Нам просто нужно вычислить силу, прилагаемую к объекту сопротивлением воздуха, и угол между силой и скоростью объекта.Поскольку объект достиг постоянной скорости, результирующая сила, действующая на него, должна быть равна нулю. Поскольку на объект действуют только две силы: сила тяжести и сопротивление воздуха, сопротивление воздуха должно быть равным по величине и противоположным по направлению силе тяжести. Таким образом, F a = - F G = мг = 98 Н, направленным вверх. Таким образом, сила, прилагаемая сопротивлением воздуха, антипараллельна скорости объекта. Таким образом:
P = Fv cos θ = (98) (100) (cos180) = - 9800 Вт

Пример 3: Мощность двигателя насоса составляет 4 кВт.Сколько воды в кг / мин он может поднять на высоту 20 м? (g = 10 м / с 2 )
Решение:
Заданная мощность двигателя P = 4KW = 4000 Вт
Если масса воды, поднятая за одну секунду, = m кг.
Общий объем работы, выполненной при подъеме воды, W = mgh
Мощность P = Вт / т, но t = 1 минута = 60 сек.
4000 = mgh / 60
4000 = (m × 10 × 20) / 60
m = 1200 кг.

Пример 4 : Когда вода течет по трубе, ее скорость изменяется на 5%, найти изменение силы воды?
Решение: Мощность = Сила × Скорость = Скорость изменения количества движения × скорость = {(масса / время) × скорость} x скорость = {(adv) × v} × v = adv 3 где «a» - площадь поперечного сечения, «d» - плотность воды, а «v» - скорость потока воды.
Следовательно, Сила воды прямо пропорциональна кубу скорости воды, поэтому пусть
P = Kv 3 (k - постоянная величина, равная ad.)
Взятие бревна с обеих сторон
log P = 3log v + log k
Дифференциация с обеих сторон
dP / P = 3dv / v
процентное изменение мощности, dP / P × 100 = 3 × 5% = 15%.

Пример 5 : Кинетическая энергия выбрасываемой воды из плотины используется для вращения турбины. Труба, по которой устремляется вода - 2.4 метра и его скорость 12 м / сек. Предполагая, что вся кинетическая энергия воды используется для вращения турбины, вычислите производимый ток, если эффективность динамо-машины составляет 60% и станция передает мощность 240 кВ. Плотность воды = 10 3 кг / м 3 .
Решение: Учитывая, что
r = радиус трубы = 1,2 м, средняя скорость воды v = 12 м / с
V = 240 кВ = 240 × 10 3 вольт, плотность воды p = 10 3 кг / м 3 .
Теперь кинетическая энергия текущей воды в секунду, т.е.
Power P = (1/2) (массовый расход в секунду) × v 2
= (1/2) pr 2 (l / t) rv 2
= (1/2) pr 2 rv 3
= (1/2) 3,14 × (1,2) 2 × 10 3 × (12) 3 Вт
= 3,9 x 10 6 Вт

Ток в кабелях передачи определяется по формуле:
ток = выходная мощность / напряжение
= (60% мощности P) / (240 × 1000)
= [(60/100) × 3.9 × 10 6 ] / (240 × 1000) = 9,75 A

Формула мощности - уравнения с примерами

Если мы посмотрим вокруг, то обнаружим несколько вещей, для работы или работы которых требуется энергия. Этой силой может быть что угодно: электричество, физическая сила, человеческие ресурсы и т. Д. Основная задача остается прежней - способность выполнять работу в определенное время.

Формула порошка может быть определена как работа, выполненная любым конкретным объектом или источником за заданное время.

Предположим, что A и B - два человека, выполняющие одну и ту же задачу, но A завершил задачу раньше B, тогда что это означает?

Это просто означает, что A более эффективен, чем B, и эффективность прямо пропорциональна мощности, поэтому мы можем сказать, что A более мощный, чем B. данное время.

Мощность = Работа, проделанная объектом или телом / Общее затраченное время.

Формула мощности отличается в зависимости от требуемых формулировок, например, она может быть другой для объектов, связанных с силой, а также может отличаться для электронных устройств.

Формула мощности для различных отношений и единиц:

  1. P = VI:

Эта формула для мощности взята из главы, посвященной электричеству. Формула дана великим ученым по имени Ом, и эта формула названа в его честь и также известна как закон Ома.

Это означает, что мощность прямо пропорциональна разности потенциалов проводника.Здесь P обозначает мощность, V обозначает разность потенциалов, а I обозначает ток. Единица СИ - ватт. Единица измерения V - вольт, а для I - в столбце.

  1. Формула электроэнергии:

P = R × I2 или V2 / R: Эти формулы являются вариантом закона Ома. Здесь R означает сопротивление, V означает разность потенциалов, а I означает ток.

В нем указано, что мощность прямо пропорциональна квадрату разности потенциалов и обратно пропорциональна сопротивлению проводника.

  1. Уравнение мощности:

P = E / t: Эта формула также называется уравнением механической мощности. Здесь E означает энергию в джоулях, а t означает время в секундах.

Эта формула утверждает, что потребление энергии в единицу времени называется мощностью.

  1. P = w / t:

Это наиболее распространенная и основная формула мощности, о которой мы узнали очень рано. Эта формула выводится из теоремы работы-энергии.

В нем указано, что работа, выполняемая за единицу времени, называется мощностью. Здесь W означает работу в джоулях, а t означает время в секундах.

  1. P = F × s / t:

В этой формуле F обозначает силу, приложенную к объекту, s обозначает смещение объекта, а t обозначает общее затраченное время.

В нем указано, что общее время, необходимое объекту для перемещения из одного места в другое, когда к нему применяется внешняя сила, называется мощностью.

Формула силы различна для разных полей, как упоминалось выше, но ее значение остается почти одинаковым для всех.2 × R

Или,

P = V × V / R

P = V2 / R (следовательно, доказано)

Здесь

P = мощность объекта или тела.

В = разность потенциалов между двумя концами проводника.

I = ток, протекающий по цепи.

R = Сопротивление, обеспечиваемое проводом.

Формула мощности:

P = F × s / t

Как мы знаем,

Power = работа, выполненная вовремя

P = w / t

Работа = сила (F) × смещение (с)

P = F × s / t

Здесь

P = Мощность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *