Содержание

Формула силы тока

ОПРЕДЕЛЕНИЕ

Сила тока определяется как отношение количества заряда, прошедшего через какую-то поверхность, ко времени прохождения.

   

В формуле – сила тока, – количество заряда, – время.

Единица измерения силы тока – А (ампер).

Обычно под поверхностью, через которую прошёл заряд, понимают сечение проводника. В цепях с постоянным током силу тока находят по закону Ома:

   

Где – напряжение, – сопротивление проводника. Прибор, которой используется для измерения силы тока, называют амперметром.

Примеры решения задач по теме «Сила тока»

ПРИМЕР 1
Задание Найти силу тока в проводнике, если за 50 сек через него прошёл заряд 43 кКл.
Решение Напомним, что кКл = Кл. Подставим численные значения в формулу:

   

Ответ Сила тока была равна 860 Ампер.
ПРИМЕР 2
Задание Через сечение проводника за 1 минуту прошёл заряд 10 Кл. Найти сопротивление участка цепи, если напряжение в нём 50 В.
Решение Найдём силу тока через заряд:

   

По закону Ома:

   

Сопоставим формулы:

   

Подставим числа:

(Ом)

Ответ Сопротивление цепи равно 300 Ом.
Понравился сайт? Расскажи друзьям!

ПОМОГИТЕ ПОЖАЛУЙСТА С ФИЗИКОЙ ДАЮ 100 БАЛЛОВ! 1.

Что такое сила тока? 2.Какой величиной

Ответ:

1.Сила тока — физическая величина I, равная отношению количества заряда \Delta Q, прошедшего через некоторую поверхность за некоторое время \Delta t, к величине этого промежутка времени: I={\frac {\Delta Q}{\Delta t}}. В качестве рассматриваемой поверхности часто используется поперечное сечение проводника.

2.Электрический заряд, проходящий через поперечное сечение проводника в 1 с, определяет силу тока в цепи. 3. … Сила тока равна отношению электрического заряда q, прошедшого через поперечное сечение проводника, ко времени его прохождения t.

3.I = q t , где I — сила тока, q — заряд, t — время. Единица измерения силы тока в системе СИ — [I] = 1 A (ампер).

4.За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1 м взаимодействуют с силой 2 • 10(в -7 степени) Н и называют ампером

5.Электрический заряд выражается через силу тока в проводнике и время его прохождения q = I * t (по определению силы тока I = q/t) и измеряется в кулонах.

6.кулон

7.Цифровые и аналоговые амперметры, используются в различных отраслях промышленности и народного хозяйства. Особенно широко они применяются в энергетической отрасли промышленности, радиоэлектронике, электротехнике. Также их могут использовать в строительстве, в автомобильном и другом транспорте, в научных целях.

В бытовых условиях прибор также часто используется обычными людьми. Амперметр полезно иметь с собой в автомобиле, на случай выявления неисправностей электрооборудования в пути.Аналоговые приборы до сих пор также применяются в различных областях жизни. Их преимуществом является то, что для работы не требуется подключение питания, так как они пользуются электричеством от измеряемой цепи. Также их удобство состоит в отображении данных. Многим людям привычнее смотреть за стрелкой. Некоторые устройства оснащены регулировочным винтом, который позволяет точно настроить стрелку на нулевое значение. Инертность работы прибора отрицательно влияет на его применяемость, так как для стрелки необходимо время для нахождения устойчивой позиции.

8.В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт.

9.Сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника

11.Величина, показывающая какую работу совершает заряд 1 Кл на участке электрической цепи называется напряжением. Обозначается буквой U.

12.Для определения напряжения существует формула: U=A/q, где U – напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи

13.Названа в честь итальянского физика и физиолога Алессандро Вольты (1745—1827), который изобрёл первую электрическую гальваническую батарею — вольтов столб и опубликовал результаты своих экспериментов в 1800 году.

14.220 В

15.

Объяснение:

больше не могу

Чему равна сила тока в замкнутой цепи. Закон ома простым языком

Замкнутая цепь (рис. 2) состоит из двух частей – внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r ; внешняя – различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается

R . Тогда полное сопротивление цепи равно r + R .

По закону Ома для внешнего участка цепи 1 → 2 имеем:

\(~\varphi_1 – \varphi_2 = IR .\)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 – \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим

\(~\varepsilon = IR + Ir . \qquad (1)\)

\(~I = \frac{\varepsilon}{R + r} . \qquad (2)\)

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи .

Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 – \varphi_2 = IR = U\) и формулу (1) можно записать:

\(~\varepsilon = U + Ir \Rightarrow U = \varepsilon – Ir .

\)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

\(~U = \varepsilon \left(1 – \frac{r}{R + r} \right) .\)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε , т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + r r , тогда \(~U = \varepsilon \left(1 – \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) – достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием , а максимальную для данного источника силу тока называют током короткого замыкания:

\(~I_{kz} = \frac{\varepsilon}{r} .\)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 – 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), I kz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников “-” одного источника соединяется с “+” второго, “-” второго с “+” третьего и т.д. (рис. 3, а). Если

ε 1 = ε 2 = ε 3 а r 1 = r 2 = r 3 то ε b = 3ε 1 , r b = 3r 1 . В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).

Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все “+” источников соединены вместе и “-” источников – также вместе (рис. 3, б). В этом случае

\(~\varepsilon_b = \varepsilon_1 ; \ r_b = \frac{r_1}{3}.\)

Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .

Для

n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r .

Иногда применяют смешанное соединение источников.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. – Мн.: Адукацыя i выхаванне, 2004. – C. 262-264.

Закон Ома для замкнутой цепи показывает – значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.

Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.

Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.

Формула закона Ома для замкнутой цепи записывается в следующем виде:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе – сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля – Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля – Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник – выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?

Содержание:

Каждый специалист, ремонтирующий и обслуживающий электроустановки, должен хорошо знать и применять на практике закон Ома для замкнутой цепи. Это действительно так, поскольку закономерности, открытые немецким физиком Георгом Омом, лежат в основе всей электротехники. Данный закон стал весомым вкладом в дальнейшее развитие научных знаний в области электричества.

Физические свойства закона Ома

Прямая взаимосвязь между силой тока, напряжением, подведенным к сети, и была обнаружена Омом в 1826 году. В дальнейшем, понятие напряжения было заменено на более точный термин – электродвижущую силу (ЭДС). После теоретического обоснования этой зависимости был выведен закон для замкнутой цепи. Его важной особенностью считается обязательное отсутствие какого-либо внешнего возмущения. Поэтому стандартные формулировки потеряют свою актуальность, если, например, поместить проводник в переменное магнитное поле.

Для экспериментов по выводу закона использовалась простейшая схема, состоящая из источника питания, обладающего ЭДС и подключенных к нему двух выводов, соединенных с резистором. В проводнике начинают в определенном направлении перемещаться элементарные частицы, несущие заряд. Таким образом, представляется в виде отношения ЭДС к общему сопротивлению всей цепи: I = E/R.

В представленной формуле Е – является электродвижущей силой, измеряемой в вольтах, I – сила тока в амперах, а R выступает в роли электрического сопротивления резистора, измеряемого в омах. При этом, учитываются все составляющие сопротивления и при расчетах используется их суммарное значение. Они включают сопротивление самого резистора, проводника (r) и источника питания (r0). Окончательно формула будет выглядеть так: I = E/(R+r+r0). Если значение внутреннего сопротивления источника тока r0 превышает сумму R+r, то в этом случае отсутствует зависимость силы тока от характеристик подключенной нагрузки, а источник ЭДС исполняет роль источника тока. Когда r0 ниже суммы R+r, получается обратная пропорция тока с суммарным внешним сопротивлением, а напряжение поступает за счет источника питания.

Закон Ома для выполнения расчетов

Точные расчеты требуют учета всех потерь напряжения, в том числе и в местах соединений. Для определения электродвижущей силы на выводах источника тока замеряется разность потенциалов при разомкнутой цепи, когда нагрузка полностью отключена. В этом случае применяется не только закон Ома для замкнутой цепи, но и закон, действующий . Данный участок считается однородным, поскольку здесь принимается в расчет только разность потенциалов, без учета ЭДС. Это дает возможность рассчитать каждый элемент электрической цепи по формуле I=U/R, в которой U является разностью потенциалов или напряжением, измеряемым в вольтах.

Замеры выполняются с помощью вольтметра при подключении щупов к выводам нагрузки или сопротивления. Полученное значение напряжения будет всегда ниже электродвижущей силы. Это наиболее распространенная формула, позволяющая найти любую составляющую при наличии двух известных.

Закон Ома для замкнутой цепи имеет много общего с законом, выведенным для магнитной цепи. В этой системе проводник выполнен в виде замкнутого магнитопровода. В качестве источника выступает обмотка катушки по виткам которой протекает электрический ток. Появляющийся магнитный поток (Ф) замыкается на магнитопровод и начинает циркулировать по контуру. Он находится в непосредственной зависимости от магнитодвижущей силы и сопротивления материала, через который проходит. Данное явление выражено формулой Ф=F/Rm, в которой F представляет собой магнитодвижущую силу, а Rm служит сопротивлением, вызывающим затухание.

Как рассчитать цепи

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Какая формула рассчитывается по току в цепи? – Mvorganizing.org

Какая формула рассчитывается по току в цепи?

Теперь уравнение закона Ома (ΔV = I • R) можно использовать для определения полного тока в цепи. При этом необходимо использовать общее сопротивление и общее напряжение (или напряжение батареи). Для параллельных ветвей сумма тока в каждой отдельной ветви равна току вне ветвей.

Параллельное напряжение одинаково?

Напряжение одинаково на всех компонентах параллельной цепи. Сумма токов по каждому пути равна общему току, протекающему от источника. Если один из параллельных путей разорван, ток будет продолжать течь по всем остальным путям.

Увеличивает ли напряжение последовательно или параллельно?

Последовательное соединение аккумуляторов увеличивает напряжение, но не увеличивает общую емкость в ампер-часах. Параллельное подключение батарей увеличивает общую емкость по току за счет уменьшения общего сопротивления, а также увеличивает общую емкость в ампер-часах.Все батареи в параллельном блоке должны иметь одинаковое номинальное напряжение.

Почему в серии то же самое?

Величина тока в последовательной цепи одинакова для любого компонента в цепи. Это потому, что есть только один путь для прохождения тока в последовательной цепи.

Одинаковый ток в последовательном или параллельном?

В последовательной цепи ток, протекающий через каждый из компонентов, одинаков, а напряжение в цепи является суммой индивидуальных падений напряжения на каждом компоненте. Если каждая лампочка подключена к батарее в отдельной петле, говорят, что лампы параллельны.

Как узнать, является ли последовательное соединение параллельным?

ОБЗОР:

  1. В последовательной цепи все компоненты соединены встык, образуя единый путь для прохождения тока.
  2. В параллельной цепи все компоненты соединены друг с другом, образуя ровно два набора электрически общих точек.

Как узнать, включен ли резистор параллельно?

Два резистора включены параллельно, если узлы на обоих концах резисторов одинаковы.Если одинаковый только один узел, они идут последовательно. Итак, R1 и R2 включены параллельно, а R3 – последовательно с R1 || R2.

Как узнать, включен ли резистор последовательно?

Чтобы рассчитать общее полное сопротивление ряда резисторов, подключенных таким образом, вы складываете отдельные сопротивления. Это делается по следующей формуле: Rtotal = R1 + R2 + R3 и так далее. Пример: чтобы рассчитать полное сопротивление для этих трех последовательно соединенных резисторов.

В чем недостатки двух типов схем?

Первый недостаток состоит в том, что если один компонент в последовательной цепи выходит из строя, то все компоненты в цепи выходят из строя из-за разрыва цепи.Второй недостаток заключается в том, что чем больше компонентов в последовательной цепи, тем больше сопротивление цепи *.

Для чего нужна последовательная цепь?

Последовательная цепь обеспечивает ровно один путь между любыми двумя точками для электрического тока. Эти схемы имеют то преимущество, что каждый компонент очень зависит от других компонентов. Это означает, что при удалении одного компонента все компоненты отключаются.

Какой пример последовательной схемы?

В последовательной цепи одинаковый ток протекает через все компоненты.Примером последовательной цепи является гирлянда рождественских огней. Если какая-либо из лампочек отсутствует или перегорела, ток не будет течь, и ни один из индикаторов не загорится.

Какое устройство используется в цепи последовательно?

Амперметр

Какие бывают схемы?

Электрическая цепь – Типы электрической цепи. Существует 5 основных типов электрических цепей – замкнутая цепь, разомкнутая цепь, короткое замыкание, последовательная цепь и параллельная цепь.

Какие 4 части цепи?

Каждая электрическая цепь, независимо от того, где она находится или насколько она велика или мала, состоит из четырех основных частей: источника энергии (переменного или постоянного тока), проводника (провода), электрической нагрузки (устройства) и по крайней мере одного контроллера. (выключатель).Визуализируйте, что происходит, когда вы включаете свет в комнате.

Что такое простая схема?

Цепь – это путь, по которому проходит электрический ток, а простая схема содержит три компонента, необходимых для функционирования электрической цепи, а именно источник напряжения, токопроводящий путь и резистор.

Что такое схема и ее виды?

Существует два основных типа электрических цепей, называемых последовательными и параллельными цепями. Они различаются количеством петель, по которым может течь ток. Вы можете увидеть пример каждого типа схемы на рисунке ниже. Последовательная цепь имеет только один контур, по которому может течь ток.

Какие бывают схемы?

Есть два типа электрических цепей. – последовательные и параллельные.

Интегралы в электрических цепях

Производные и интегралы широко используются для описания переходных процессов в электрических цепях. Ниже мы рассмотрим некоторые типичные проблемы, которые можно решить с помощью интеграции.{{t_2}} {I \ left (t \ right) dt}, \]

, который представляет количество заряда, проходящего через провод между моментами времени \ (t = {t_1} \) и \ (t = {t_2}. \)

RC-схема

Простая последовательная RC-цепь – это электрическая цепь, состоящая из резистора и конденсатора.

Рисунок 1.

После того, как переключатель замкнут в момент времени \ (t = 0, \), ток начинает течь по цепи. Напряжение на резисторе определяется законом Ома:

\ [{V_R} \ left (t \ right) = I \ left (t \ right) R. t {I \ left (s \ right) ds} = \ varepsilon.{- \ frac {t} {{RC}}}}. \]

Рисунок 2.

Постоянная времени \ (\ tau = RC \) здесь определяет, насколько быстро происходит переходный процесс в цепи.

RL Схема

В простой цепи RL последовательно соединены резистор и катушка индуктивности.

Рисунок 3.

Когда переключатель в момент времени \ (t = 0 \) замкнут, применяется постоянная ЭДС \ (\ varepsilon \), и ток \ (I \) начинает течь по цепи.

Как и в предыдущем разделе, напряжение на резисторе равно

.

\ [{V_R} \ left (t \ right) = I \ left (t \ right) R.\]

Напряжение на катушке индуктивности выражается производной

\ [{V_L} \ left (t \ right) = L \ frac {{dI}} {{dt}}. \]

Так, по КВЛ,

\ [{V_R} \ left (t \ right) + {V_L} \ left (t \ right) = \ varepsilon, \]

или

\ [RI \ left (t \ right) + L \ frac {{dI}} {{dt}} = \ varepsilon. \]

Интегрирование этого линейного дифференциального уравнения с начальным условием \ (I \ left ({t = 0} \ right) = 0 \) дает следующее решение:

\ [I \ left (t \ right) = \ frac {\ varepsilon} {R} \ left ({1 – {e ^ {- \ frac {R} {L} t}}} \ right).\]

Рис. 4.

Мы видим, что постоянная времени для цепи RL определяется выражением \ (\ tau = \ frac {L} {R}. \)

Мощность и энергия

Электрическая энергия \ (E, \), измеряемая в джоулях (Дж), представляет собой форму энергии, которая возникает из кинетической или потенциальной энергии, которой обладают электрические заряды.

Электрическая мощность \ (P, \), измеряемая в ваттах (Вт), – это скорость, с которой электрическая энергия передается по электрической цепи.

Мощность, рассеиваемая в элементе цепи постоянного тока \ (\ left ({DC} \ right) \), определяется формулой

\ [P = VI, \]

где \ (V \) – напряжение на элементе, а \ (I \) – ток в цепи.2}}} {R}. \]

Энергия, рассеиваемая элементом схемы \ (DC \) ​​в течение периода времени \ (\ left [{0, t} \ right] \), определяется как

\ [E = VIt. \]

Когда напряжение и ток изменяются во времени, мгновенная мощность определяется как

.

\ [P \ left (t \ right) = V \ left (t \ right) I \ left (t \ right). t {V \ left (s \ right) I \ left (s \ right) ds}, \]

где \ (s \) – внутренняя переменная интегрирования.2} – 4, & t \ gt 3 \ end {case}, \] где ток \ (I \) измеряется в \ (A \), а время \ (t \) измеряется в \ ({сек}. \). Найдите общий заряд, попавший в элемент за время \ (T = 6 \, с. \)

Пример 2

Ток в цепи увеличивается линейно во времени как \ (I \ left (t \ right) = \ alpha t \) в течение временного интервала \ (\ left [{0, T} \ right] \) и вызывает резистор \ (R \), чтобы нагреться. Предполагая, что процесс нагрева является адиабатическим, определите, как изменение температуры резистора \ (\ Delta T \) зависит от скорости \ (\ alpha.\) Удельная теплоемкость материала резистора \ (c, \), масса резистора \ (m. \)

Пример 3

Предположим, что конденсатор \ (C \) заряжается от источника с постоянной ЭДС \ (\ varepsilon. \). Вычислите тепловую энергию, рассеиваемую резистором \ (R \) за время зарядки.

Пример 4

Когда переключатель замкнут в момент времени \ (t = 0, \), начальный ток в цепи без источника \ (RL \) равен \ ({I_0} = 1 \, A. \) Найдите энергию \ ({ E_R} \), рассеиваемый резистором между \ (t = 0 \) и \ (T = 1 \, ms, \), если \ (R = 50 \, k \ Omega, \) \ (L = 0.6 = 9 + \ left ({\ frac {{216}} {3} – 4} \ right) – \ left ({3 – 12} \ right) = 60 \, C. \]

Пример 2.

Ток в цепи увеличивается линейно во времени как \ (I \ left (t \ right) = \ alpha t \) в течение временного интервала \ (\ left [{0, T} \ right] \) и вызывает резистор \ (R \), чтобы нагреться. Предполагая, что процесс нагрева является адиабатическим, определите, как изменение температуры резистора \ (\ Delta T \) зависит от скорости \ (\ alpha. \). Удельная теплоемкость материала резистора равна \ (c, \) масса резистора \ (м.2}. \]

Таким образом, изменение температуры \ (\ Delta \ theta \) пропорционально квадрату текущей скорости \ (\ alpha \).

Пример 3.

Предположим, что конденсатор \ (C \) заряжается от источника с постоянной ЭДС \ (\ varepsilon. \). Вычислите тепловую энергию, рассеиваемую резистором \ (R \) за время зарядки. {- \ frac {{Rt}} {L}}}.{- \ frac {{2 \ times 50 \ times 0.001}} {{0.1}}}}} \ right) = \ frac {1} {{20}} \ left ({1 – \ frac {1} {e }} \ right) = \ frac {{e – 1}} {{20e}} \ приблизительно 0,0316 \, J = 31,6 \, мДж \]

См. Другие проблемы на странице 2.

Ток, электричество и условный ток

Современное электричество – это движущиеся заряженные частицы. Если вы позволите заряду, который накапливается в статическом электричестве, течь, вы получите ток.

Ток – это скорость потока заряда; – это количество заряда, протекающего через проводник в секунду.

Уравнение для расчета тока:

Где:

I = ток (амперы, А)

Q = заряд, протекающий через точку в контуре (кулоны, Кл)

t = время, необходимое для прохождения заряда (секунды, с)

Таким образом, ток в 1 ампер равен 1 кулону заряда, проходящего через точку каждую секунду.

Точно так же кулон – это то же самое, что и ампер-секунда!

( Примечание: , если вы построите график зависимости тока от времени, площадь под графиком будет равна перемещенному заряду.)

Ну, сначала вам нужно иметь проводник, чтобы он протекал через него, а затем вам нужно притягивать или отталкивать заряженные частицы, чтобы заставить их двигаться. Величина вашего притяжения или отталкивания измеряется в вольтах и ​​называется напряжением или разностью потенциалов (стр.d. для краткости).

Эти заряженные частицы заставляют их двигаться, поэтому напряжение является мерой количества энергии, выделяемой на один кулон заряда.

1 вольт = 1 джоуль на кулон.

Уравнение для расчета напряжения:

Где:

Вт = количество энергии (джоуль, Дж)

В = напряжение (вольт, В)

Q = заряд (кулон, Кл)

Когда заряженные частицы обтекают контур, они не расходуются; это энергия, которую переносят заряженные частицы, которая уменьшается при движении по цепи.

(Бегуны, идущие по беговой дорожке длиной 400 м, бегают полностью, но при беге теряют энергию).

Таким образом, ток не расходуется – если у вас остается 12 ампер, выходящих из батареи, в цепи будет 12 ампер, а 12 ампер возвращаются в батарею.

Напряжение изменяется при перемещении заряда по цепи. Потенциальная энергия, отдаваемая заряду, в контуре превращается в тепловую энергию. Электрон может покинуть батарею с напряжением 6 В, но вернется к батарее с напряжением 0 В.Это дает изменение потенциала на 6 В, отсюда и слова «разность потенциалов».

Существует два основных типа схем, о которых вам нужно знать, и у каждого из них есть два правила, упрощающих вычисления:

Последовательные цепи:

В последовательной цепи …

  • ток одинаковый по всей цепи.
  • напряжение делится между компонентами в цепи.

Параллельные цепи:

В параллельной цепи …

  • ток разделяется, чтобы пройти по каждой петле.
  • напряжение в каждом контуре одинаковое.

Первоначально ученые полагали, что в цепях текут положительно заряженные частицы, и поэтому цепи всегда помечены током, протекающим от положительного к отрицательному выводу ячейки в цепи.Мы называем этот ток обычным током. На самом деле электроны текут в противоположном направлении!

Нажмите на кнопки ниже, чтобы увидеть это в действии:

Обычный ток – это поток положительных частиц. Все ссылки на ток в диаграммах и в вопросах на уровне A относятся к обычному току, если в вопросе специально не указано иное.

Для измерения тока используется амперметр . Он включен последовательно в цепь для измерения количества заряда, протекающего через него в секунду. (Вы можете сравнить это с турникетом, подсчитывающим людей на стадионе.)

Для измерения напряжения используем вольтметр. Он размещается параллельно для сравнения потенциала в двух разных точках по обе стороны от компонента. Затем он может измерить разность потенциалов или напряжение на компоненте.

Схемные расчеты и концепции – Высшая школа физики

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса – изображению, ссылке, тексту и т. д. – относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Согласно закону Ома, I ∝ V, но I 1 / V в уравнении мощности. Как?

In I = V / R, ток прямо пропорционален напряжению, но ток обратно пропорционален напряжению в P = VI?

Это еще один запутанный вопрос, который чаще всего задают на собеседованиях по электротехнике и электронике.

Согласно закону Ома, Ток увеличивается при увеличении напряжения (I = V / R), но Ток уменьшается при увеличении напряжения согласно формуле (P = VI). Как объяснить?

, т.е.

  • Согласно закону Ома: I ∝ V (ток прямо пропорционален напряжению. I = V / R)
  • Согласно формуле мощности: I ∝ 1 / V (ток обратно пропорционален напряжению. I = P / V)

Короче говоря, согласно закону Ома (V = IR или I = V / R), который показывает, что ток прямо пропорционален напряжению, но согласно P = VI или I = P / V , это показывает, что ток обратно пропорционален напряжению.

Давайте проясним путаницу, связанную с утверждением.

P = V x I

На самом деле, это зависит от того, как вы увеличиваете параметры, то есть увеличиваете ли вы напряжение, сохраняя мощность источника постоянной или она меняется.

  • Если мощность источника постоянна, ток будет уменьшаться при увеличении напряжения.
  • Если вы не заботитесь о мощности и просто замените батарею на новую с более высокой номинальной мощностью, это может увеличить ток при увеличении напряжения, поскольку мощность больше не постоянна i.е. мощность также была увеличена.

В случае трансформатора, когда напряжение увеличивается, ток уменьшается, потому что мощность остается постоянной, т.е. мощность на обеих сторонах равна P = VI (без учета коэффициента мощности: Cos θ).

В = I x R

По закону Ома ток (I) прямо пропорционален напряжению (В), если сопротивление (R) и температура остаются постоянными.

Согласно формуле мощности, в ней говорится, что ток обратно пропорционален напряжению, если мощность остается прежней.

Как мы уже знаем, в повышающем трансформаторе, если напряжение увеличивается, ток уменьшается там, где мощность такая же (поскольку трансформатор только повышает или понижает значение тока и напряжения и не меняет значение власть). Точно так же напряжение уменьшается при увеличении тока в понижающем трансформаторе.

Та же история и с генерирующей станцией, где выработка электроэнергии постоянна. Если мощность на стороне генерации улучшится, увеличатся как ток, так и напряжение.

Вкратце:

  • Если мощность постоянна = Напряжение обратно пропорционально току то есть В 1 / I в P = VxI .
  • Если сопротивление и температура постоянны: Напряжение прямо пропорционально току , т.е. В I в В = IxR .

Это точная причина , почему по закону Ома ток прямо пропорционален напряжению, но обратно пропорционален формуле напряжения в мощности.

Связанные вопросы / ответы:

Цепи – ток, разность потенциалов, сопротивление и элементы в последовательной и параллельной цепях, сохранение заряда

Элементы последовательно и параллельно

Ячейки в серии

Когда элементы соединены последовательно друг с другом, и все они подключены в одном направлении, общая разность потенциалов, подаваемая в цепь, представляет собой сложенные вместе индивидуальные разности потенциалов.

V итого = V 1 + V 2 + V 3

Идентичные ячейки параллельно друг другу

Когда идентичные элементы параллельны друг другу, общая разность потенциалов, подаваемая в цепь, равна разности потенциалов только одной из ячеек.

V всего = V 1 = V 2 = V 3

Итак, если три ячейки по 2 В соединены параллельно друг с другом, разность потенциалов, подаваемая в цепь, составляет 2 В.

Резисторы последовательно и параллельно

Резисторы серии

Когда резисторы соединены последовательно друг с другом, общее сопротивление складывается из отдельных сопротивлений.

Резисторы параллельно

Когда резисторы соединены параллельно друг с другом, общее сопротивление определяется по приведенному ниже уравнению.

Ток в последовательной и параллельной цепях

Сохранение заряда – «общий заряд, текущий в соединение проводов, должен равняться общему заряду, вытекающему из соединения».

Первый закон Кирхгофа – «сумма токов, протекающих в месте соединения проводов, должна равняться сумме токов, исходящих от места соединения проводов».

Ток в последовательных цепях .

Когда вы подключаете амперметр к последовательной цепи, ток остается неизменным, куда бы вы ни вставили амперметр.

Ток в параллельных цепях .

Полный ток, протекающий от ячейки к ветвям в цепи, всегда должен быть равен току, протекающему через каждый компонент в ветвях цепи, когда они складываются.

Если компоненты имеют разное сопротивление, тогда ток через каждый компонент может быть разным, но когда вы складываете их вместе, они должны составлять общую сумму тока, выходящего из ячейки.

Разница потенциалов в последовательной и параллельной цепях

Второй закон Кирхгофа – «сумма ЭДС в любом замкнутом контуре в цепи должна быть равна сумме разностей потенциалов в замкнутом контуре в цепи».

Разность потенциалов в последовательной цепи .

Полная разность потенциалов, подаваемая ячейкой, делится между компонентами. Если все компоненты имеют одинаковое сопротивление, между ними будет равная разность потенциалов.

Если сопротивления не равны, они могут иметь разную величину разности потенциалов на них, но при суммировании они всегда должны равняться p.d. поставляется ячейкой.

Разность потенциалов в параллельных цепях .

Разность потенциалов, подаваемая элементом, равна разности потенциалов на каждом компоненте параллельной цепи.

Как соотносятся напряжение, ток и сопротивление: Закон Ома

Том I – Округ Колумбия »ЗАКОН ОМА»

Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться.Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , и его часто называют «потоком», как поток жидкости через полую трубу.

Сила, побуждающая электроны «течь» в цепи, называется напряжением . Напряжение – это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку.Без ссылки на двух конкретных точек , термин «напряжение» не имеет значения.

Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению. Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток.Как и напряжение, сопротивление – величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.

Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины. Для массы мы можем использовать единицы «фунт» или «грамм».”Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:

«Символ», указанный для каждого количества, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире. Единица аббревиатура “для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение конкретной единицы измерения.А также, да, этот странный на вид символ “подкова” – заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед любыми греческими читателями здесь).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: усилитель в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и Ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение.В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как “I” для тока кажется немного странным. Считается, что “я” должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила». Из каких исследований я смог Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте “E” для обозначения напряжения на источнике (таком как батарея или генератор) и “V” для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение). Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени.Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

Одна основополагающая единица электрического измерения, которой часто учат в начало курсов электроники, но впоследствии редко используемое, блок кулон , который представляет собой меру электрического заряда, пропорциональную количеству электроны в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов. Символ электрического заряда количество – это заглавная буква “Q” с единицей измерения кулоны. сокращенно заглавной буквой “C”. Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через заданная точка в цепи за 1 секунду времени. В этих терминах ток – это скорость движения электрического заряда по проводнику.

Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем “потенциал энергия ». Общая единица измерения энергии любого вида – джоулей , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения Между током, напряжением и сопротивлением называется закон Ома, открытый Георгом Саймоном Омом и опубликованный в его статье 1827 года, . Гальваническая цепь, исследованная математически, .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:

В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:

Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Какая величина тока (I) в этой цепи?

В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Какое сопротивление (R) предлагает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Какое напряжение обеспечивает аккумулятор?

Закон Ома – очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!

  • ОБЗОР:
  • Напряжение измеряется в вольт , обозначается буквами «E» или «V».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *