Содержание

Закон Ома. Формула Закона Ома

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Георг Симон Ом

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

где

I – сила тока в проводнике, единица измерения силы тока – ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления – ом [Ом].

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Нужна помощь в написании работы?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Закон Ома.

Закон Ома.

Программа КИП и А

В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / RгдеI – сила тока, измеряемая в Амперах, (A)   
U – напряжение, измеряемое в Вольтах, (V)
R – сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, – “Не знаешь закон Ома, – сиди дома..”.

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U),

т.е.

P = I × UгдеP – эл. мощность, измеряемая в Ваттах, (W)
I – сила тока, измеряемая в Амперах, (A)   
U – напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока,I=U/RP/U√(P/R)
Напряжение,U=I×RP/I√(P×R)
Сопротивление,R=U/IP/I²U²/P
Мощность,P=I×UI²×RU²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.


Последовательное включение R, L, C
Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, CПри параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2
)
Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ – циклическая, угловая частота; γ – частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / ZгдеI – сила переменного тока, измеряемая в Амперах, (A)   
U – напряжение переменного тока, измеряемое в Вольтах, (V)
Z – полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока,I=U/ZP/(U×Cos(φ))√(P/Z)
Напряжение,U=I×ZP/(I×Cos(φ))√(P×Z)
Полное сопротивление, импедансZ=U/IP/I²U²/P
Мощность,P=I²×ZI×U×Cos(φ)U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:


Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)

 

простое объяснение для чайников с формулой и понятиями

 

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в

Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

 

Памятник Георгу Симону Ому

 

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря “участок цепи” мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть  у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

 

Ток в проводнике

 

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Закон Ома для участка цепи, формула, определение

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит.

Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R

Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае – ЭДС считается отрицательной (рис.3.2).

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3.

При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r).

Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС.

Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Закона Ома для участка цепи

В природе существует два основных вида материалов, проводящие ток и непроводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

Формула Закона Ома

В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

где
I – сила тока, измеряется в амперах и обозначается буквой А;
U – напряжение, измеряется в вольтах и обозначается буквой В;
R – сопротивление, измеряется в омах и обозначается .

Если известны напряжение питания U и сопротивление электроприбора R, то с помощью вышеприведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I.

С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

Применение закона Ома на практике

На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где
P – мощность, измеряется в ваттах и обозначается Вт;
U – напряжение, измеряется в вольтах и обозначается буквой В;
I – сила ток, измеряется в амперах и обозначается буквой А.

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Закон Ома для участка цепи: формулировка и формула, применение

 

От силы тока в цепи зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока. То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток, в свою очередь – это упорядоченное движение частиц под действием электрического поля.

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением. Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току. Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I=U/R,

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи:

U=IR    и    R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Нужна помощь в учебе?



Предыдущая тема: Сопротивление тока: притяжение ядер, проводники и непроводники
Следующая тема:&nbsp&nbsp&nbspРасчёт сопротивления проводников и реостаты: формулы

формулировка простыми словами, формула для первого, второго и третьего

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Источник: rusenergetics.ru

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

Формула закона, известная всем со школьных лет, выглядит так:

\(I=\frac UR\)

Из нее легко выводятся формулы для определения \(U\):

\(U\;=I\times R\)

и для определения \(R\):

\(R=\frac UI\)

Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Источник: dzgo.ru

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

Описание формулы этого закона для полной цепи выглядит так:

\(I=\frac\epsilon{R+r}\)

где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

\(R\) — сопротивление внешней цепи;

\(r\) — внутреннее сопротивление источника.

Источник: multiurok.ru

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

  • Сила тока по формуле: 

\(I=I_1=I_2=I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.

  • Напряжение по формуле:

\(U=U_1+U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.

  •  Сопротивление согласно формуле:

\(R=R_1+R_2+R_3\)

Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

\(I=I_1+I_2+I_3\)

Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.

\(U=U_1=U_2+U_3\)

Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.

  • Сопротивление:

\(R=\frac{R_1\times R_2\times R_3}{R_1+R_2+R_3}\)

Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Источник: en.ppt-online.org

При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

\(I=\frac UZ\)

где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих (\(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).

Реактивное сопротивление цепи зависит:

  • от значений реактивных элементов, 
  • от частоты электротока;
  • от формы тока в цепи. 
 

Источник: fizikaotfizika.ru

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

\(I=\frac UR\)

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

\(R=p\times\left(\frac lS\right)\)

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Источник: grabachapter.com

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Что такое закон Ома – формульное уравнение »Электроника

Закон Ома – один из самых фундаментальных законов теории электричества. Формула или уравнение закона Ома связывает напряжение и ток со свойствами проводника, то есть с его сопротивлением в цепи.


Учебное пособие по сопротивлению Включает:
Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


Закон Ома – один из самых фундаментальных и важных законов, регулирующих электрические и электронные схемы.Он связывает ток, напряжение и сопротивление для линейного устройства, так что, если известны два, можно вычислить третье.

Поскольку ток, напряжение и сопротивление являются тремя основными величинами цепи, это означает, что закон Ома также чрезвычайно важен.

Закон Ома используется во всех областях электротехники и электроники. Он используется для расчета номинала резисторов, необходимых в цепях, а также может использоваться для определения тока, протекающего в цепи, где напряжение может быть легко измерено на известном резисторе, но более того, закон Ома используется в огромное количество вычислений во всех формах электрических и электронных схем – практически везде, где течет ток.

Открытие закона Ома

Существует математическая зависимость, связывающая ток, напряжение и сопротивление. Немецкий ученый Георг Ом провел множество экспериментов, пытаясь показать связь между ними. В те дни, когда он проводил свои эксперименты, не было счетчиков в том виде, в каком мы их знаем сегодня.

Только после значительных усилий и со второй попытки ему удалось разработать то, что мы сегодня знаем как закон Ома.

Примечание о Георге Оме:

Родившийся в Эрлангене, примерно в 50 милях к северу от Мюнхена в 1879 году, Георг Ом стал одним из тех, кто много исследовал новую науку, связанную с электричеством, обнаружив взаимосвязь между напряжением и током в проводнике – теперь этот закон действует. назвал Закон Ома, отдавая должное проделанной им работе.

Подробнее о Георг Ом.

Что такое закон Ома?

Закон

Ома описывает способ протекания тока через материал при приложении разных уровней напряжения. Некоторые материалы, такие как электрические провода, имеют небольшое сопротивление току, и этот тип материала называется проводником. Следовательно, если этот провод, например, проложить прямо напротив батареи, будет протекать большой ток.

В других случаях другой материал может препятствовать прохождению тока, но все же пропускать его. В электрических схемах эти компоненты часто называют резисторами. Однако другие материалы практически не пропускают ток, и эти материалы называются изоляторами.


Посмотрите наше видео о законе Ома

Ом посмотрел на то, как ток течет в различных материалах, и смог разработать свой закон, который мы теперь называем законом Ома.

Чтобы получить первое представление о том, что происходит, можно сравнить электрическую ситуацию с течением воды в трубе.Напряжение представлено давлением воды в трубе, ток представлен количеством воды, протекающей по трубе, и, наконец, сопротивление равно размеру трубы.

Можно представить, что чем шире труба, тем больше будет течь воды. Причина этого в том, что большему количеству воды легче течь по более широкой трубе, чем по более узкой – более узкая труба оказывает большее сопротивление потоку воды. Кроме того, если давление в электронной трубе больше, то по той же трубе будет течь больше воды.

Ом определил, что для обычных материалов удвоение напряжения удваивает ток, протекающий для данного компонента. Различные материалы или одни и те же материалы с разной формой будут иметь разные уровни сопротивления току.

Определение закона Ома

Закон Ома гласит, что ток, протекающий в цепи, прямо пропорционален приложенной разности потенциалов и обратно пропорционален сопротивлению в цепи.

Другими словами, удвоив напряжение в цепи, удвоится и ток. Однако если сопротивление увеличится вдвое, ток упадет вдвое.

В этом математическом соотношении единица сопротивления измеряется в Ом.

Формула закона Ома

Формула или уравнение закона Ома очень проста.

Закон Ома можно выразить в математической форме:

Где:
В = напряжение, выраженное в вольтах
I = ток, выраженный в амперах
R = сопротивление, выраженное в Ом

Формулой можно манипулировать так, чтобы, если известны любые две величины, можно было бы вычислить третью.

Треугольник закона Ома

Чтобы запомнить формулу, можно использовать треугольник, одна сторона которого горизонтальна, а вершина наверху напоминает пирамиду. Иногда это называют треугольником закона Ома.

В верхнем углу треугольника закона Ома находится буква V, в левом углу – буква I, а в правом нижнем углу – R.

Чтобы использовать треугольник, закройте неизвестное количество, а затем вычислите его по двум другим. Если они выстроены в линию, они умножаются, но если один находится поверх другого, их следует разделить.Другими словами, если необходимо рассчитать ток, напряжение делится на сопротивление, то есть V / R и так далее.

Если необходимо рассчитать напряжение, оно определяется путем умножения силы тока на сопротивление, т. Е. I x R.

Пример расчета закона Ома

Если на резистор 500 Ом подается напряжение 10 В, определите величину тока, который будет протекать.

Глядя на треугольник закона Ома, ток неизвестен, а напряжение и сопротивление остаются известными значениями.

Таким образом, ток определяется делением напряжения на сопротивление.

I = VR = 10500 = 0,02 A = 20 мА

Пример 2
Аналогичным образом можно использовать закон Ома для определения сопротивления, если известны ток и напряжение. Возьмем, например, напряжение 10 вольт, а ток 0,1 А. Используя треугольник закона Ома, можно увидеть, что:

Пример 3
Наконец, другая комбинация состоит в том, что если сопротивление и ток известны, то можно рассчитать ожидаемое напряжение на сопротивлении.Возьмем для примера расстояние 250 Ом, через которое протекает ток 0,1 А, тогда напряжение можно рассчитать следующим образом:

V = I R = 0,1 × 250 = 25 вольт

Проводники омические и неомические

Используя закон Ома, можно увидеть, что если бы напряжение и ток были нанесены на график для фиксированного резистора или отрезка провода и т. Д., То была бы прямая линия.

Видно, что удвоение напряжения удваивает ток, который проходит через конкретный элемент схемы.

График напряжения и тока для линейного сопротивления

На графике есть две линии, одна для более высокого сопротивления – эта требует приложения большего напряжения для данного протекающего тока. Соответственно, у него должно быть более высокое сопротивление. И наоборот, кривая для более низкого сопротивления показывает компонент, который требует приложения более низкого напряжения для данного тока.

Компоненты с линейной или прямой линией подчиняются закону Ома и известны как омические проводники.Однако не все электрические электронные компоненты имеют прямолинейный график для напряжения и тока. По разным причинам они могут иметь разные вольт-амперные характеристики. Эти проводники часто называют неомическими.

Закон Ома – одно из самых основных понятий в области электротехники и электроники. Концепция элемента, имеющего определенное сопротивление, которое определяет количество тока, протекающего через него при определенном напряжении, является ключом к работе практически всех цепей.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники». . .

Объяснение с помощью формул и примеров –

Abstract

Закон Ома – важный закон, данный немецким ученым Георгом Симоном Омом.Закон – это соотношение между тремя величинами, то есть током, сопротивлением и напряжением. Ток – это поток зарядов, сопротивление – это противодействие потоку тока, а напряжение – это давление, исходящее от мощности электрической цепи. Ток измеряется в амперах (А), напряжение – в вольтах (В), а сопротивление – в омах, которое обозначается омега (Ом).

Формула закона Ома V = IR. Мы можем вычислить все три величины из этого единственного соотношения. Это можно сделать с помощью треугольника закона Ома.Есть устройства, которые подчиняются закону Ома, называются омическими устройствами, а которые не подчиняются этому закону, называются неомическими устройствами. Мы знаем, исходя из закона Ома, V = I R, Но R = ρl / A

Следовательно, V = Iρl / A, El = j l, где σ = 1 / ρ называется проводимостью.

Закон Ома можно использовать для определения мощности по треугольнику мощности. Это можно сделать, подставив значения тока, напряжения и сопротивления в формулу закона Ома.

Для расчета мощности

[P = V x I] P (ватт) = V (вольт) x I (ампер)

[P = V2 ÷ R] P (ватт) = V2 (вольт) ÷ R ( Ω)

Закон обычно используется в повседневных операциях и процессах.Используется в цифровых схемах, схемах делителей напряжения, термостатах и ​​регуляторах. Итак, важный закон жизни.

Закон Ома

Закон Ома – один из самых фундаментальных и важных законов, регулирующих электронные и электрические цепи. Он связывает ток, напряжение и сопротивление для линейного устройства, так что если двое понимают, третье можно вычислить.

Поскольку ток, сопротивление и напряжение являются тремя важными величинами схемы, это означает, что закон Ома также имеет огромное значение.

Закон Ома используется во всех областях электроники и электротехники. Он используется для расчета номинала резисторов, необходимых в цепях, а также может использоваться для определения тока, протекающего в цепи, в которой напряжение можно легко измерить на известном резисторе, но более того, закон Ома используется в огромное количество вычислений во всевозможных электрических и электронных схемах – практически везде, где это происходит.

Георг Ом

Георг Симон Ом был немецким физиком и математиком.Будучи преподавателем в колледже, Ом начал свое исследование с новой электрохимической ячейки, изобретенной итальянским ученым Алессандро Вольта. Используя механизм собственного изобретения, Ом обнаружил, что существует прямая пропорциональность между разностью потенциалов (напряжением), приложенной к проводнику, и возникающим в результате электрическим током. Это соотношение называется законом Ома.

Закон Ома

Закон Ома описывает, как ток течет через вещество при различных уровнях напряжения.Некоторые вещества, такие как электрические провода, обладают небольшим сопротивлением потоку, и такой материал известен как проводник. Следовательно, если этот проводник поместить прямо напротив батареи, например, будет протекать много тока.

В других случаях другое вещество может препятствовать прохождению тока, но все же допускает некоторые из них. В электрических схемах эти элементы часто называют резисторами. Однако другие вещества практически не пропускают ток, и их называют изоляторами.

Закон Ома

Самыми основными элементами мощности являются напряжение, ток и сопротивление.Закон Ома демонстрирует очень простую связь между этими тремя величинами. Закон Ома гласит, что ток через проводник между двумя факторами прямо пропорционален напряжению в двух точках.

Сопротивление

Сопротивление – это мера сопротивления току, протекающему в электрической цепи. Измеряется в омах, обозначается греческой буквой омега (Ω). Ом назван в честь Георга Симона Ома.

Ток

Ток – это поток носителей электрического заряда, таких как электроны.Электрический ток течет из отрицательных точек в положительные. Единицей измерения электрического тока в системе СИ является ампер (А). 1 ампер тока описывается как один кулон электрического заряда, проходящего мимо особой точки за секунду. Электрический ток широко используется в бытовых и промышленных приборах.

Напряжение

Напряжение – это давление от источника питания электрической цепи, которое проталкивает заряженные электроны (ток) через бегущий контур, позволяя им выполнять работу, подобную освещению света.

Таким образом, напряжение = давление, и оно измеряется в вольтах (В). Этим термином признан итальянский физик Алессандро Вольта (1745-1827), изобретатель гальванической батареи – предшественницы батареи.

Формула закона Ома

Формула или уравнение закона Ома чрезвычайно проста.

Закон Ома может быть продемонстрирован в математической форме:

V = IR

Где:

  • V = напряжение в вольтах
  • I = ток в амперах
  • R = сопротивление в омах
Треугольник закона Ома

Транспонирование приведенного выше уравнения нормального закона Ома даст нам следующие смеси того же уравнения:

Затем, используя закон Ома, мы можем увидеть напряжение 1 В, приложенное к резистору 1 Ом. вызовет протекание тока силой 1А, и чем больше значение сопротивления, тем меньше тока будет протекать при заданном приложенном напряжении.

омических устройств

Система, которая следует закону Ома для всех напряжений на ней, называется омическим устройством. (т.е. в постоянных физических условиях, таких как температура, сопротивление постоянно для многих токов, которые проходят через него). К корпусам омических устройств относятся: кабель, нагревательный элемент или резистор.

неомическое устройство

Система, не подчиняющаяся закону Ома, называется неомическим устройством (т.е. сопротивление различается для разных токов, проходящих через нее).Примеры неомических устройств: термисторы, кристаллические выпрямители, вакуумные трубки и т. Д.

Вывод закона Ома

СВЯЗЬ ПЛОТНОСТИ ТОКА С ЭЛЕКТРИЧЕСКИМ ПОЛЕМ – ФОРМУЛА

Мы знаем, исходя из закона Ома,

V = iR

But

R = ρl / A

Отсюда

V = Iρl / A

Ток на единицу площади (по нормали к току), I / A, называется плотностью тока и обозначается j.

Далее, если E – размер однородного электрического поля в проводнике, длина которого равна l, то разность потенциалов V на его концах равна El.

El = jl

Вышеупомянутое уравнение также может быть преобразовано в векторную форму. Плотность тока (ток через единицу площади перпендикулярно настоящему) также определяется и также может быть вектором J.

Следовательно, приведенное выше уравнение может быть представлено в векторной форме как

E = σj

, где σ = 1 / ρIs , известная как проводимость.

проводимость

Электропроводность – это мера легкости, с которой электрический заряд может проходить через материал. Проводник – это материал, который практически не оказывает сопротивления прохождению электрического тока.

ПРОВЕРКА ЗАКОНА ОМА – ПРИМЕР

Пусть сопротивление, используемое для проверки, будет R. Создайте цепь из R, вольтметра и амперметра, измеряющего напряжение и ток через R, реостат (переменный резистор) и ячейку. Подключите компоненты правильно.Запишите значения напряжения и тока, показанные вольтметром и амперметром. Повторите вышеуказанное для разных значений Реостата. Запишите данные в табличном формате и вычислите

I&V

Для каждого экземпляра. Это должно быть примерно так же. Нанесите график V против I на диаграмму. Получается прямая линия, наклон которой равен помехозащищенности.

Закон об электрической мощности и сопротивлении

Используя закон Ома и подставляя значения V, R и I, формула для электрической мощности доступна как:

Чтобы найти мощность (P)

 [ P = V x I] P (ватт) = V (вольт) x I (ампер) 

или:

 [P = V2 ÷ R] P (ватт) = V2 (вольт) ÷ R (Ω) 

или :

 [P = I2 x R] P (ватты) = I2 (амперы) x R (Ω) 

Опять же, три величины накладываются на треугольник, на этот раз называемый треугольником мощности с электричеством наверху, а также напряжением и током. внизу.Опять же, это расположение отражает фактическое положение каждой величины в формулах мощности закона Ома.

Треугольник силы

Реализация закона Ома

В нашей повседневной жизни есть тысячи применений этого закона. В этом руководстве мы покажем только некоторые из них.

  • Традиционный бытовой регулятор вентилятора – это очень распространенное устройство, в котором ток через вентилятор регулируется путем управления сопротивлением цепи регулятора.
  • В схеме делителя напряжения этот закон используется для разделения напряжения источника по выходному сопротивлению.
  • В цифровых схемах существует множество функций, в которых требуется преднамеренное падение напряжения для подачи определенного напряжения на различные электронные элементы. Это достигается применением закона Ома.

Закон Ома | Клуб электроники

Закон Ома | Клуб электроники

Следующая страница: Power and Energy

См. Также: Напряжение и ток | Сопротивление

Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением

Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение.Закон Ома показывает взаимосвязь между тремя величинами: напряжением, током и сопротивлением.

Закон Ома можно записать в виде словесного уравнения :

напряжение = ток × сопротивление

Или используя символы для обозначения величин напряжения (В), тока (I) и сопротивления (R):

На самом деле это можно записать тремя способами, и вы можете выбрать версию, которая лучше всего подходит для ваших целей:

Треугольник ВИР – способ запомнить закон Ома

Вы можете использовать треугольник ВИР, чтобы помочь вам запомнить три версии закона Ома.

  • Для расчета напряжения, В : поместите палец на V, это оставляет I R, поэтому уравнение V = I × R
  • Чтобы рассчитать ток , I : положите палец на I, это оставляет V над R, поэтому уравнение I = V / R
  • Чтобы рассчитать сопротивление , R : поместите палец на R, это оставляет V над I, поэтому уравнение R = V / I



Расчет по закону Ома

Используйте этот метод для проведения расчетов:

  1. Запишите значения , при необходимости конвертируя единицы.
  2. Выберите нужное Equation (используйте треугольник VIR).
  3. Введите числа в уравнение и вычислите ответ.

Должно быть V ery E asy N ow! См. Примеры ниже:

Пример 3:

Резистор 1,2 кОм пропускает ток 0,2 А, какое напряжение на нем?

Пример 4:

9 В подается на резистор 15 кОм, какой ток?

  • V значения: V = 9V, I =?, R = 15k
  • E предложение: I = V / R
  • N umbers: Ток, I = 9 / 15 = 0.6 мА
    (использование k для сопротивления означает, что расчет дает ток в мА)

Следующая страница: Энергетика | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

Понимание формул закона сопротивления постоянного и переменного тока, формул и формул мощности


Понимание основ закона Ома – диаграммы переменного и постоянного тока …. в чем разница?


AC = Z (импеданс) и DC = R (сопротивление) Формулы закона Ома

Колесо силы закона Ома переменного тока и колесо силы закона Ома постоянного тока

(схемы, диаграмма, диаграмма, колесо, формулы, теория электроники)

Если вам нужно иметь дело с формулами напряжения, тока, сопротивления или импеданса и мощности, и вы хотите знать, в чем разница между тем, что мы называем формулами переменного и постоянного тока, вы можете найти эти колеса силы закона Ома.Форма с четырьмя квадрантами упрощает процесс нахождения значений E, I, R или Z и P. Есть два колеса, одно для нашей диаграммы закона Ома постоянного тока (R – формулы сопротивления) и одна диаграмма закона Ома для нашего переменного тока ( Z – формулы импеданса). Если вам интересен цвет на колесе, мы используем его в качестве удобного справочника для определения цветов полос резистора … мы включаем их в наши часы и часы по закону Ома. Пожалуйста, прочтите дополнительную информацию о том, как читать эту диаграмму.

Два основных типа электричества – это переменный ток, известный как AC, и постоянный ток, известный как DC.Разница между системами переменного и постоянного тока заключается в том, как мощность передается по линиям. При переменном токе поток энергии меняет направление – фактически 60 раз в секунду, но при постоянном токе мощность будет двигаться только в одном направлении.


Переменный ток – Think Impedance

Силовые формулы закона Ома и закона Джоуля. Как правило, если вы МАСТЕР-электрик, специалист по устранению неполадок или инженер, вы можете предпочесть наши часы, часы, наклейки, диаграммы, брелки и т.товары. Думайте расширенно – думайте о сопротивлении. Нужны формулы Z? Колесо питания переменного тока

Постоянный ток постоянного тока – Думайте о сопротивлении
Формулы закона Ома и закона Джоуля. Как правило, если вы электрик, техник, подмастерье, ученик, студент или любитель, вы можете предпочесть этот продукт с колесом закона Ома. Подумайте о сопротивлении – нужны формулы R?
По мере того, как вы продвигаетесь в своем обучении, вы, несомненно, найдете также полезными формулы переменного тока для импеданса (таблица выше).

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Чтобы использовать диаграмму, в центральном круге выберите значение, которое необходимо найти; например, на диаграмме постоянного тока: I (амперы), R (Ом), E (вольты) или P (ватты). Затем выберите формулу, содержащую значения, которые вы знаете из соответствующего квадранта диаграммы.

Эти колеса силы закона Ома выше показывают нашу цветовую таблицу резисторов, которая поможет вам определить цвета резисторов … это уникальная концепция, и вы найдете ее полностью объясненной на нашей странице технических примечаний слева.Мы включаем эти диаграммы на все наши часы, наклейки, брелки, диаграммы и часы с законом Ома, поэтому не забудьте заглянуть на страницу «Наши продукты», прежде чем покинуть наш сайт. Спасибо!

Понятия (теория) напряжения, тока, сопротивления, импеданса и мощности необходимы для понимания основных электрических схем и спецификаций. Эти области должны быть полностью изучены, прежде чем можно будет понять внутренности даже самых простых электронных устройств, таких как дешевые мобильные телефоны. Как только эти концепции станут вам знакомы, вы обнаружите, что наладить правильное соединение между частями оборудования будет намного проще.Вы также сможете лучше разбираться в спецификациях производителя, что поможет вам принимать более обоснованные решения о покупке. Законы Ома – один из фундаментальных законов физики. Ток в цепи увеличивается при увеличении напряжения и уменьшается при увеличении сопротивления ИЛИ ток, протекающий в цепи, прямо пропорционален напряжению, приложенному к цепи, и обратно пропорционален сопротивлению цепи.

Теория закона Ома может быть сформулирована как математический инструмент, который имеет наибольшее применение при определении неизвестного фактора тока, напряжения или сопротивления в электрической цепи, в которой известны два других фактора.Следовательно, его можно использовать вместо амперметра, вольтметра или омметра – когда вы пытаетесь определить значение цепи, в котором вам уже известны два других значения.

Текущий ВСЕГДА выражается в АМПЕРАХ и обозначается буквой I

Напряжение ВСЕГДА выражается в ВОЛЬТАХ и обозначается буквой E или V

Сопротивление ВСЕГДА выражается в ОМ и обозначается буквой R

Существует два типа тока: постоянный и переменный.Постоянный ток (DC) равномерно течет в одном направлении через проводник; переменный ток (AC) изменяет направление в проводнике с различной частотой. Чтобы увидеть пример этого, перейдите на нашу страницу технических примечаний.

Практически во всех электрических цепях существует некоторое сопротивление протеканию тока. Противодействие постоянному току называется сопротивлением, которое измеряется в единицах, называемых омами, и представлено в электрических уравнениях буквой R.

Противодействие переменному току называется импедансом, который также измеряется в омах, но в электрических уравнениях он представлен буквой Z.


Пожалуйста, перейдите по этой ссылке, чтобы найти формулы последовательной цепи и формулы параллельной цепи для закона Ома постоянного тока и закона Ома переменного тока: ohmslaw2.asp На КАРТОЧКАХ ФОРМУЛ также показаны формулы для следующего:
  • Полная мощность
  • Полная мощность трех фаз

  • Коэффициент мощности

  • Реактивное сопротивление

  • Передаточные числа трансформатора

  • Motor Sync.

  • Частота генератора

  • Эффективность любого устройства

  • Трехфазная звезда

  • 3-фазный треугольник

  • Значения синусоидальной волны

    ЗАКОННЫЕ ФОРМУЛЫ OHMS ДЛЯ AC

    Полная мощность обозначается буквами AP

    Импеданс обозначается буквой Z

    Total обозначается буквой T

    В общем, закон Ома не может применяться к цепям переменного тока, поскольку он не учитывает реактивное сопротивление, которое всегда присутствует в таких цепях.Однако, изменив закон Ома, который учитывает влияние реактивного сопротивления, мы получаем общий закон, применимый к цепям переменного тока. Поскольку полное сопротивление Z представляет собой совокупное противодействие всех реактивных сопротивлений и сопротивлений, этот общий закон для переменного тока:

    I =

    E

    Z

    Это общее изменение применяется к переменному току, протекающему в любой цепи, и любое из значений может быть найдено из уравнения, если другие известны.(Обратите внимание, что приведенная выше формула является только примером для упрощения. Пожалуйста, обратитесь к нашему колесу закона Ома выше – истинной формуле для импеданса. Обратите внимание на «Т», которые представляют собой сумму.)

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Каждая единица измерения названа в честь известного экспериментатора в области электричества:

  • Усилитель по мотивам француза Андре М. Ампера

  • Вольт по итальянскому Алессандро Вольт

  • Ом по немецкому Георгу Симону Ому

  • Ватт в честь шотландского изобретателя Джеймса Уоттса

    ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

Буква P означает мощность в ваттах.

Напряжение, измеренное в вольтах, обозначается буквами E (или V)

Электрический ток, измеряемый в амперах, обозначается буквой I

Электрическое сопротивление, измеренное в Ом, обозначается буквой R

.

Закон Ома: E = I R I = E / R R = E / I


ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Джеймс Прескотт Джоуль, а не Георг Саймон Ом, первым открыл математическую связь между рассеиваемой мощностью и током через сопротивление.Это открытие, опубликованное в 1841 году, по праву известно как закон Джоуля. Однако эти уравнения мощности настолько часто связаны с уравнениями закона Ома, связывающими напряжение, ток и сопротивление (E = IR; I = E / R; и R = E / I), что они часто приписываются Ому.
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ: Законы Кирхгофа … n: (физика) два закона, управляющие электрическими сетями, в которых протекают установившиеся токи: сумма всех токов в точке равна нулю, а сумма прироста и падений напряжения в любой замкнутой цепи равно нулю.

ЗАКОН ОМА ДЛЯ КОНДЕНСАТОРА:

V C = I C X C где:

В C = напряжение на конденсаторе
I C = ток через конденсатор
X C = емкостное реактивное сопротивление


ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ:

Миллиампер X Килом = Вольт

Микроампер X Мегаом = Вольт


“Один ампер, протекающий на один ом, вызывает падение потенциала на один вольт.”Георг Симон Ом

Пожалуйста, ознакомьтесь с нашими другими категориями, пока вы находитесь на нашем веб-сайте. Предлагаем товары в дополнение к контенту! Такие продукты, как часы закона Ома, часы, диаграммы, отличительные знаки и монеты закона Ома! Мы предлагаем другие подарки для электриков и инженеров, такие как наклейки на окна, забавные полноцветные наклейки, плакаты, кружки, украшения, поздравительные открытки и т. Д. Просто нажмите на любой из наших отделов подарков слева. Спасибо!

Примеры закона Ома

– Сборка электронных схем

Обычно я не использую много математики при работе с электроникой, но закон Ома чрезвычайно полезен!

Закон был найден Георгом Омом и основан на том, как связаны напряжение, ток и сопротивление:

Посмотрите на рисунок выше и убедитесь, что для вас это имеет смысл:

  • Если вы увеличите напряжение в цепи при неизменном сопротивлении, вы получите больший ток.
  • Если вы увеличиваете сопротивление в цепи при неизменном напряжении, вы получаете меньший ток.

Закон Ома – это способ описания взаимосвязи между напряжением, сопротивлением и током с использованием математики:

В = RI

  • В – символ напряжения.
  • I – символ тока.
  • R – символ сопротивления.

ОЧЕНЬ часто пользуюсь. Это формула электроники.

Вы можете переключить его и получить R = V / I или I = V / R.Если у вас есть две переменные, вы можете рассчитать последнюю.

Треугольник закона Ома

Вы можете использовать этот треугольник, чтобы запомнить закон Ома:

Как использовать:
Накройте рукой письмо, которое вы хотите найти. Если оставшиеся буквы лежат одна над другой, значит, верхнюю разделите на нижнюю. Если они рядом, значит, умножаются одно на другое.

Пример: Напряжение

Найдем формулу для напряжения:

Положите руку на V в треугольнике, затем посмотрите на R и I.I и R находятся рядом друг с другом, поэтому вам нужно умножить. Это означает, что вы получите:

В = I * R

Пример: сопротивление

Найдем формулу сопротивления:

Положите руку на R. Тогда вы увидите, что V находится над I. Это означает, что вам нужно разделить V на I:

R = V / I

Пример: Текущий

Найдем формулу для тока:

Положите руку на I. Затем вы увидите букву V над R, что означает разделение V на R:

I = V / R

Как запомнить закон Ома

Самый простой способ запоминать что-то – создать с ним глупую ассоциацию, чтобы вы запомнили это, потому что это так глупо.

Итак, чтобы помочь вам запомнить закон Ома, позвольте мне представить VRIIIIIIII! правило.

Представьте, что вы ведете машину очень быстро, а затем внезапно резко нажимаете на тормоза. Какой звук вы слышите?

«ВРИИИИИИИИИИИИ!»

И так можно запомнить V = RI;)

Практический пример

Лучший способ научить пользоваться им – это на собственном примере.

Ниже представлена ​​очень простая схема с батареей и резистором. Батарея представляет собой батарею на 12 вольт, а сопротивление резистора – 600 Ом.Сколько тока течет по цепи?

Чтобы найти величину тока, вы можете использовать треугольник выше к формуле для тока: I = V / R. Теперь вы можете рассчитать ток, используя напряжение и сопротивление:

I = 12 В / 600 Ом
I = 0,02 A = 20 мА (миллиампер)

Значит ток в цепи 20 мА.

Если вы не любите рассчитывать вещи самостоятельно, воспользуйтесь этим калькулятором закона Ома.

Другой пример

Попробуем еще один пример.

Ниже мы снова видим схему с резистором и батареей. Но на этот раз мы не знаем напряжение батареи. Вместо этого мы представляем, что измерили ток в цепи и обнаружили, что он составляет 3 мА (миллиампер).

Сопротивление резистора 600 Ом. Какое напряжение у аккумулятора?

Вспоминая «VRIIII!» правило, вы получаете:

В = RI
В = 600 Ом * 3 мА
В = 1,8 В

Значит, напряжение АКБ должно быть 1.8 В.

Возврат от закона Ома к электронным схемам

Закон Ома

| Определение | Формула | Приложения

Определение закона Ома

Закон Ома гласит, что ток в электрической цепи пропорционален приложенному напряжению и обратно пропорционален его сопротивлению.

По мере увеличения напряжения в цепи (сопротивление остается постоянным) ток увеличивается на ту же величину. Следовательно, если напряжение удвоится, ток удвоится.Кроме того, величина тока в цепи обратно пропорциональна ее сопротивлению, когда напряжение остается неизменным.

Другими словами, если сопротивление в цепи увеличивается, величина тока уменьшается. Например, если сопротивление увеличивается в три раза, ток будет уменьшен до одной трети от своего первоначального значения (напряжение остается постоянным).

Формула закона Ома

Закон Ома удобно выразить следующим простым уравнением:

$ I (ампер) = \ frac {E \ text {} (вольт)} {R \ text {} (Ом )} \ text {} \ cdots \ text {} (1) $

С помощью простой алгебры уравнение (1) можно переформулировать в терминах сопротивления или напряжения следующим образом:

$ R = \ frac {E \ text { }} {I} \ text {} \ cdots \ text {} (2) $

$ E = IR \ text {} \ cdots \ text {(3)} $

Вот еще один способ выражения закона Ома:

Электрическое давление в один вольт на сопротивлении в один ом вызовет протекание тока в один ампер.

Закон Ома и нелинейные резисторы

Поскольку R является постоянным, уравнение (3) представляет собой уравнение прямой линии, по этой причине резистор называется линейным резистором. График зависимости v от I показан на рисунке 1, который представляет собой линию, проходящую через начало координат с наклоном R. Очевидно, что прямая линия – единственный возможный график, для которого отношение v к I является постоянным для всех i.

Рис. 1: вольт-амперная характеристика линейного резистора

Резисторы, сопротивление которых не остается постоянным для разных оконечных токов, известны как нелинейные резисторы.Для такого резистора сопротивление является функцией тока, протекающего в устройстве. Простым примером нелинейного резистора является лампа накаливания. Типичная вольт-амперная характеристика для этого устройства показана на рисунке 2, где мы видим, что график больше не является прямой линией. Поскольку R не является константой, анализ схемы, содержащей нелинейные резисторы, является более трудным.

Рис. 2: типовая вольт-амперная характеристика нелинейного резистора

В действительности все практические резисторы нелинейны, поскольку на электрические характеристики всех проводников влияют факторы окружающей среды, такие как температура.Однако многие материалы очень близки к идеальному линейному резистору в желаемой рабочей области.

Закон Ома: решение для тока

Простая электрическая цепь показана в графической форме на рисунке 3, так что вы можете увидеть физическое соотношение между несколькими компонентами. Вообще говоря, в работе с электроникой используются принципиальные схемы, а не графические схемы. Диаграмма, показанная на Рисунке 4, схематически представляет собой графическое изображение на Рисунке 3.

Рис.3: Графическая схема простой электрической цепи

Рис. 4: Принципиальная схема последовательной цепи

Соблюдайте полярность соединений амперметра на рисунке 4. Обратите внимание, что положительный полюс амперметра подключается к положительному полюсу батареи. , в то время как отрицательная клемма подключается к резистору: также обратите внимание, что амперметр подключен последовательно с резистором, так что весь ток в цепи должен проходить через него. Поскольку амперметры имеют очень низкое сопротивление, они существенно не увеличивают сопротивление цепи.Если бы амперметр был случайно подключен параллельно (параллельно) батарее или резистору, на мгновение протек бы очень большой ток, который, вероятно, повредил бы измеритель.

К аккумулятору подключен вольтметр для измерения напряжения аккумулятора. Поскольку вольтметры обычно представляют собой приборы с очень высоким сопротивлением, они не потребляют значительного количества тока от батареи. Соблюдайте полярность подключения вольтметра. Положительный вывод подключается к положительной клемме аккумулятора, а отрицательный вывод подключается к отрицательной клемме аккумулятора.Следует помнить очень важное правило: вольтметры всегда подключаются параллельно источнику напряжения или нагрузке, а амперметры всегда подключаются последовательно с цепью или нагрузкой.

Вот пример, иллюстрирующий, как можно использовать закон Ома для определения тока в последовательной цепи.

Закон Ома Пример 1

Определить ток в простой последовательной цепи, показанной на рисунке 4, по предоставленной информации?

Решение

Используйте формулу закона Ома для определения силы тока:

$ I \ text {=} \ frac {E \ text {}} {R} $

Подставьте известные значения в формулу:

$ I = \ frac {12 \ text {}} {3} = 4A $

Таким образом, 12 В, подключенное через сопротивление 3 Ом, дает ток 4 А через резистор.В этом случае амперметр покажет 4А.

Закон Ома: определение сопротивления

Сопротивление электрической цепи может быть легко определено с помощью формулы закона Ома, приведенной ранее, и решения для сопротивления следующим образом:

$ R = \ frac {E \ text { }} {I} \ text {} $

Эта формула говорит нам, что сопротивление в цепи обратно пропорционально величине тока. Если ток небольшой, сопротивление цепи должно быть большим, если предполагается, что напряжение остается постоянным.Следующий пример иллюстрирует использование этой формулы:

Закон Ома Пример 2

Ссылаясь на рисунок 5, определите омическое значение сопротивления нагрузки RL по приведенным данным.

Рис.5: Определение сопротивления в последовательной цепи

Решение

Используйте уравнение (2) и подставьте известные значения:

$ {{R} _ {L}} = \ frac {E \ text {}} {I} \ text {=} \ frac {10} {2} \ text {= 5} \ Omega \ text {} $

Цепь будет считаться схемой с относительно низким сопротивлением, поскольку ток 2А протекает только с Подано 10 В.

Закон Ома: решение для напряжения

Если сопротивление и ток цепи известны, легко вычислить величину приложенного напряжения. Мы используем формулу закона Ома и решаем для напряжения:

$ E = IR \ text {} $

Из этой формулы мы видим, что напряжение является произведением тока и сопротивления. Падение напряжения на сопротивлении или цепи будет напрямую зависеть от тока или сопротивления. Например, если ток через резистор удвоится, падение напряжения (IR-падение) удвоится.Или, если ток можно поддерживать на заданном уровне, но сопротивление удваивается, падение напряжения удваивается. В следующем примере показано, как рассчитать падение напряжения или IR.

Закон Ома Пример 3

Определите значение напряжения питания в цепи, показанной на рисунке 5, по предоставленной информации.

Рис.6: Расчет E, когда известны R и I

Решение

$ E = IR = 2 * 50 = 100 В подайте ток 2А через резистор 50 Ом.Можно сказать, что падение напряжения на резисторе составляет 100 В, то же самое, что и на питании. На амперметре не происходит падения ИК-излучения, поскольку его сопротивление принято равным нулю для всех практических целей.

Графическое представление закона Ома

Ранее мы узнали, что ток в цепи прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению. Если напряжение увеличится вдвое, ток увеличится в два раза при условии, что сопротивление останется постоянным.Эта линейная зависимость показана верхней диагональной прямой линией на рисунке 7, которая представляет собой график уравнения I = V / R для сопротивления 20 Ом. Обратите внимание, что напряжение отложено по горизонтальной оси, а ток – по вертикальной оси.

Рис. 7: Линейная зависимость между током и напряжением в цепи постоянного сопротивления

Если бы мы приняли сопротивление нагрузки 40, а не 20 Ом, результатом была бы диагональная линия R = 40 Ом. Если использовалось сопротивление менее 20 Ом, результирующая линия была бы круче, чем линия для нагрузки 20 Ом.Кривые на рисунке 7 показывают прямую пропорциональность между напряжением и током для различных значений сопротивления нагрузки.

Закон Ома Память AID

Закон Ома можно легко запомнить с помощью простого вспомогательного средства запоминания, показанного на рисунке 8. Закрыв одну из букв, вы получите расположение двух других в правой части формула определения стоимости перепечатанного письма.

  • При наведении пальца на I дает E / R, указывая, что I = E / R.
  • Закрытие буквы E оставляет IR, указывая, что E является продуктом IR.
  • Точно так же, если R покрывается, E / I остается, что означает, что R равно E, деленному на I.

Рис.8: Вспомогательное средство для изучения закона Ома

Применение закона Ома
  1. Закон Ома полезен в линейных цепях для расчета напряжения, тока и сопротивления. Если мы знаем два из них
  2. Расчет мощности становится проще.

https: // www.youtube.com/watch?v=OGI-065RhFo

Проверьте свое понимание; ответьте на эти контрольные вопросы.

  1. Какова основная формула закона Ома? Каковы два вывода этой формулы?
  2. Какой ток течет в цепи с сопротивлением 100 В и 1000 Ом?
  3. Какое напряжение требуется для получения тока 2 А через 60 Ом?
  4. Какое сопротивление ограничит ток до 4 А в цепи с питанием 200 В?
  5. Сопротивление цепи остается прежним, но ток через резистор внезапно увеличивается втрое.Что случилось с напряжением цепи?
  6. Если напряжение, приложенное к цепи, удвоится, но сопротивление останется неизменным, что изменит текущее значение?
  7. Если R утроится, а E удвоится, каким будет новое текущее значение?

Ответы на контрольную викторину

  1. I = E / R B. R = E / I C. E = IR
  2. 0,1 A
  3. 120 В
  4. 50 Ом
  5. Оно утроилось
  6. Двойное
  7. Две трети исходного

Закон Ома

Закон Ома гласит, что

“ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению в двух точках, и обратно пропорционален сопротивлению. между ними”.

Закон Ома может быть выражен как

I = U / R (1)

, где

I = ток (ампер, А)

U = электрический потенциал (вольт, В)

R = сопротивление (Ом, Ом, )

Пример – закон Ома

А 12-вольтная батарея обеспечивает питание до сопротивления 18 Ом . Ток в электрической цепи можно рассчитать как

I = (12 вольт) / (18 Ом)

= 0.67 ампер

Эквивалентные выражения закона Ома

Закон Ома (1) также можно выразить как

U = RI (2)

или

R = I (3)

Скачайте и распечатайте диаграмму закона Ома!

Пример – сопротивление электрической цепи

Ток 1 ампер протекает через электрическую цепь 230 В .На приведенной выше диаграмме это означает сопротивление

R ≈ 220 Ом

Его можно также рассчитать по закону Ома

R = (230 В) / (1 A)

= 230 Ом

Пример – Закон Ома и кратные и подкратные

Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и подкратные.

Требуемое напряжение, подаваемое на 3.Резистор 3 кОм для создания тока 20 мА можно рассчитать как

U = (3,3 кОм) (1000 Ом / кОм) (20 мА) (10 -3 А / мА)

= 66 В

Номограмма электрического сопротивления

Загрузите и распечатайте номограмму зависимости электрического сопротивления от вольт и ампер!

Значения по умолчанию на номограмме выше: 230 вольт , сопротивление 24 Ом и ток 10 ампер .

Мощность

Электрическая мощность может быть выражена как

P = UI

= RI 2

= U 2 / R (4)

где

P = электрическая мощность (Вт, Вт)

Пример – потребляемая мощность

Мощность, потребляемая в указанной выше электрической цепи 12 В , может быть рассчитана как

P = (12 вольт) 2 / ( 18 Ом)

= 8 Вт

Пример – мощность и электрическое сопротивление

Электрическая лампочка 100 Вт подключена к источнику питания 230 В .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *