Содержание

§ 7. Формулировка закона электромагнитной индукции.

Фарадей, открывший в 1831 году явления электромагнитной индукции, в XXVIII серии своих „Опытных Исследований по Электричеству" в § 3115 устанавливает следующее основное положение:

„... количество электричества, протекшее по цепи (индуктирован­ного) тока, прямо пропорционально числу перерезанных (этой цепью) магнитных линий.

55

Еще в I серии своих „Исследований" Фарадей в § 213 устанавливает зависимость силы индуктированного тока от сопроти­вления проводника:

„Эти результаты показывают, что токи, производимые в телах при помощи магнито-электрической индукции, пропорциональны их проводимости. Что они в точности пропорциональны проводи­мости и всецело зависят от нее, доказывается, я полагаю..." (далее следует ссылка на ряд опытов с различными проводящими материалами).

Таким образом, мы можем в следующем виде представить основной закон электромагнитной индукции:

q=-N/r. (6)

Здесь qколичество электричества, протекшее в течение некоторого промежутка времени через любое поперечное сечение контура, проводящего индуктированный ток, N—число магнитных линий, перерезанных контуром в это вpeмя, и rэлектрическое сопротивление контура. Знак минус (-) мы вводим в соответствии с данными непосредственного опыта, в целях соблюдения правила, связывающего положительное направление тока в контуре с поло­жительным направлением магнитного потока, пронизывающего контур (правило штопора). При этом числу N будем приписывать положи­тельные значения в случае, когда процесс перерезывания магнитных линий влечет за собою увеличение магнитного потока, сцепляющегося с контуром проводника, и отрицательные значения в противном случае.

Пользуясь соотношением (6), легко можно найти выражение для индуктированной ЭДС. Действительно, беря производные от обеих частей равенства (6) по времени, имеем:

Так как;

где i—сила тока, то получаем:

ri=dN/dt.

Но ri представляет собою не что .иное, как ЭДС, расходуемую в данном случае на преодоление сопротивления цепи, именно:

ri=e.

На основании этого окончательно можем написать:

e=-dN/dt, (7)

56

т. е. электродвижущая сила, индуктируемая в некотором контуре, не зависит от вещества, формы и размеров проводника, из которого контур состоит. Эта ЭДС зависит исключительно от скорости перерезывания магнитных линий контуром.

Так как настоящая формулировка закона электромагнитной индукции является лишь простой перефразировкой основных поло­жений, установленных Фарадеем, и в полной мере соответствует его представлению о пересечении магнитных линий проводни­ком, как о первопричине индукции тока, в дальнейшем мы будем соотношение

E=-dN/dt

называть фарадеевской формулировкой закона электромагнитной индукции.

Вскоре после открытия Фарадеем явления электромагнитной индукции Ф. Нейман сделал попытку обосновать математическую теорию этого явления, исходя из закона Ленца. Вслед за тем Гельмгольц и В. Томсон (Кельвин) показали, что электромагнитная индукция может быть рассматриваема как следствие закона сохра­нения энергии. Во всех этих работах авторы пришли к выражению индуктированной электродвижущей силы в виде производной по­времени от некоторой величины, физический смысл которой не был, однако, достаточно ясно вскрыт. Максвелл, основываясь на опытах Фарадея и

принимая во внимание установленный Фарадеем же принцип непрерывности магнитного потока, по­казал, что здесь речь идет о магнитном потоке, охватываемом дан­ным контуром (сцепляющимся с данным контуром). Таким обра­зом, предложенная Максвеллом формулировка закона электромаг­нитной индукции гласит:

e=-iФ/dt, (8)

где е — индуктированная в данном контуре ЭДС, а Ф — полный магнитный поток, сцепляющийся с контуром.

С математической точки зрения преобразование первой форму­лировки (фарадеевской) во вторую (максвелловскую) представляет собою не что иное, как преобразование линейного интеграла, распространенного по замкнутому контуру, в поверхностный инте­грал, распространенный по площади, ограниченной контуром. При этом следует иметь в виду, что такое преобразование одного интеграла в другой имеет смысл и возможно

только при условии, что рассматриваемый контур не претерпевает никаких изменений,

57

нарушающих его непрерывность, как строго определенного контура. Только в этом случае обязательно всегда будет:

dN=dФ,

и мы можем написать:

e=-dN/dt=-dФ/dt.

Если же условие о непрерывности и неизменности контура электрической цепи не выполняется, то соотношение

- dN/dt=-dФ/dt может и не иметь места.

1) Faraday, Exp. Res., Vol. I, § 213: „These results tend to prove that the currents produced by magneto-electric induction in bodies are proportional to their conducting power. That they are exactly proportional to and altogether dependent upon the conducting power, is, I think, proved by. .."

1) Faraday, Experimental Researches in Electricity, Vol. III, § 3115. .... the quantity of electricity, thrown into a current is directly as the amount of curves intersected".

studfiles.net

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме

Фарадей был первым, кто обнаружил явление электромагнитной индукции. Это случилось в ходе опыта, когда он исследовал изменение потока магнитной индукции в замкнутом проводнике и выявил, что при этом вырабатывается электрический ток. Определение направления ЭДС индукции осуществляется согласно правилу, сформулированному Ленцем.

Определение 1

Направление индукционного потока препятствует изменению магнитного потока через создаваемое им поле.

Определение 2

Нейман определил закон электромагнитной индукции математически, и этой формулировкой мы пользуемся по сей день: εi=-dΦdt.

В нем не учитываются возможные движения контура. Соотношение dΦdt является выражением полной скорости изменения потока индукции, который охватывается проводником при его движении и деформации, а также при изменениях магнитного поля.

Закон Фарадея для электромагнитной индукции очень важен, поскольку он является выражением нового физического явления: когда магнитное поле изменяется, оно порождает электрическое, т.е. электрическое поле может возникать не только при помощи электрических зарядов. Здесь необходимо учитывать одно важное замечание:

Определение 3

Движение магнитов может порождать электрический ток даже при неподвижных проводниках.

Электромагнитная индукция является одним из фундаментальных природных законов, устанавливающим связь между магнитным или электрическим полями.

Закон Фарадея в дифференциальной форме

Чтобы сформулировать закон Фарадея в такой форме, нам потребуется вспомнить несколько базовых формул.

  1. ЭДС индукции: εi=-υBl.
  2. Магнитный поток: Φ=∫SBndS.
  3. Теорема Стокса: ∮l=a→dl=∫Srotna→dS.

Используя данные выражения, мы можем записать следующую формулу:

∮C(Edl)=∫S(n rot E)dS=-1c∫Sn∂B∂tdS.

Здесь S обозначает поверхность, натянутую на контур S. Поскольку значение S является произвольным, то мы можем записать:

Определение 4

rot E=-1c∂B∂t.

Это и есть дифференциальная форма закона Фарадея, которая описывает возникновение электрического поля в точке при изменении магнитного поля в том же месте. Само поле при этом называется индукционным.

zaochnik.com

Формула закона электромагнитной индукции

Это основной закон, который используют при вычислениях, которые связаны с электромагнитной индукцией.

Формула данного закона выглядит следующим образом:

   

где – электродвижущая сила (ЭДС) индукции, которая возникает в проводнике, если он находится в переменном магнитном поле. Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции. – магнитный поток, через поверхность, ограниченную этим контуром. Формула (1) означает то, что ЭДС индукции равна по модулю и противоположна по знаку скорости изменения магнитного потока через некоторую поверхность.

Магнитный поток, который пронизывает контур, может изменяться из-за разных причин, например, перемещения контура, его деформации, изменения самого магнитного поля. Полная производная в формуле закона электромагнитной индукции охватывает весь спектр действия этих причин.

Следует учесть, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки.

Знак минус в законе индукции отражает правило Ленца.

В виде (1), закон электромагнитной индукции записывается в международной системе единиц (СИ).

Если изменение магнитного потока происходит равномерно, то формулу закона электромагнитной индукции можно записать как:

   

Формулу закона для электромагнитной индукции, если контур состоит из N витков, соединенных последовательно, записывают в виде:

   

где – потокосцепление.

Результаты применения основного закона электромагнитной индукции

Формулы ЭДС индукции для частных случаев

ЭДС индукции в прямом проводнике, имеющем длину l, движущемся в магнитном поле и пересекающем линии магнитной индукции, если скорость его движения () перпендикулярна вектору магнитной индукции (), равна:

   

Разность потенциалов (U), возникающая на концах проводника длиной l, движущегося в однородном магнитном поле со скоростью v равна:

   

где – угол между направлением вектора скорости и направлением вектора магнитной индукции.

Если в однородном магнитном поле вращается плоский контур со скоростью , при этом ось вращения находится в плоскости витка и составляет угол в 900 с направлением вектора внешнего магнитного поля, то в контуре появляется ЭДС индукции равная:

   

где S – площадь, которую ограничивает виток; – мгновенное значение угла между и вектором нормали к плоскости рамки; – поток самоиндукции витка.

Если в рамке, вращающейся со скоростью в однородном магнитном поле, имеется N витков, то

   

в формуле (6) самоиндукцией витков пренебрегли.

Пусть проводник находится в покое, при этом изменяется во времени само магнитное поле, тогда ЭДС индукции можно найти как:

   

Примеры решения задач по теме «Закон электромагнитной индукции»

ru.solverbook.com

Закон электромагнитной индукции, теория и примеры

Формулировка закона электромагнитной индукции

Эмпирически М. Фарадей показал, что сила тока индукции в проводящем контуре прямо пропорциональна скорости изменения количества линий магнитной индукции, которые проходят через поверхность ограниченную рассматриваемым контуром. Современную формулировку закона электромагнитной индукции, используя понятие магнитный поток, дал Максвелл. Магнитный поток (Ф) сквозь поверхность S – это величина, равная:

   

где модуль вектора магнитной индукции; – угол между вектором магнитной индукции и нормалью к плоскости контура. Магнитный поток трактуют как величину, которая пропорциональна количеству линий магнитной индукции, проходящих сквозь рассматриваемую поверхность площади S.

Появление тока индукции говорит о том, что в проводнике возникает определенная электродвижущая сила (ЭДС). Причиной появления ЭДС индукции является изменение магнитного потока. В системе международных единиц (СИ) закон электромагнитной индукции записывают так:

   

где – скорость изменения магнитного потока сквозь площадь, которую ограничивает контур.

Знак магнитного потока зависит от выбора положительной нормали к плоскости контура. При этом направление нормали определяют при помощи правила правого винта, связывая его с положительным направлением тока в контуре. Так, произвольно назначают положительное направление нормали, определяют положительное направление тока и ЭДС индукции в контуре. Знак минус в основном законе электромагнитной индукции соответствует правилу Ленца.

На рис.1 изображен замкнутый контур. Допустим, что положительным является направление обхода контура против часовой стрелки, тогда нормаль к контуру () составляет правый винт в направлением обхода контура. Если вектор магнитной индукции внешнего поля сонаправлен с нормалью и его модуль увеличивается со временем, тогда получим:

   

При этом ток индукции создаст магнитный поток (Ф’), который будет меньше нуля. Линии магнитной индукции магнитного поля индукционного тока () изображены на рис. 1 пунктиром. Ток индукции будет направлен по часовой стрелке. ЭДС индукции будет меньше нуля.

Формула (2) – это запись закона электромагнитной индукции в наиболее общей форме. Ее можно применять к неподвижным контурам и движущимся в магнитном поле проводникам. Производная, которая входит в выражение (2) в общем случае состоит из двух частей: одна зависит от изменения магнитного потока во времени, другая связывается с движением (деформаций) проводника в магнитном поле.

В том случае, если магнитный поток изменяется за равные промежутки времени на одну и ту же величину, то закон электромагнитной индукции записывают как:

   

Если в переменном магнитном поле рассматривается контур, состоящий из N витков, то закон электромагнитной индукции примет вид:

   

где величину называют потокосцеплением.

Примеры решения задач

ru.solverbook.com

Закон электромагнитной индукции. Правило Ленца и Фарадея

Сегодня мы раскроем такой феномен физики, как «закон электромагнитной индукции». Расскажем, почему Фарадей провел опыты, приведем формулу и объясним важность явления для повседневной жизни.

Древние боги и физика

Древние люди поклонялись неведомому. И сейчас человека страшит пучина моря и даль космоса. Но наука может объяснить, почему. Субмарины снимают невероятную жизнь океанов на глубине свыше километра, космические телескопы изучают объекты, которые существовали всего лишь через считанные миллионы лет после большого взрыва.

Но тогда люди обожествляли все, что их завораживало и тревожило:

  • восход солнца;
  • пробуждение растений весной;
  • дождь;
  • рождение и смерть.

В каждом предмете и явлении жили неведомые силы, которые управляли миром. До сих пор дети склонны очеловечивать мебель и игрушки. Оставаясь без присмотра взрослых, они фантазируют: одеяло обнимет, табуретка подойдет, окно откроется само по себе.

Пожалуй, первым эволюционным шагом человечества стало умение поддерживать огонь. Антропологи предполагают, что самые ранние костры зажглись от дерева, в которое ударила молния.

Таким образом, электричество сыграло в жизни человечества огромную роль. Первая молния дала толчок к развитию культуры, основной закон электромагнитной индукции привел человечество к современному состоянию.

От уксуса до ядерного реактора

В пирамиде Хеопса были найдены странные керамические сосуды: горлышко запечатано воском, в глубине скрыт металлический цилиндр. На внутренней стороне стенок обнаружили остатки уксуса или кислого вина. Ученые пришли к сенсационному выводу: этот артефакт – батарейка, источник электричества.

Но до 1600 года изучать этот феномен никто не брался. До движущихся электронов исследовали природу статического электричества. О том, что янтарь дает разряды, если его потереть о мех, знали еще древние греки. Цвет этого камня напоминал им свет звезды Электры из Плеяд. А название минерала стало, в свою очередь, поводом окрестить физическое явление.

Первый примитивный источник постоянного тока был построен в 1800 году

Естественно, как только появился достаточно мощный конденсатор, ученые принялись изучать свойства подключенного к нему проводника. В 1820 году датский ученый Ханс Кристиан Эрстед обнаружил, что магнитная стрелка отклоняется рядом с включенным в сеть проводником. Данный факт дал толчок к открытию закона электромагнитной индукции Фарадеем (формула будет приведена чуть ниже), который позволил человечеству добывать электричество из воды, ветра и ядерного топлива.

Примитивное, но современное

Физическая основа опытов Макса Фарадея была заложена Эрстедом. Если включенный проводник влияет на магнит, то верно и обратное: намагниченный проводник должен вызывать ток.

Структура опыта, который помог вывести закон электромагнитной индукции (ЭДС как понятие мы рассмотрим чуть позже), была весьма проста. Смотанную в пружину проволоку подключили к прибору, который регистрирует ток. К виткам ученый поднес большой магнит. Пока магнит двигался рядом с контуром, прибор регистрировал поток электронов.

С тех пор техника усовершенствовалась, но основной принцип создания электричества на огромных станциях пока что тот же: движущийся магнит возбуждает ток в смотанном пружиной проводнике.

Развитие идеи

Самый первый опыт убедил Фарадея, что электрическое и магнитное поля взаимосвязаны. Но требовалось выяснить, как именно. Возникает ли вокруг проводника с током еще и магнитное поле или они просто способны влиять друг на друга? Поэтому ученый пошел дальше. Он смотал одну проволоку, подвел к ней ток, и эту катушку вдвинул в другую пружину. И тоже получил электричество. Этот опыт доказал, что движущиеся электроны создают не только электрическое, но и магнитное поле. Позже ученые выяснили, как они располагаются в пространстве относительно друг друга. Электромагнитное поле – это и та причина, по которой существует свет.

Экспериментируя с разными вариантами взаимодействия проводников под напряжением, Фарадей выяснил: ток передается лучше всего, если и первую, и вторую катушки намотать на один общий металлический сердечник. Формула, выражающая закон электромагнитной индукции, была выведена именно на этом приборе.

Формула и ее составляющие

Теперь, когда история изучения электричества доведена до эксперимента Фарадея, пора написать формулу:

ε = -dΦ / dt.

Расшифруем:

ε – это электродвижущая сила (сокращенно ЭДС). В зависимости от величины ε электроны перемещаются в проводнике интенсивнее или слабее. На ЭДС влияет мощность источника, а на нее – напряженность электромагнитного поля.

Φ – величина магнитного потока, который проходит в данный момент через заданную площадь. Фарадей сворачивал проволоку в пружину, так как ему требовалась определенное пространство, сквозь которое проходил бы проводник. Конечно, можно было бы изготовить очень толстый проводник, но это было бы дорого. Форму круга ученый выбрал потому, что у этой плоской фигуры соотношение площади к длине поверхности наибольшее. Это самая энергетически эффективная форма. Поэтому капли воды на плоской поверхности становятся круглыми. К тому же пружину с круглым сечением гораздо проще получить: достаточно лишь намотать проволоку на какой-то круглый предмет.

t – время, за которое поток прошел сквозь контур.

Приставка d в формуле закона электромагнитной индукции означает, что величина дифференциальная. То есть маленький магнитный поток надо продифференцировать по небольшим отрезкам времени, чтобы получить конечный результат. Это математическое действие требует от людей некоторой подготовленности. Чтобы лучше понять формулу, мы настоятельно рекомендуем читателю вспомнить дифференцирование и интегрирование.

Следствия из закона

Сразу после открытия Фарадея физики стали исследовать явление электромагнитной индукции. Закон Ленца, например, был выведен экспериментально российским ученым. Именно это правило добавило минус в конечную формулу.

Вид у него такой: направление индукционного тока не случайно; поток электронов во второй обмотке как бы стремится уменьшить действие тока в первой обмотке. То есть возникновение электромагнитной индукции – это фактически сопротивление второй пружины вмешательству в «личную жизнь».

Правило Ленца имеет и другое следствие.

  • если ток в первой катушке будет возрастать, то ток второй пружины тоже будет стремиться к увеличению;
  • если ток в индуцирующей обмотке будет падать, то уменьшится и ток во второй.

Согласно этому правилу, проводник, в котором возникает индуцированный ток, фактически стремится скомпенсировать действие изменяющегося магнитного потока.

Зерно и осел

Использовать простейшие механизмы себе на благо люди стремились давно. Помол муки – дело сложное. Некоторые племена растирают зерно вручную: кладут пшеницу на один камень, накрывают другим плоским и круглым камнем, и вертят жернов. Но если надо смолоть муку на целую деревню, то одним мускульным трудом не обойтись. Сначала люди догадались привязать к жернову тягловое животное. Ослик тянул за веревку – камень вращался. Потом, вероятно, люди подумали: «Река течет все время, она толкает всякие предметы вниз по течению. Почему бы нам не использовать это на благо?» Так появились водяные мельницы.

Колесо, вода, ветер

Конечно, первые инженеры, которые строили эти сооружения, ничего не знали ни о силе тяготения, из-за которой вода стремится всегда вниз, ни о силе трения или поверхностного натяжения. Но они видели: если поставить в ручей или речку колесо с лопастями на диаметре, то оно не только будет вращаться, но и сможет делать полезную работу.

Но и этот механизм был ограничен: не везде есть проточная вода с достаточно силой течения. Поэтому люди пошли дальше. Они построили мельницы, которые работали от ветра.

Уголь, мазут, бензин

Когда ученые поняли принцип возбуждения электричества, была поставлена техническая задача: получать его в промышленных масштабах. На тот момент (середина девятнадцатого века) мир был охвачен лихорадкой машин. Всю сложную работу стремились поручить расширяющемуся пару.

Но тогда нагреть большие объемы воды умели только ископаемым топливом – углем и мазутом. Поэтому те регионы мира, которые были богаты древними углеродами, сразу привлекли внимание инвесторов и рабочих. А перераспределение людей привело к промышленной революции.

Голландия и Техас

Однако такое положение вещей плохо отразилось на экологии. И ученые задумались: как получать энергию, не разрушая природу? Выручило хорошо забытое старое. Мельница использовала крутящий момент для совершения непосредственно грубой механической работы. Турбины гидроэлектростанций вращают магниты.

На данный момент самое чистое электричество получают из энергии ветра. Инженеры, которые строили первые генераторы Техаса, опирались на опыт ветряных мельниц Голландии.

fb.ru

Закон электромагнитной индукции формула

Явление электромагнитной индукции представляет собой возникновение электрического тока в условиях замкнутого проводящего контура, в то время как магнитный поток, пронизывающий этот контур, изменяется во времени. На этом явлении основан закон электромагнитной индукции, формула которого была выведена английским физиком Фарадеем.

Понятия электромагнитной индукции

Одной из основных величин, связанных с электромагнитной индукцией является магнитный поток. Чтобы понять его физический смысл, следует рассмотреть формулу, определяющую эту величину: Φ = B • S • cos α. Здесь В выступает в роли модуля вектора магнитной индукции, S – площадь проводящего контура, α – угол между нормалью к плоскости контура и вектором магнитной индукции.

При неоднородном магнитном поле и неплоском контуре, значение магнитного потока можно обобщить. Для этого, в системе СИ существует обозначение единицы магнитного потока, называемое вебером. Для создания 1 Вб требуется магнитное поле в 1 Тл, которое пронизывает плоский контур, площадь которого составляет 1 м2. (1 Вб = 1 Тл • 1 м2)

Фарадей открыл закон электромагнитной индукции, формула которого выражается в следующих показателях: 

Эта формула наглядно демонстрирует, что изменение магнитного потока в контуре, приводит к возникновению ЭДС индукции. ЭДС, в свою очередь, равна скорости, с какой изменяется магнитный поток при прохождении через площадь, ограниченную контуром. Все значение ЭДС берется со знаком минус. Это и есть закон Фарадея.

Причины изменения магнитного потока

Магнитный поток, пронизывающий замкнутый контур, может изменяться в силу ряда причин.

Прежде всего, эти изменения происходят, когда контур перемещается в магнитном поле, постоянном по времени. В этом случае, проводники вместе со свободными носителями зарядов передвигаются в магнитном поле. ЭДС индукции возникает под воздействием сторонних сил, которые влияют на свободные заряды, находящиеся в движущихся проводниках.

Другая причина, изменяющая магнитный поток, заключается в изменении во времени магнитного поля, когда контур неподвижен. В неподвижном проводнике, электроны могут двигаться только под действием электрического поля. Это поле, в свою очередь, возникает воздействия магнитного поля, изменяющегося во времени.

Работа магнитного поля, затрачиваемая на перемещение одного положительного заряда в замкнутом контуре, равна ЭДС индукции для неподвижного проводника. Такое поле, полученное с помощью изменяющегося магнитного поля, получило название вихревого электрического поля.

electric-220.ru

Закон электромагнитной индукции


⇐ ПредыдущаяСтр 3 из 3

 

Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятого со знаком минус.

Закон электромагнитной индукции. Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы индукционнного тока, т. к. сила тока зависит и от свойств проводника, для ЭДС определяется только изменением магнитного потока. Согласно закону электромагнитной индукции ЭДС индукции в замкнутом контуре равна по модулю , скорости изменения магнитного потока через поверхность, ограниченную контуром:

 

(11)

 

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

(12)

 

где

е - электродвижущая сила, действующая вдоль произвольно выбранного контура, В;

- изменение магнитного потока проходящего через поверхность этого контура, (Вб) или ∆Ф=Ф12;

dt - промежуток времени за который происходит изменение магнитного потока или ∆t=t1-t2.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

 

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Закон электромагнитной индукции используется во всех электрических машинах, прежде всего в генераторах.

Можно выделить частный случай из общей формулировки закона, который применяется в генераторах электрической энергии

 

Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила (э.д.с), называемая э.д.с индукции (Индукция от латинского слова inductio — наведение, побуждение) , или индуктированной э.д.с. Электродвижущая сила возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит. Явление возникновения индуктированной э.д.с. в проводнике называется электромагнитной индукцией. Если проводник, в котором индуктируется э.д.с, включить в замкнутую электрическую цепь, то под действием э.д.с. по цепи потечет ток, называемый индуктированным током.

 

Рис. 1. Определение направления индуктированной э.д.с. по правилу правой руки

 

Опытным путем установлено, что величина индуктированной э.д.с., возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуктированная э.д.с. возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий э.д.с. в нем не индуктируется. Направление индуктированной э.д.с. и тока проще всего определить по правилу правой руки (рис. 1): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуктированной э.д.с. и направление тока в проводнике. Магнитные силовые линии направлены от северного полюса магнита к южному.

 

Величина индуктированной э.д.с. определяется по формуле

Е = Blvsinα (13)

 

Существуют, также, другие различные формулировки закона, например:

 

При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток.

 

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром и др.

 

Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

Рис. 9 Пример появления тока в проводнике

 

Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

 

 

Рис. 10 Правило Ленца

 

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

 

 

Закон Ампера

Закон Ампера - один из важнейших и полезнейших законов в электротехнике, без которого немыслим научно-технический прогресс. Этот закон был впервые сформулирован в 1820 году Андре Мари Ампером. Из него следует, что два расположенные параллельно проводника, по которым проходит электрический ток, притягиваются, если направления токов совпадают, а если ток течёт в противоположных направлениях, то проводники отталкиваются. Взаимодействие здесь происходит посредством магнитного поля, которое перманентно возникает при движении заряженных частиц.

 

Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, действует сила, пропорциональная силе тока I, длине проводника l и индукции магнитного поля В.

 

Математически закон Ампера в простой форме выглядит так:

 

F = BILsinα,

 

где F - это сила Ампера или электромагнитная сила (сила, с которой проводники отталкиваются или притягиваются),

B — магнитная индукция, Тл;

I — сила тока А;

L — длина проводника, м;

α — угол между направлением тока и направлением магнитной индукции.

Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.

Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.

 

Рис. 11 Правило левой руки.

 

Закон Ампера - используется во всех электрических машинах, прежде всего,в принципе действия электродвигателей.

 

Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение. Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др).

Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера. Самый широко распространённый и используемый чуть-ли не во всех технических конструкциях агрегат, в основе своей работы использующий закон Ампера - это электродвигатель, либо, что конструктивно почти то же самое, генератор.

Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеющие вращающиеся узлы основаны на эксплуатации закона Ампера. Также он находит применение во многих других видах электротехники, например, в громкоговорителе.

В громкоговорителе или динамике для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит. На него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.

 

Литература: Кацман М.М. Электрические машины. §В1-В3


Рекомендуемые страницы:

lektsia.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *