Содержание

Калькулятор мощности трехфазного переменного тока • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Однофазный и трехфазный ток

Однофазную сеть можно сравнить с проселочной дорогой — оно не позволяет получить большую мощность. Трехфазную сеть можно сравнить с автомагистралью — она обычно имеется в промышленных зданиях для питания оборудования большой мощности

Установленный на столбе однофазный трансформатор, предназначенный для подачи электроэнергии в индивидуальные жилые дома (Канада)

Термин «фаза» относится к распределению электрической энергии. Для далеких от физики людей однофазную и трехфазную сеть можно сравнить с иллюстрациями выше. Однофазная сеть — как проселочная дорога, ее возможности по мощности невысоки и используется она в основном в жилых домах и квартирах. Однофазная сеть проста и экономична. Однако однофазную сеть нельзя использовать для питания эффективных трехфазных электродвигателей. С другой стороны, трехфазная сеть — как автомагистраль, она позволяет использовать мощные нагрузки и обычно применяется в промышленных зданиях и намного реже в индивидуальных жилых домах и квартирах.

Все мощные потребители энергии, такие как водонагреватели, большие электродвигатели и системы кондиционирования воздуха обычно подключаются к трехфазной сети.

В однофазной сети используются два или три провода. Всегда имеется один фазный провод и один провод, называемый нейтралью или нулевым проводом. Ток течет между этими двумя проводами. Если однофазная сеть содержит заземляющий провод, то используется трехпроводная сеть. Однофазная сеть хороша в тех случаях, когда типичными нагрузками являются чисто активные потребители, например, традиционные лампы накаливания и электрические обогреватели. Однофазная система не годится для питания мощных электродвигателей.

Установленная на столбе группа из трех трансформаторов, обеспечивающая трехфазное питание небольшой промышленной установки

В трехфазной сети используются три провода, называемые фазными или просто фазами. По этим проводам текут синусоидальные токи со сдвигом фаз относительно друг друга на 120°. В трехфазной системе может быть три или четыре провода.

Если имеется четвертый провод, то трехфазную сеть можно использовать для подачи однофазного питания (три линии), например, в индивидуальные жилые дома. При этом от каждой фазы в нагрузку (дом) подается примерно одинаковая мощность. Нейтральный провод часто имеет меньшее сечение, потому что фазные токи взаимно гасятся и по нейтральному проводу обычно течет совсем небольшой ток. Трехфазная система обеспечивает постоянную передачу мощности в нагрузку, что позволяет подключить более высокую нагрузку.

Определения и формулы

Генерация трехфазного тока

В простейшем трехфазном генераторе имеется три идентичных обмотки, расположенных под углом 120° по отношению друг к другу. В результате с обмоток снимаются напряжения (фазы) со сдвигом по фазе 120°. Эти три напряжения не зависят друг от друга и их мгновенные значения определяются формулами:

Здесь Up — пиковое значение (амплитуда) напряжения в вольтах, ω — угловая частота в радианах в секунду и t — время в секундах. Напряжение, наведенное в обмотке 2, отстает от напряжения в обмотке 1 на 120°, а напряжение, наведенное в обмотке 3, отстает от напряжения в обмотке 1 на 240°. Ниже на рисунке приведены векторные диаграммы и формы колебаний напряжений генератора:

Если коэффициент мощности равен единице, то в каждой фазе трехфазной системы напряжение, ток и мощность сдвинуты относительно друг друга на 120°; последовательность фаз на этом рисунке U₁, U₂, U₃, потому что U₁ опережает U₂, U₂ опережает U₃, и U₃ опережает U₁.

Преимущества трехфазных систем

  • По сравнению с однофазными двигателями, трехфазные двигатели имеют более простую конструкцию, высокий пусковой момент, высокие коэффициент мощности и эффективность, более компактны.
  • Передача и распределение трехфазной электроэнергии дешевле в сравнении с однофазной, так как для этого можно использовать провода меньшего сечения при существенном уменьшении стоимости материалов и трудозатрат.
  • В отличие от пульсирующей мощности однофазной системы, мгновенная мощность трехфазной системы постоянна, что обеспечивает плавность вращения и отсутствие вибрации двигателей и другого оборудования.
  • Размеры трехфазных трансформаторов меньше однофазных трансформаторов аналогичной мощности.
  • Трехфазную сеть можно использовать для питания однофазных нагрузок.
  • Выпрямление трехфазного тока происходит с меньшей амплитудой пульсаций, по сравнению с выпрямлением однофазного тока.

Последовательность фаз

Последовательность фаз определяется временем, при котором напряжения трех фаз достигают положительного максимума. Последовательность фаз называют также порядком фаз. На рисунке выше последовательность фаз 1-2-3, так как фаза 1 достигает положительного максимума раньше, чем фаза 2, а фаза 3 достигает положительного максимума позже фазы 2. Отметим, что нам безразлично направление вращения ротора генератора, потому вращающийся по часовой стрелке ротор можно обойти и мы будем наблюдать вращение против часовой стрелки. Нам интересен только порядок чередования фаз напряжений, вырабатываемых генератором.

Для определения порядка фаз на векторной диаграмме нужно знать, что векторы всегда вращаются против часовой стрелки.

Например, на этих трех чертежах последовательность чередования фаз снова U₁, U₂, U₃:

Фазное напряжение и фазный ток

Фазным называется напряжение между каждым из трех фазных проводов и нейтралью. Его также называют напряжением между фазой и нейтралью. Ток, которые течет в нагрузке между фазным проводом и нейтралью, называется фазным током.

Линейное напряжение и ток

Линейным называется напряжение между любыми двумя фазами (линиями). Ток, протекающий в каждой из линий, называется линейным.

Симметричные и несимметричные системы и нагрузки

В сбалансированной (симметричной) трехфазной системе токи во всех трех фазах равны, а сумма всех токов равна нулю, поэтому ток по нейтрали не течет. Амплитуды и частоты напряжений и токов одинаковые. Отличаются они только сдвигом фаз: напряжение в каждой фазе отстает от предыдущей на 2π/3, или на 1/3 цикла, или на 120°. Векторная сумма трех напряжений равна нулю:

То же можно сказать и о токах в симметричной системе:

Если три нагрузки, присоединенные к трем линиям, имеют одинаковую величину и коэффициент мощности, она также называются сбалансированными или симметричными.

Линейные и нелинейные нагрузки

В линейных нагрузках в цепях переменного тока напряжения и токи имеют синусоидальную форму и в любое время ток в нагрузке прямо пропорционален напряжению на ней. Примерами линейных нагрузок являются нагреватели, лампы накаливания. конденсаторы и катушки индуктивности. Все линейные нагрузки подчиняются закону Ома. В линейных нагрузка коэффициент мощности равен cos φ. Подробнее о нелинейных нагрузках — в нашем Калькуляторе активной и реактивной мощности.

В нелинейных нагрузках ток не пропорционален напряжению и содержит гармоники основной частоты 50 или 60 Гц. Примерами нелинейных нагрузок являются блоки питания компьютеров, лазерные принтеры, светодиодные и компактные люминесцентные лампы, электронные регуляторы оборотов электродвигателей и многие другие потребители электроэнергии. Искажение формы гармонических колебаний тока приводит к искажению формы напряжения. К нелинейным нагрузкам неприменим закон Ома. В таких нагрузках коэффициент мощности не равен cos φ.

Соединение треугольником и звездой

Три обмотки трехфазного генератора можно присоединить к нагрузке шестью проводами, по два на обмотку. Для уменьшения количества проводов обмотки присоединяются к нагрузке тремя или четырьмя проводами. Эти два способа подключения называются треугольником (Δ) и звездой (Y).

В соединении треугольником начало каждой обмотки соединяется с концом следующей обмотки. Таким образом энергию можно передавать только по трем проводам.

Соединение звездой (слева) и треугольником (справа)

В симметричной соединении треугольником напряжения равны по амплитуде, отличаются по фазе на 120° и их сумма равна нулю:

В симметричной четырехпроводной системе соединения звездой с тремя одинаковыми подключенными к каждой фазе нагрузками мгновенное значение тока, текущего по нейтрали, равно сумме трех фазных токов i₁, i₂, и i₃, которые имеют одинаковые амплитуды Ip и сдвинуты по фазе на 120°:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении звездой

Соединение звездой; I₁, I₂, и I₃ — фазные токи, которые равны линейным токам

Полная мощность в трехфазной системе является суммой мощностей, потребляемых нагрузками в каждой из трех фаз. В связи с тем, что нагрузки симметричные, в каждой фазе потребляется одинаковая мощность и полная активная мощность во всех трех фазах равна

Здесь φ — разность фаз между током и напряжением. Поскольку в трехфазном соединении звездой фазное Uph и линейное среднеквадратичное напряжение UL связаны как

а среднеквадратичное значения линейного и фазного токов равны

полная активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И, наконец, полная мощность в трех фазах определяется формулой:

Напряжение и мощность в симметричной трехфазной нагрузке при соединении треугольником

Соединение треугольником; I13, I

23, и I32 — фазные токи, а I1, I2, и I3 — линейные токи; при этом IL = √3∙Iph

При соединении треугольником нейтральный проводник отсутствует и конец одной обмотки генератора соединяется с началом следующей обмотки. Фазное напряжение — это напряжение на каждой обмотке. Линейное напряжение — это напряжение между двумя фазами, то есть также на каждой из обмоток. Таким образом, среднеквадратичные напряжения на обмотках и между фазами одинаковые, то есть для соединения треугольником можно написать

При соединении треугольником фазные токи — это токи, текущие через фазные нагрузки. Мы рассматриваем симметричную систему, поэтому фазные среднеквадратичные значения токов Ip1, Ip2 и Ip3 по амплитуде равны (Ip) и отличаются по фазе на 120°:

Как мы уже упоминали, общая мощность в трехфазной системе — это сумма мощностей, потребляемых в нагрузках трех фаз:

где φ

— сдвиг фаз между током и напряжением. Поскольку при соединении треугольником среднеквадратичные значения фазного Uph и линейного напряжений UL равны,

а среднеквадратичные значения линейного и фазного токов связаны формулой

активная мощность определяется следующим уравнением:

Полная реактивная мощность равна

Комплексная мощность:

И полная мощность в трех фазах:

Отметим, что приведенные выше уравнения для мощности при соединении звездой и треугольником одинаковые. Мы используем их в этом калькуляторе.

То, что эти формулы мощности для звезды и треугольника одинаковые, иногда приводит к ошибочным выводам о том, что можно соединить обмотки одного и того же электродвигателя звездой или треугольником и потребляемая мощность (и ток!) не изменятся. Конечно, это неправильно. И если мы в калькуляторе соединение звездой изменим на треугольник, не изменяя нагрузку, мы увидим, что мощность и потребляемый ток изменятся.

Рассмотрим пример. Трехфазный электродвигатель подключен по схеме треугольника и работает на полной номинальной мощности при линейном напряжении

UL и линейном токе IL. Полная мощность в вольт-амперах (ВА) равна

Затем обмотки того же двигателя соединили звездой. Линейное напряжение, приложенное к каждой обмотке, уменьшилось в 1/1,73 раза, при этом сетевое напряжение осталось прежним. Ток в каждой обмотке уменьшился в 1/1,73 раза по сравнению с током, потребляемым при соединении треугольником. Полная мощность также уменьшилась:

Таким образом, полная мощность при соединении звездой равна одной трети мощности при соединении треугольником для нагрузки с тем же импедансом. Очевидно, что полный момент двигателя, обмотки которого соединены звездой, будет в три раза меньше момента того же двигателя при соединении обмоток треугольником.

Иными словами, хотя новая мощность для соединения звездой рассчитывается по той же формуле, что и для треугольника, в расчет нужно вставить другие величины, а именно, напряжение и ток. уменьшенные в 1,73 раза (то есть в квадратный корень из 3).

Расчет симметричной нагрузки по известным напряжению, току и коэффициенту мощности

Для расчета симметричной нагрузки (одинаковой в каждой фазе) по известным напряжению, току и коэффициенту мощности (опережающему или отстающему) используются следующие формулы:

Импеданс нагрузки
Z

В полярной форме:

В комплексной форме:

Расчет тока и мощности по известным напряжению и нагрузке

Фазный ток

По закону Ома, имеем:

Преобразование из прямоугольных координат в полярные и наоборот

Для преобразования из прямоугольных координат R, X в полярные координаты |Z|, φ, используйте следующие формулы:

Треугольник импеданса

В этих формулах R всегда положительно, а X положительно для индуктивной нагрузки (ток отстает от напряжения) и отрицательно для емкостной нагрузки (ток опережает напряжение).

Активное
Rph и реактивное Xph сопротивление нагрузки

Импеданс конденсатора и катушки индуктивности

Параллельная нагрузка RLC

Параллельное соединение RLC

Для расчета используйте наш Калькулятор импеданса параллельной RLC-цепи.

Последовательная нагрузка RLC

Последовательное соединение RLC

Для расчета используйте наш Калькулятор импеданса последовательной RLC-цепи

Более подробную информацию о нагрузки в форме RLC-цепи вы найдете в наших калькуляторах для расчета импеданса:

Примеры расчетов

Пример 1. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 5+j3 Ом подключена звездой к трехфазной сети с линейным напряжением 400 В 50 Гц. Рассчитать фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 2. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех цепей с равными импедансами Zph = 15 ∠60° Ом подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 110 В 50 Гц. Определить тип нагрузки (емкостная или индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 3. Расчет мощности и тока по заданным напряжению и нагрузке

Индуктивная нагрузка из трех обмоток с равными импедансами и эквивалентной схемой в виде включенных последовательно сопротивления Rph = 20 Ом и индуктивности Lph = 440 мГн подключена звездой к трехфазной сети с фазным напряжением (между фазой и нейтралью) 230 В 50 Гц. Рассчитайте фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Найти линейный ток и потребляемую мощность для той же нагрузки, но соединенной треугольником. Совет: Для определения импеданса каждой обмотки воспользуйтесь Калькулятором последовательной RL-цепи.

Пример 4. Расчет мощности и нагрузки по заданным напряжению и току

Симметричный трехфазный генератор подает фазное напряжение 230 В на включенную звездой нагрузку с отстающим (активно-индуктивным) коэффициентом мощности 0,75. Ток в каждой фазе равен 28,5 А. Рассчитать импеданс нагрузки, активное и реактивное сопротивление в каждой фазе. Также рассчитать полную, активную и реактивную мощности. Описать что произойдет, если для той же нагрузки изменить соединение со звезды на треугольник. Совет: используйте режим определения мощности и нагрузки по заданным току и напряжению, а затем для ответа на последний вопрос воспользуйтесь этим же калькулятором в режиме определения мощности и тока по заданным напряжению и нагрузке.

Пример 5. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка, состоящая из трех одинаковых обмоток, имеющих сопротивление Rph = 10 Ом и индуктивность Lph = 310 мГн, подключена треугольником к трехфазной сети с напряжением между фазой и нейтралью 120 В, 60 Гц. Рассчитайте линейное напряжение UL, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности. Как изменятся ток и мощность, если эту же нагрузку подключить звездой? Совет: воспользуйтесь нашим Калькулятором импеданса последовательной RL-цепи для определения импеданса каждой катушки, а затем введите данные в этот калькулятор.

Пример 6. Расчет мощности и тока по заданным напряжению и нагрузке

Нагрузка из трех цепей с равными импедансами Zph = 7 – j5 Ом подключена треугольником к трехфазной сети с линейным напряжением (между двумя фазами) 208 В 60 Гц. Определить тип нагрузки (резистивно-емкостная или резистивно-индуктивная) фазное напряжение Uph, фазовый угол φph, фазный ток Iph, линейный ток IL, активную P, реактивную Q, полную |S|, и комплексную S мощности.

Пример 7. Расчет мощности и нагрузки по заданным напряжению и току

Симметричная нагрузка подключена звездой к симметричному трехфазному генератору с линейным (между двумя фазами) напряжением 208 В 60 Гц. В каждом фазном проводе протекает ток Iph = 20 А с запаздыванием относительно напряжения на 15°. Определите фазное напряжение, импеданс нагрузки в каждой фазе в полярной и комплексной форме, активную и реактивную мощности.

Автор статьи: Анатолий Золотков

Формула расчета мощности электрического тока

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

  • S = √ P 2 +Q 2 , – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √ 3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Емкостная нагрузка

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.

Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:

  1. обратившись к технической документации устройства;
  2. посмотрев это значение на наклейке задней панели; Потребляемая мощность прибора часто указывается на тыльной стороне
  3. воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.

Таблица значений средней потребляемой мощности

При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв потоку. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной. Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково. Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.

А поскольку они все идентичные, то их просто утраивают.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

Аналогично будет вычисляться реактивная составляющая

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».

Мощность и ток

Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:

  • величины напряжения;
  • силы тока.

В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.

Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.

Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.

Сила тока и приложенная нагрузка

Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:

  • включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
  • подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
  • наращивать провода от электрического чайника кабелем с витой парой;
  • устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.

Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.

Чайник и электрическая мощность

Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.

Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.

Необходимость расчетов мощности

Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.

Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.

Расчет мощности электрического тока по формулам

Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.

Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.

Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.

Ремонт и строительство домов и квартир, особенности расчетов

Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.

Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.

При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.

Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.

“>

некоторые формулы для вычисления и методы измерения мощности

Переменный и постоянный ток отличаются один от другого многими параметрами, а особенно наличием фаз у первого вида. С этими отличиями связаны более сложные формулы и методы вычислений численных значений величин, характеризующих переменный ток, в том числе и мощность трёхфазного тока.

Характеристики трёхфазных цепей

Электрические системы, использующие в качестве источника питания трёхфазный ток, имеют два основных вида подключения: «звезда» и «треугольник». На схемах, изображающих подключение трёхфазного питания, принято обозначать фазы с помощью набора латинских букв:

  • А, В, С;
  • или же U, V, W.

А так называемая нейтраль обозначается буквой N.

На практике довольно часто приходится сталкиваться с необходимостью расчёта мощности электрического тока. В случае постоянного тока эта задача решается предельно просто - путём умножения напряжения и силы тока. Эти параметры не подвержены изменениям во времени, поэтому и значение мощности будет неизменным, так как система уравновешена и постоянно находится в таком состоянии.

Совершенно иная ситуация возникает при необходимости расчётов мощности изменяющегося во времени по величине и направлению течения электрического тока. Выполнение таких вычислений требует специальных знаний о природе переменного тока и его особенностях.

Мощность трёхфазного тока вычисляется как сумма отдельных величин на каждой фазе и выражается формулой:

При условии равномерной загрузки сети, мощность, потребляемую каждой из них, определяют следующим образом: . То есть эту величину на отдельной фазе находят с помощью произведения соответствующих напряжений и токов на косинус угла сдвига фаз.

А так как нагрузка распределяется одинаково на каждую фазу, то и мощностные характеристики по отдельности будут равны между собой. В результате мощность трехфазной сети в этой ситуации можно найти, умножив на 3 эту величину, вычисленную для отдельной фазы: .

Соединение звезда

Использование такой схемы при соединении фаз даёт возможность уравновесить систему и получить суммарное напряжение в точке их пересечения N равное нулю. В случае соединения по схеме «звезда» трёхфазный ток характеризуется двумя типами напряжений: фазным и линейным. Фазное напряжение измеряется между одной из фаз (А, В или С) и нулевой точкой N, а линейное показывает значение разности потенциалов между двумя фазами (А-В, В-С или А-С).

Соотношения между линейными и фазными напряжениями и токами при такой схеме соединения выглядит следующим образом: и .

А, следовательно, общая мощностная характеристика находится по формуле: .

Соединительная схема треугольник

При подключении нагрузок в трёхфазной цепи по принципу «треугольника» одинаковыми будут значения линейного и фазного напряжения, а величины силы тока (линейная и фазная) будут связаны соотношением: .

Результирующая формула для мощности 3-фазного тока при равномерной нагрузке на каждую фазу в этом соединении будет выглядеть как .

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

В зависимости от варианта комбинации системы и нагрузки определяется методика измерения мощности в электрической сети.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

В случае трёхпроводной системы обмотка напряжения измерительного прибора включается на линейное напряжение сети, а его токовая обмотка пропускает через себя линейный электропоток. Поэтому общая мощность сети будет больше показаний ваттметра в раз.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Расчет электрического тока по мощности — формулы, онлайн расчет, выбор автомата

Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.

Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.

Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв по току. Другие потребители при уборке отключены.

Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.

На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.

Блок: 1/5 | Кол-во символов: 858
Источник: https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Расчет мощностного показателя по амперам и ваттам

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Расчет электроэнергии через электромощность и электронапряжение

Блок: 2/5 | Кол-во символов: 923
Источник: https://rusenergetics.ru/polezno-znat/raschet-moschnosti-po-toku-i-napryazheniyu

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Блок: 2/5 | Кол-во символов: 3155
Источник: https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/

Трёхфазное или однофазное подключение

В зависимости от того, какой тип подключения используют, определение потребляемой мощности производится по-разному.

В однофазной сети потребляемая энергия считается по простейшей формуле:

P=U∙I∙cosϕ,

где cosϕ – коэффициент мощности, характеризующий сдвиг фаз между током и напряжением в реактивной нагрузке.

Мощность 3 х фазной сети является суммой потребления по каждой фазе в отдельности. Формула мощности 3 х фазного тока имеет следующий вид:

Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc,

где U, I, cosϕ – напряжение, сила тока и коэффициент мощности в каждой фазе, соответственно.

К сведению. Видно, что в общем случае трехфазное соединение требует большее количество приборов учета.

Иногда посчитать потребление энергии можно по упрощенному варианту. При симметричном потреблении, например, при подключении асинхронного двигателя, токи потребления одинаковы, и формула принимает следующий вид:

P=3Uф∙Iф∙cosϕ=√3Uл∙Iл∙cosϕ,

где:

  • Uф, Iф – фазные напряжение и ток;
  • Uл, Iл – линейные напряжение и ток.

Асинхронный двигатель

Блок: 3/7 | Кол-во символов: 1061
Источник: https://amperof.ru/teoriya/raschet-moshhnosti-trexfaznoj-seti.html

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Блок: 3/5 | Кол-во символов: 1200
Источник: https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

I = P/(U*cos φ),

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Блок: 2/4 | Кол-во символов: 1678
Источник: http://remontnichok.ru/elektrichestvo/raschet-elektricheskogo-toka-po-moshchnosti-formuly-onlayn-raschet-vybor-avtomata

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Блок: 3/4 | Кол-во символов: 3886
Источник: http://remontnichok.ru/elektrichestvo/raschet-elektricheskogo-toka-po-moshchnosti-formuly-onlayn-raschet-vybor-avtomata

Информация о статье

Избранная статья

Дом

На других языках:

English: Calculate Wattage, Español: calcular el vatiaje, Deutsch: Stromverbrauch berechnen, Italiano: Calcolare la Potenza Elettrica, Português: Calcular a Potência, Français: calculer une puissance électrique, 中文: 计算功率, Bahasa Indonesia: Menghitung Watt, Nederlands: Vermogen berekenen, 한국어: 와트(전력량) 계산하는 방법, हिन्दी: वाटेज की गणना करें, 日本語: 消費電力を計算する, Türkçe: Vat Miktarı Nasıl Hesaplanır, Tiếng Việt: Tính công suất, العربية: حساب القوة الكهربائية بوحدة الواط

Эту страницу просматривали 337 871 раз.

Блок: 4/4 | Кол-во символов: 679
Источник: https://ru.wikihow.com/%D1%80%D0%B0%D1%81%D1%81%D1%87%D0%B8%D1%82%D0%B0%D1%82%D1%8C-%D0%BF%D0%BE%D1%82%D1%80%D0%B5%D0%B1%D0%BB%D1%8F%D0%B5%D0%BC%D1%83%D1%8E-%D0%BC%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D1%8C-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел . Задавайте их, я отвечу.

Блок: 5/5 | Кол-во символов: 294
Источник: https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/

Измерение мощности ваттметром

Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.

Трехфазный цифровой ваттметр

Варианты измерений:

  • Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
  • Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
  • Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.

Схемы измерения

На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.

Блок: 6/7 | Кол-во символов: 1058
Источник: https://amperof.ru/teoriya/raschet-moshhnosti-trexfaznoj-seti.html

Видео

Блок: 7/7 | Кол-во символов: 6
Источник: https://amperof.ru/teoriya/raschet-moshhnosti-trexfaznoj-seti.html

Кол-во блоков: 18 | Общее кол-во символов: 25744
Количество использованных доноров: 7
Информация по каждому донору:
  1. http://remontnichok.ru/elektrichestvo/raschet-elektricheskogo-toka-po-moshchnosti-formuly-onlayn-raschet-vybor-avtomata: использовано 2 блоков из 4, кол-во символов 5564 (22%)
  2. https://rusenergetics.ru/polezno-znat/raschet-moschnosti-po-toku-i-napryazheniyu: использовано 1 блоков из 5, кол-во символов 923 (4%)
  3. https://amperof.ru/teoriya/raschet-moshhnosti-trexfaznoj-seti.html: использовано 4 блоков из 7, кол-во символов 2938 (11%)
  4. https://kalk.pro/electricity/electrical-circuit-power/: использовано 1 блоков из 3, кол-во символов 1182 (5%)
  5. https://ElectrikBlog.ru/formula_rascheta_moshchnosti_po_toku_i_napryazheniyu_elektroskhemy/: использовано 5 блоков из 5, кол-во символов 11750 (46%)
  6. https://ru.wikihow.com/%D1%80%D0%B0%D1%81%D1%81%D1%87%D0%B8%D1%82%D0%B0%D1%82%D1%8C-%D0%BF%D0%BE%D1%82%D1%80%D0%B5%D0%B1%D0%BB%D1%8F%D0%B5%D0%BC%D1%83%D1%8E-%D0%BC%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D1%8C-%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BF%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D0%B0: использовано 3 блоков из 4, кол-во символов 1424 (6%)
  7. https://odinelectric.ru/appliances/sposoby-vychislenija-potreblenija-jelektrojenergii-bytovymi-priborami: использовано 2 блоков из 4, кол-во символов 1963 (8%)

Расчет мощности линейного напряжения

Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.

Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Измерение мощности ваттметром

В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.

В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.

Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Расчет величины переменного электрического тока при однофазной нагрузке.

Предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 220 вольт.

В доме имеются электроприборы:

Для освещения дома установлены 5 электролампочек по 100 ватт каждая и 8 электролампочек мощностью 60 ватт каждая. 2. Электродуховка, мощностью 2 киловатта или 2000 ватт. 3. Телевизор, мощностью 0,1 киловатт или 100 ватт. 4. Холодильник, мощностью 0,3 киловатта или 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт или 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: 1, Определяем суммарную мощность всех приборов: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при такой мощности определяется по формуле:

где: I – ток в амперах (А) Р – мощность в ваттах (Вт) U – напряжение в вольтах (В) cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства пользователей ниже приведена форма расчета тока.

Вам следует ввести в соответствующие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, нажать кнопку "Вычислить" и в поле "Ток" появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, для чего умножить на 1000. Для очистки введенного значения мощности следует нажать кнопку "Очистить". Очистку введенных по умолчанию значений напряжения и косинуса следует произвести клавишей delete переместив курсор в соответствующую ячейку (при необходимости).

Форма расчета для определения тока при однофазной нагрузке.

Расчет величины переменного электрического тока при трехфазной нагрузке.

Теперь предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения – 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода – 3 фазы и нейтраль (по старому – ноль).

Так вот, напряжение между фазными проводами или иначе – линейное напряжение будет 380 В, а между любой из фаз и нейтралью или иначе фазное напряжение будет 220 В. Каждая из трех фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.

Таким образом, между фазами А и В, А и С, В и С – будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а значит в доме может быть как трехфазная, так и однофазная нагрузка.

Вообще-то трехфазные нагрузки принято считать в киловаттах, поэтому, если они записаны в ваттах, их следует разделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?

Расчет: Определяем суммарную мощность всех приборов: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при такой мощности определяется по формуле:

где: I – ток в амперах (А) Р – мощность в киловаттах (кВт) U – линейное напряжение, В cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А

Определить

Линейные и фазные токи

Пример расчета:.

К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Определить актив­ную, реактивную и полную мощности, коэффициент мощности,

Решение.

1 Фазное напряжение:

U ф = U л / √ 3=380 / √ 3 = 220 В.

Фазный ток

Линейный ток

4 Реактивное сопротивление в фазе:

5 Активное сопротивление в фазе:

6 Коэффициент мощности катушки:

sinφ=XL/z= 56,5/90=0,628

7 Мощности, потребляемые нагрузкой:

а) активная:

Или

б) реактивная:


в) Полная:

Расчет мощности трехфазной сети

Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле

P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)

Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:

Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)

Пример 1

Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В

Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:

I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А

Пример 2

Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1

Решение: Используя формулу (2), имеем:

Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Соответственно для активной:

Для реактивной:

Схема соединения в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) показания W1 меньше чем W2 (W1 60 0 показания W1 вообще отрицательные (W1 W2, а при φ 0 показания W2 Posted in Электротехника

Комментарии к статье “ Мощность трехфазной сети ”

В формуле мощности при соединении треугольником надо дописать что Iф= КОРЕНЬ из I ЛИНЕЙНОГО, а значит окончательнаяф формула принимает вид почти ТАКОЙ ЖЕ как и для мощности при соединении звездой — Р=КОРЕНЬ из ТРЁХ * Uфазное * I линейное*соs f

При чём U фазное = U линейное. То есть в обеих случаях формула мощности одна и та же.

ПОдскажите , клещами на проводниках 3 полючного автомата померили ток, получили значения. Как считать мощность через. корень квадратный? или как для однофазки P=UI

Все зависит от того, какую мощность вы хотите посчитать. Если полную, то да, S = UI. Для других мощностей нужно использовать другие формулы.

Добавить комментарий

Отменить ответ

  • Автоматизация технологических процессов (121)
  • Альтернативная энергетика (32)
  • Интернет вещей (IoT) (90)
  • Микроконтроллеры (31)
  • Моделирование электромеханических систем (22)
  • Новости партнеров (1)
  • Новости электроники (155)
  • Основы электричества (27)
  • Реактивная мощность (12)
  • Робототехника (26)
  • Станки с ЧПУ (36)
  • Схемотехника (82)
  • Теория автоматического управления (14)
  • Электрика в быту (60)
  • Электрические машины и аппараты. Трансформаторы (69)
  • Электропривод (115)
  • Электроснабжение (77)
  • Электротехника (102)
  • Энергосбережение (81)
  • Магнитные пускатели – 87 562
  • Что такое активная, реактивная и полная мощность – 70 786
  • Логические элементы и их схемная реализация – 70 455
  • Механические характеристики при торможении синхронных машин – 55 712
  • Подключение амперметров к сети – 51 284
  • Соотношение между фазными и линейными напряжениями. Номинальные напряжения – 49 449
  • Что такое категории надежности электроснабжения? – 45 936
  • Мощность трехфазной сети – 45 426
  • Ввод и распределение электроэнергии в многоквартирном доме – 44 902
  • В чем разница между NPN и PNP транзисторами? – 41 871

Расчет номинального тока электродвигателя | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Решил написать статью о расчете номинального тока для трехфазного электродвигателя.

Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.

В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).

Вот его внешний вид и бирка с техническими данными.

Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.

При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.

Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.

Для информации: почитайте подробную статью о схемах соединения обмоток в «звезду» и «треугольник».

Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.

Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.

Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.

Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.

В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.

Итак, приступим.

Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:

Полезную механическую мощность обозначают, как Р2.

Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.

Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).

Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше механической мощности Р2, т.к. в ней учтены все потери двигателя.

1. Механические потери (Рмех.)

К механическим потерям относятся трение в подшипниках и вентиляция. Их величина напрямую зависит от оборотов двигателя, т.е. чем выше скорость, тем больше механические потери.

У асинхронных трехфазных двигателей с фазным ротором еще учитываются потери между щетками и контактными кольцами. Более подробно об устройстве асинхронных двигателей Вы можете почитать здесь.

2. Магнитные потери (Рмагн.)

Магнитные потери возникают в «железе» магнитопровода. К ним относятся потери на гистерезис и вихревые токи при перемагничивании сердечника.

Величина магнитных потерь в статоре зависит от частоты перемагничивания его сердечника. Частота всегда постоянная и составляет 50 (Гц).

Магнитные потери в роторе зависят от частоты перемагничивания ротора. Эта частота составляет 2-4 (Гц) и напрямую зависит от величины скольжения двигателя. Но магнитные потери в роторе имеют малую величину, поэтому в расчетах чаще всего не учитываются.

3. Электрические потери в статорной обмотке (Рэ1)

Электрические потери в обмотке статора вызваны их нагревом от проходящих по ним токам. Чем больше ток, чем больше нагружен двигатель, тем больше электрические потери — все логично.

4. Электрические потери в роторе (Рэ2)

Электрические потери в роторе аналогичны потерям в статорной обмотке.

5. Прочие добавочные потери (Рдоб.)

К добавочным потерям можно отнести высшие гармоники магнитодвижущей силы, пульсацию магнитной индукции в зубцах и прочее. Эти потери очень трудно учесть, поэтому их принимают обычно, как 0,5% от потребляемой активной мощности Р1.

Все Вы знаете, что в двигателе электрическая энергия преобразуется в механическую. Если объяснить чуть подробнее, то при подведенной к двигателю электрической активной мощности Р1, некоторая ее часть затрачивается на электрические потери в обмотке статора и магнитные потери в магнитопроводе. Затем остаточная электромагнитная мощность передается на ротор, где она расходуется на электрические потери в роторе и преобразуется в механическую мощность. Часть механической мощности уменьшается за счет механических и добавочных потерь. В итоге, оставшаяся механическая мощность — это и есть полезная мощность Р2 на валу двигателя.

Все эти потери и заложены в единственный параметр — коэффициент полезного действия (КПД) двигателя, который обозначается символом «η» и определяется по формуле:

η = Р2/Р1

Кстати, КПД примерно равен 0,75-0,88 для двигателей мощностью до 10 (кВт) и 0,9-0,94 для двигателей свыше 10 (кВт).

Еще раз обратимся к данным, рассматриваемого в этой статье двигателя АИР71А4.

На его шильдике указаны следующие данные:

  • тип двигателя АИР71А4
  • заводской номер № ХХХХХ
  • род тока — переменный
  • количество фаз — трехфазный
  • частота питающей сети 50 (Гц)
  • схема соединения обмоток ∆/Y
  • номинальное напряжение 220/380 (В)
  • номинальный ток при треугольнике 2,7 (А) / при звезде 1,6 (А)
  • номинальная полезная мощность на валу Р2 = 0,55 (кВт) = 550 (Вт)
  • частота вращения 1360 (об/мин)
  • КПД 75% (η = 0,75)
  • коэффициент мощности cosφ = 0,71
  • режим работы S1
  • класс изоляции F
  • класс защиты IP54
  • название предприятия и страны изготовителя
  • год выпуска 2007

Расчет номинального тока электродвигателя

В первую очередь необходимо найти электрическую активную потребляемую мощность Р1 из сети по формуле:

Р1 = Р2/η = 550/0,75 = 733,33 (Вт)

Величины мощностей подставляются в формулы в ваттах, а напряжение — в вольтах. КПД (η) и коэффициент мощности (cosφ) — являются безразмерными величинами.

Но этого не достаточно, потому что мы не учли коэффициент мощности (cosφ), а ведь двигатель — это активно-индуктивная нагрузка, поэтому для определения полной потребляемой мощности двигателя из сети воспользуемся формулой:

S = P1/cosφ = 733,33/0,71 = 1032,85 (ВА)

Найдем номинальный ток двигателя при соединении обмоток в звезду:

Iном = S/(1,73·U) = 1032,85/(1,73·380) = 1,57 (А)

Найдем номинальный ток двигателя при соединении обмоток в треугольник:

Iном = S/(1,73·U) = 1032,85/(1,73·220) = 2,71 (А)

Как видите, получившиеся значения равны токам, указанным на бирке двигателя.

Для упрощения, выше приведенные формулы можно объединить в одну общую. В итоге получится:

Iном = P2/(1,73·U·cosφ·η)

Поэтому, чтобы определить номинальный ток двигателя, необходимо в данную формулу подставлять механическую мощность Р2, взятую с бирки, с учетом КПД и коэффициента мощности (cosφ), которые указаны на той же бирке или в паспорте на электродвигатель.

Перепроверим формулу.

Ток двигателя при соединении обмоток в звезду:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·380·0,71·0,75) = 1,57 (А)

Ток двигателя при соединении обмоток в треугольник:

Iном = P2/(1,73·U·cosφ·η) = 550/(1,73·220·0,71·0,75) = 2,71 (А)

Надеюсь, что все понятно.

Примеры

Решил привести еще несколько примеров с разными типами двигателей и мощностями. Рассчитаем их номинальные токи и сравним с токами, указанными на их бирках.

1. Асинхронный двигатель 2АИ80А2ПА мощностью 1,5 (кВт)

Как видите, этот двигатель можно подключить только в трехфазную сеть напряжением 380 (В), т.к. его обмотки собраны в звезду внутри двигателя, а в клеммник выведено всего три конца, поэтому:

Iном = P2/(1,73·U·cosφ·η) = 1500/(1,73·380·0,85·0,82) = 3,27 (А)

Полученный ток 3,27 (А) соответствует номинальному току 3,26 (А), указанному на бирке.

2. Асинхронный двигатель АОЛ2-32-4 мощностью 3 (кВт)

Данный двигатель можно подключать в трехфазную сеть напряжением, как на 380 (В) звездой, так и на 220 (В) треугольником, т.к. в клеммник у него выведено 6 концов:

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·380·0,83·0,83) = 6,62 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 3000/(1,73·220·0,83·0,83) = 11,44 (А) — треугольник

Полученные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на бирке.

3. Асинхронный двигатель АИРС100А4 мощностью 4,25 (кВт)

Аналогично, предыдущему.

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·380·0,78·0,82) = 10,1 (А) — звезда

Iном = P2/(1,73·U·cosφ·η) = 4250/(1,73·220·0,78·0,82) = 17,45 (А) — треугольник

Расчетные значения токов при разных схемах соединения обмоток соответствуют номинальным токам, указанных на шильдике двигателя.

4. Высоковольтный двигатель А4-450Х-6У3 мощностью 630 (кВт)

Этот двигатель можно подключить только в трехфазную сеть напряжением 6 (кВ). Схема соединения его обмоток — звезда.

Iном = P2/(1,73·U·cosφ·η) = 630000/(1,73·6000·0,86·0,947) = 74,52 (А)

Расчетный ток 74,52 (А) соответствует номинальному току 74,5 (А), указанному на бирке.

Дополнение

Представленные выше формулы это конечно хорошо и по ним расчет получается более точным, но есть в простонародье более упрощенная и приблизительная формула для расчета номинального тока двигателя, которая наибольшее распространение получила среди домашних умельцев и мастеров.

Все просто. Берете мощность двигателя в киловаттах, указанную на бирке и умножаете ее на 2 — вот Вам и готовый результат. Только данное тождество уместно для двигателей 380 (В), собранных в звезду. Можете проверить и поумножать мощности приведенных выше двигателей. Но лично я же настаиваю Вам использовать более точные методы расчета.

P.S. А вот теперь, как мы уже определились с токами, можно приступать к выбору автоматического выключателя, предохранителей, тепловой защиты двигателя и контакторов для его управления. Об этом я расскажу Вам в следующих своих публикациях. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку сайта «Заметки электрика». До новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Калькулятор расчета спирали из нихрома и фехраля для нагревателей :: информационная статья компании Полимернагрев

Электронагреватели могут производиться с нагревательными спиралями из различных материалов, но наиболее популярными все же являются нихром и фехраль. Нихром - это сплав никеля и хрома, а фехраль – сплав железа, хрома и алюминия. Они имеет высокую коррозионную стойкость и температуру плавления, поэтому и используется в электрических приборах и нагревателях.

Данная статья поможет вам разобраться в расчетах параметров греющих спиралей, а простые и удобные калькуляторы сделают быстрый подсчет нужной длины проволоки и переведут длину в вес и обратно. Воспользуйтесь этими онлайн-калькуляторами нихромовой проволоки, чтобы рассчитать сопротивление, площадь сечения, ток и длину нихромовой и фехралевой проволоки, просто указав мощность и напряжение.

Расчет длины спирали

Расчет веса и длины

Расчет спирали из нихрома и фехраля

Существует несколько способов расчета греющих спиралей, рассмотрим для начала более простой метод, учитывающий только сопротивление материала, а потом включим в расчет еще и изменение сопротивления под воздействием темепературы.

Способ расчета спирали по сопротивлению материала

В данном способе все довольно просто. Нам нужны первоначальные данные, на основе которых мы будем проводить вычисления. Они включают в себя:

  • Мощность нагревательного элемента, который хотите получить

  • Напряжение, при котором спираль будет работать

  • Диаметр и тип проволоки, который имеется в наличии

Предположим, у нас имеется электроприбор, который должен работать с мощностью 12 Вт под напряжением 24 В. При этом мы используем проволоку из нихрома с сечением 0,2 мм.

Для вычислений нам потребуется самая элементарная формула из общеобразовательного курса физики:

Мощность (Р) = Напряжение (U) * Сила тока (I)

Отсюда

І = Р: U = 12 : 24 = 0,5 А

Теперь воспользуемся законом Ома для определения сопротивления:

Сопротивление (R ) = Напряжение (U)  * Сила тока (I) = 24/0,5 = 48 Ом

Теперь нам нужна формула для определения длины проводника:

Длина (L) = Площадь сечения (S) * Сопротивление (R)  / Плотность материала (ρ)

Как же  узнать сопротивление нихромовой проволоки?  Помочь в решении данной задачи нам помогут таблицы плотности материалов или формулы для вычисления значения. Итак, если у нас проволока имеет диаметр 0,2, значит площадь сечения по формуле будет 0,0314 мм2, сопротивление смотрим по таблице и получаем длину проволоки 1,3 м.

Но это все чисто теоретически, ведь мы не знаем, сможет ли выдержать проволока данного диаметра такой ток. Посмотрим таблицу, в ней указаны максимальные значения тока для проволоки определенного диаметра. В нашем случае это 0,65, значит наше значение 0,5 лежит в допустимых пределах.

Также не забывайте учесть среду, в которой будет работать нагреватель. Если вы греете жидкость, можно смело увеличивать силу тока вдвое, а если замкнутое пространство – наоборот, уменьшать.



Способ расчета спирали по температуре

Тот, способ, который мы описывали выше, является не очень точным по той причине, что нами не было взято в расчет изменение сопротивления резистивной проволоки при росте температуры. Поэтому его можно применять только для не слишком высоких температур до 200-250 градусов. Для высокотемпературных печей данный расчет будет совсем неточным, поэтому рассмотрим второй метод.

Возьмем муфельную печь отжига и определим объем камеры и нужную мощность. Помогут с вычислениями нам такие два правила.

  • Если объем печи меньше 50 литров, то подбираем мощность 100 Вт на литр

  • Если же объем печи больше 100 литров, мощность рассчитывается как 50-70 Вт на литр

Допустим, наша печь отжига имеет объем 50 литров, мощность тогда будет 5 кВт. Если напряжение в сети должно быть стандартные 220 В, то сила тока и сопротивление будет равны:

І = 5000:220 = 22,7 А

R = 220:22,7 = 9,7 Ом

Подключение звездой при напряжении 380 В потребует деления мощности на 3 фазы, тогда наша мощность для одной фазы будет равна 5кВт / 3 = 1,66 кВт

Подключение звездой предполагает, что на каждую из фаз будет подаваться напряжение питания 220 В, следовательно значения сопротивления и силы тока будет такими:

І = 1660/220 = 7,54 А

R = 220/7,54 = 29,1 Ом

Второй тип подключения ТЭНов для напряжения в 380 В «треугольник» предполагает подачу линейного напряжения в 380 В, поэтому мы получим:

І = 1660/380 = 4,36 А

R = 380/4,36 = 87,1 Ом

При помощи ниже указанных таблиц мы можем найти удельную поверхностную мощность нагревательного элемента и вычислить на его основе длину проволоки.

Поверхностная мощность = βэф*α(коэффициент эффективности)


В итоге, чтобы наша печь нагрелась до 1000 С, нагревательный элемент должен производить температуру в 1100 градусов. Возьмем таблицы и выберем соответствующие значения. Тогда получим:

  • Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2

  • Диаметр определяется по формуле d=3√((4*Rt*P2)/(π2*U2доп))

Rt - удельное сопротивление материала при нужной температуре берем из таблицы


Если наша спираль изготовлена из нихрома марки Х80Н20, Rt будет равняться 1,025. Значит Рт=1,13 * 106 * 1,025 = 1,15 * 106 Ом на мм

При подключении типа «звезда»: диаметр равен 1,23 мм, длина = 42 м

Если же мы проверим результат по упрощенной формуле L=R/(p*k)

Получим 29,1/(0,82*1,033)= 34 м

Из этого мы видим, что не учитывая температуру мы получаем совсем другое значение длины проволоки и более правильным является выбор второго метода.

Итоги

Онлайн калькулятор для расчета спирали поможет вам с быстрыми предварительными расчетами, но для точного учета всех особенностей даже второго метода расчета с учетом температуры может быть не достаточно. На практике существует еще очень много факторов, которые нужно взять во внимание при расчете параметров нагревателя.

Если вам нужна помощь с расчетами нагревателей – обращайтесь к нам. Наши специалисты имеют огромный опыт в проектировании нагревательных элементов для различного промышленного оборудования. Мы поможем с расчетами оптимальных параметров нагревательных элементов для вашего оборудования и можем изготовить любой тип нагревателей для Вас.


Three-Phase Power Equations

Большая часть энергии переменного тока сегодня вырабатывается и распределяется как трехфазная, где три синусоидальных напряжения генерируются в противофазе друг с другом. При однофазном питании переменного тока имеется только одно синусоидальное напряжение.

Реальная мощность

Линейное напряжение:

Вт применяется = 3 1/2 U ll I cos Φ

= 3 1/2 U ll I PF (1)

где

Вт приложено = активная мощность (Вт, ватты)

U ll = линейное напряжение (В, вольт)

I = ток (А, амперы)

PF = cos Φ = коэффициент мощности (0.7 - 0,95)

Напряжение между фазой и нейтралью:

Вт приложено = 3 U ln I cos Φ (2)

где

U ln = напряжение между фазой и нейтралью (В, вольт)

Для чисто резистивной нагрузки: PF = cos Φ = 1

  • резистивная нагрузка преобразует ток в другие формы энергии, такие как тепло
  • индуктивные нагрузки используют магнитные поля, такие как двигатели , соленоиды и реле

Коэффициент мощности

Типичные коэффициенты мощности:

Устройство Коэффициент мощности
Лампа люминесцентная без компенсации 0.5
Лампа с люминесцентной компенсацией 0,93
Лампа накаливания 1
Двигатель, индукционная нагрузка 100% 0,85
Двигатель, индукционная нагрузка 50%
Двигатель, индукционная нагрузка 0% 0,17
Двигатель, синхронный 0,9
Духовка, резистивный нагревательный элемент 1
Духовка с индукционной компенсацией 0.85
Чистая резистивная нагрузка 1
Пример - Чистая резистивная нагрузка

Для чисто резистивной нагрузки и коэффициента мощности = 1 фактическая мощность при напряжении 400/230 (от линии к линии / линии к нейтрали) 20 ампер Цепь можно рассчитать как

Вт применяется = 3 1/2 (400 В) (20 А) 1

= 13856 W

= 13.9 кВт

Общая мощность

Вт = 3 1/2 UI (2)

Тормозная мощность

Вт л.с. = 3 1/2 UI PF μ / 746 (3)

где

Вт л.с. = тормозная мощность (л.с.)

μ = КПД устройства

Расчет мощности трехфазного переменного тока | Electrical Academia

В схеме распределения трехфазного переменного тока три однофазных источника переменного тока соединены между собой по схеме звезды или треугольника, чтобы сформировать трехпроводное питание в генераторе переменного тока, трансформаторе или электродвигателе, а иногда и в 4 -проводка в генераторе или трансформаторе.

Если три однофазных источника переменного тока были синфазны друг с другом, и эти однофазные источники переменного тока имели равные номинальные мощности, общая мощность, доступная для подключенной нагрузки, была бы произведением трехфазного сетевого напряжения переменного тока. умноженный на 3-фазный линейный ток трехфазного переменного тока для любого из источников, умноженный на коэффициент 3, но это не так.

Чтобы использовать только три проводника цепи вместо шести, необходимых для подачи и возврата (по 2 каждого) из трех источников однофазного переменного тока, теперь три источника однофазного переменного тока производятся на электростанции, не совпадающей по фазе. друг с другом с коэффициентом 120 0 :

При подключении по схеме звезды или треугольника общая мощность генератора переменного тока, двигателя или трансформатора (или другой трехфазной нагрузки переменного тока) является векторным сложением вместо прямое алгебраическое сложение.

Потому что ни один однофазный источник переменного тока не может выдать свое полное среднеквадратичное напряжение (среднеквадратичное или эффективное напряжение переменного тока - эквивалентно равному рабочему значению постоянного напряжения), когда вольтметр помещен на любые два из трех линейных (фазных) проводов полная мощность системы генерации, распределения или передачи электроэнергии трехфазного переменного тока увеличивается только в √3 (1,732) раз.

Опять же, предполагая равные номинальные мощности трех однофазных источников переменного тока, общая мощность, доступная для подключенной нагрузки трехфазного переменного тока, является произведением трехфазного линейного напряжения переменного тока, умноженного на трехфазный линейный ток, умноженного на модель √3 .По формуле:

Вольт-Ампер (ВА) = √3 × В ЛИНИЯ × A ЛИНИЯ

Или киловольт-ампер (кВА) = (√3 × В LINE × A LINE ) ÷ 1000 (/ k)

Треугольник питания переменного тока

В цепи постоянного тока или в однофазной резистивной цепи переменного тока В цепи произведение линейного напряжения на линейный ток равно общей мощности, потребляемой цепью.

В трехфазной резистивной цепи переменного тока произведение √3 , умноженного на линейное напряжение, на линейный ток, равно общей мощности, потребляемой схемой.

Сопротивление цепи обозначается буквой R как в законе Ома [E = I × R, или V = A × R], так и в законе мощности Ватта [P = I 2 × R, или P = A 2 × R]. Когда ток в цепи течет против сопротивления; тепло выделяется (рассеивается) как мощность (истинная или активная мощность) цепи.

Рисунок 1. Реактивные элементы в цепи переменного тока

Во всех цепях переменного тока, кроме чисто резистивных цепей переменного тока, есть еще один элемент, который обеспечивает реактивное сопротивление . Реактивное сопротивление или реактивная нагрузка - это тип сопротивления потоку электрического тока, который не рассеивает электрическое сопротивление в виде тепла. Вместо этого реактивное сопротивление временно сохраняет электрическую энергию в элементе схемы. Сохраненная электрическая энергия возвращается в цепь при изменении условий цепи (как приложенного напряжения, так и потребляемого тока).

Переменный ток постоянно меняется по величине и периодически меняет направление тока на противоположное. Примером реактивного сопротивления является автомобильный аккумулятор, который может заряжаться и разряжаться при запуске двигателя и перезаряжаться во время работы двигателя. Как показано на рис. 1 , двумя запоминающими элементами в электрической цепи переменного тока являются конденсаторы и катушки индуктивности.

Конденсатор состоит из двух проводящих пластин с изолирующей непроводящей пластиной (диэлектриком) между ними.Конденсатор обозначается или упоминается как устройство напряжения, потому что он накапливает электрическую энергию в электростатическом поле через диэлектрик между по меньшей мере двумя проводящими пластинами или другими проводящими поверхностями.

Конденсатор формируется путем объединения проводов питания и возврата электрической цепи в общую трубу, кабелепровод или другую дорожку качения, либо в оболочке или броне многожильного кабеля. Однако при стандартной частоте распределения электроэнергии 60 Гц емкость цепи минимальна: индуктивное реактивное сопротивление является основным реактивным компонентом в цепи AC .

Катушка индуктивности состоит из намотанной или намотанной спиралью катушки из непрерывного провода (обычно установленной на железном сердечнике). Индуктор обозначается или упоминается как устройство тока, потому что он накапливает электрическую энергию в электромагнитном поле, которое окружает катушку с проводом. (Железный сердечник используется для концентрации «силовых линий» или «силовых линий» электромагнитного поля - окружающий воздух не является хорошим проводником этих магнитных линий.) провод либо поверх самого себя, либо вдоль границ стержня из черного металла или других металлических форм: генераторы или генераторы переменного тока, двигатели, трансформаторы, соленоиды для клапанов и реле, силовые контакторы и пускатели двигателей, а также катушки реактора - все это индуктивные нагрузки .

Рисунок 2 . Соотношение мощностей в цепи переменного тока

Как показано в треугольнике мощности переменного тока на рис. , Ваттность, представленная аббревиатурой W (ватты) или кВт (киловатты - тысячи ватт), является резистивной мощностью (истинная или активная мощность) цепи. Мощность отражает выполняемую работу, будь то тепло, свет или вращающая сила электродвигателя.

Мощность, запасаемая в цепи переменного тока конденсатором или катушкой индуктивности, обозначается аббревиатурой VAR (вольт-амперы, реактивные) или kVAR (киловар - тысячи вольт-ампер-реактивных).Сохраненная мощность, которая возвращается в схему либо конденсатором, когда происходит изменение величины напряжения в цепи, либо индуктором, когда происходит изменение величины тока цепи, описывается как реактивная мощность . .

Полная мощность цепи переменного тока, показанная на Рис. 1-17 как гипотенуза треугольника мощности, определяется путем измерения мощности, подаваемой на цепь, с помощью вольтметра и амперметра и умножения их показаний. .Полная мощность , представленная аббревиатурой VA (вольт-амперы) или кВА (киловольт-амперы - тысячи вольт-ампер), представляет собой мощность, которую цепь питания должна подавать для поддержки подключенной нагрузки. Электропитание переменного тока доступно как однофазное, так и трехфазное.

Коэффициент мощности цепи переменного тока

Коэффициент мощности цепи переменного тока (Рисунок 2) - это отношение истинной мощности, которая представляет собой мощность цепи, деленную на полную мощность схемы.

Коэффициент мощности (pf) всегда будет иметь значение 1 или меньше. По формуле:

pf = Вт ÷ вольт-амперы = P ÷ S

AC DC Формула для расчета тока полной нагрузки

Расчет тока полной нагрузки машины переменного и постоянного тока:

Ток полной нагрузки используется для разработки системы защиты электрооборудования.

Что такое ток полной нагрузки:

Ток полной нагрузки - это не что иное, как максимально допустимый ток.Входной ток к машине превышает ток полной нагрузки, значит, электрическая машина может быть повреждена. Из-за чрезмерного протекания тока машина выделяет дополнительное тепло (из-за P = I 2 * R). Это может привести к повреждению изоляции или обмотки электрооборудования. Следовательно, эксплуатация машины при токе ниже полной нагрузки увеличивает срок службы электрического оборудования.

Нагрузка на двигатель переменного тока (переменный ток):

Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок.Резистивные нагрузки: водонагреватель, комнатный обогреватель и т. Д. Индуктивными нагрузками являются индукционная печь, однофазный асинхронный двигатель, трехфазный двигатель и т. Д.

Расчет тока полной нагрузки 3-фазный двигатель:

В большинстве трехфазных систем потребление электроэнергии происходит по схеме звезды и треугольника. Входная мощность (P) в системе одинакова, независимо от подключения.

Мощность в кВт (киловаттах)

В = напряжение +/- 10% в вольтах

I = ток полной нагрузки в амперах

Cos pi = коэффициент мощности

 Трехфазная мощность P = 3 В * I * Cos pi
  Следовательно, ток полной нагрузки трехфазного двигателя I = P / (3 * V * Cos pi)  

кВт = выходная мощность в ваттах …….Все данные указаны на паспортной табличке.

Посмотрите на приведенную выше формулу, трехфазный ток полной нагрузки равен мощности, деленной на 3 произведения линейного напряжения на нейтраль и коэффициента мощности.

Как мы уже говорили, ток полной нагрузки трехфазной системы зависит от типа подключения. Здесь

Iph => Фазный ток

Iline => Линейный ток

Для соединения звездой ток полной нагрузки Iline равен Iph

 Iph = Iline 

Для соединения треугольником ток полной нагрузки Iline равен 1.732 раза Iph

 Iph / 1.732 = Iline 

Следовательно, трехфазный ток полной нагрузки I равен

I = P / (1,732 * V * Cos pi)

Здесь трехфазный ток полной нагрузки равен мощности, деленной на 1,732-кратное линейное напряжение и коэффициент мощности.

Расчет тока полной нагрузки Однофазный двигатель:

Ток полной нагрузки I однофазного двигателя равен мощности P, деленной на коэффициент мощности, умноженный на напряжение между фазой и нейтралью.

 P = V * I * Cos pi 

Ток полной нагрузки I = P / (В x Cos pi) А

В = напряжение +/- 10% в вольтах

I = ток полной нагрузки в амперах

Cos pi = коэффициент мощности

кВт = выходная мощность в ваттах ……. Все данные указаны на паспортной табличке двигателя.

Расчет тока полной нагрузки Трехфазный змеевик нагревателя:

Для трехфазного тока полный ток нагрузки для резистивной нагрузки равен трехфазной мощности, деленной на 1.732 раза напряжения. Здесь коэффициент мощности для резистивных нагрузок будет равен единице.

Как вы знаете формулу мощности,

P = 1,732 x V x I

Ток полной нагрузки I,

I = P / 1,732 * В Ампер.

В = линейное напряжение

I = ток полной нагрузки в амперах

Если рассматривать среднее линейное напряжение, формула тока полной нагрузки принимает вид

I = P / 3 * В Ампер.

кВт = выходная мощность в ваттах …….Все данные указаны на табличке нагревателя.

Расчет тока полной нагрузки Однофазные нагреватели:

Формула мощности кВт

В = Напряжение

I = ток полной нагрузки в амперах

кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.

 P = V X I А 

Ток полной нагрузки для однофазного нагревателя составит,

I = P / V Ампер

Рассчитать сквозное сопротивление:

  1. Измерьте сопротивление R змеевика нагревателя с помощью мультиметра.2 *

    рэнд

    См. Также : Как рассчитать падение напряжения

    Расчет тока полной нагрузки Машина постоянного тока (двигатель постоянного тока и генератор постоянного тока):

    постоянного тока => постоянного тока

     P = V X I 

    V = E ± Ia Ra ± Is Rsh + падение щеток (шунтирующая машина)

    V = E ± Ia (Ra + Rsh) + падение щеток (серийная машина)

    В = напряжение питания

    E = задняя ЭДС

    Ia = ток якоря

    Ra = сопротивление якоря

    Is = ток возбуждения

    Rsh = Полевое сопротивление

     Обратная ЭДС e = (pi * N * P * Z / 60 A) 

    Pi = Магнитный поток

    N = скорость машины

    P = количество полюсов

    Z = количество проводников

    A = количество параллельных путей

    P = A для лабораторной обмотки

    А = 2 для волновой обмотки

    Мифы о токе полной нагрузки:

    1. Ток полной нагрузки Для алюминиевого кабеля o.8 штук за квадратный метр
    2. для медного кабеля 1,2 за квадратный метр
    3. , 3 фазы, 415 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 1,3 А.
    4. 1 фаза 230 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 4 А.

    Формулы падения напряжения и мощности для инженеров-электриков ~ Изучение электротехники

    Пользовательский поиск

    Работая с однофазным, трехфазным и постоянным током (цепи постоянного тока), вам быстро нужны справочные формулы для расчета падения напряжения и расчета мощности для данного проводника? В таблице ниже приведены краткие справочные сведения для этих расчетов.

    Формулы для расчета падения напряжения и мощности для однофазных цепей


    $ $ $
    Электрические параметры Формулы
    Падение напряжения $ ∆V = 2 * I * L * (rCos Փ + xSin Փ) $
    % Падение напряжения% $ ∆V = \ frac {∆V} {V_r} * 100 $
    Активная мощность $ P = V * I * Cos Փ
    Реактивная мощность $ Q = V * I * Sin Փ
    Полная мощность $ S = V * I = \ sqrt {{P ^ 2} + {Q ^ 2}} $
    Коэффициент мощности $ Cos Փ = \ frac {P} {S}
    Потеря мощности $ P_L = 2 * L * r * I ^ 2 $
    Формулы расчета падения напряжения и мощности для трехфазных цепей $
    Электрические параметры Формулы
    Падение напряжения $ ∆V = \ sqrt {3} * I * L * (rCos Փ + xSin Փ) $
    % Падение напряжения% $ ∆V = \ frac {∆V} {V_r} * 100 $
    Активная мощность $ P = \ sqrt {3} * V * I * Cos Փ $
    Реактивная мощность $ Q = \ sqrt {3} * V * I * Sin Փ $
    Полная мощность $ S = \ sqrt {3} * V * I = \ sqrt {{P ^ 2} + {Q ^ 2}} $
    Коэффициент мощности $ Cos Փ = \ frac {P} {S}
    Потеря мощности $ P_L = 3 * L * r * I ^ 2 $

    Формулы расчета падения напряжения и мощности для цепей постоянного тока
    Электрические параметры

    Формулы

    Падение напряжения

    $ ∆V = 2 * I * L * r $

    % Падение напряжения

    % $ ∆V = \ frac {∆V} {V_r} * 100 $

    Активная мощность

    $ P = V * I $

    Реактивная мощность

    $ -

    Полная мощность

    $ -

    Коэффициент мощности

    $ -

    Потеря мощности

    $ P_L = 2 * L * r * I ^ 2 $

    Значение символов, используемых в формулах выше :
    $ L $ = Общая длина проводника
    $ r $ = Сопротивление проводника на единицу длины
    $ x $ = Реактивное сопротивление проводника на единицу длины
    $ ∆V $ = Падение напряжения
    $ P $ = Активная мощность
    $ Q $ = Реактивная мощность
    $ I $ = Ток

    Как измерить трехфазный ток питания

    Когда вашему бизнесу нужно знать, какой у вас уровень власти.
    Вот как можно измерить трехфазный ток питания.

    Возможно, идея измерения трехфазного тока питания кого-то из вас пугает. В конце концов, использование трехфазных источников питания не обязательно означает понимание (или даже интерес) лежащей в основе математики.

    Тем не менее, некоторым из вас может быть немного любопытно, как оценивается мощность.

    Итак, как рассчитать трехфазную мощность?

    Хотя вы, безусловно, можете взглянуть на техническую статью Википедии, мы думаем, что вы найдете наш простой подход к этой задаче немного больше...подходит для новичков.

    При этом, давайте сразу перейдем к делу. Наша первая задача - установить переменные.

    Размещение переменных в таблице

    Каждый хороший урок должен четко определять переменные в самом начале, и, разумеется, мы хотим, чтобы это был хороший урок. Следовательно, на этот раз мы кратко коснемся ватт, полной мощности и коэффициентов мощности.

    Ватт (Вт) - это показатель мощности.Эта единица измерения используется для измерения мощности, потребляемой цепью. Киловатты (кВт) также могут использоваться для измерения этой мощности; один киловатт эквивалентен 1000 ватт.

    Полная мощность (ВА или вольт-ампер) рассчитывается путем нахождения произведения напряжения и тока; Полная мощность также может быть измерена в киловольт-амперах (кВА). КВА равна 1000 вольт-ампер.

    Коэффициент мощности (pf) - это отношение между киловольт-амперами и киловаттами. Его можно представить как:

    кВт = кВА x pf

    Обратите внимание, что эта формула может быть алгебраически преобразована для вычисления каждого компонента.Например, коэффициент мощности можно представить как:

    pf = кВт / кВА

    Напротив, киловольт-амперы могут быть представлены как:

    кВА = кВт / пф

    Расчет однофазного тока питания

    Хотя наша конечная цель - научить вас рассчитывать трехфазный ток питания, мы (и большинство других людей) предполагаем, что обучение вас тому, как рассчитать однофазный ток питания, заложит некоторые важные основы для того, что у вас есть в вашем бизнесе сейчас. и
    то, что вам может понадобиться в будущем.

    Есть две причины для нашего предположения, первая из которых заключается в том, что вычисление однофазного силового тока намного проще, чем вычисление многофазного или трехфазного силового тока
    .

    Вторая, более важная причина связана с тем, что вы можете использовать логику и формулу для расчета однофазных силовых токов при расчете многофазных силовых токов.

    Но хватит разговоров. Давайте приступим к делу.

    Вообще говоря, вы не несете ответственности за вычисление всех значений переменных; некоторые, например, напряжение или коэффициент мощности, будут предоставлены. В конце концов, у вас, по-видимому, нет доступа к вольтметру или любому другому инструменту подобного рода.

    Сказав это, вы можете легко использовать переменные, значения которых вы знаете, для поиска любых неизвестных значений. Если, например, вам известен коэффициент мощности и мощность, вы можете быстро определить полную мощность.

    Помните, что коэффициент мощности - это отношение между киловольт-амперами и киловаттами. Это отношение ранее выражалось как:

    кВт = кВА x pf

    Если мы алгебраически переформулируем это уравнение, чтобы найти полную мощность (кВА), мы получим:

    кВА = кВт / пф

    Таким образом, мы можем разделить нашу мощность на коэффициент мощности, чтобы найти нашу полную мощность.

    Что же мы думаем об этой кажущейся мощности?

    На этом этапе мы должны ввести новую формулу, которая позволит нам рассчитать ток. К счастью, есть простой:

    Ток = кВА (или ВА) / напряжение

    Используя эту формулу, мы просто делим рассчитанную нами кВА на напряжение (которое должно быть указано), чтобы вычислить ток.

    Расчет трехфазного тока питания

    Теперь, когда мы рассчитали однофазный ток питания, мы можем перейти к тому же самому для трехфазных силовых токов.Хотя существует формула для расчета трехфазных токов питания, мы научим вас более интуитивно понятному способу выполнения этой задачи.

    Однако, прежде чем мы перейдем к математике, вы должны точно понять, чем трехфазная система отличается от однофазной системы.

    Проще говоря, решающее различие между двумя системами - это напряжение; трехфазные системы имеют линейное напряжение (VLL) и фазное напряжение (VLN).

    Отношение между линейным напряжением и фазным напряжением можно записать как:

    VLN = VLL / sqrt (3)

    Для наших целей вам не нужно глубоко разбираться в этих двух переменных.Вам нужно только помнить об отношениях между ними.

    Вы также не должны беспокоиться о вычислении их обоих; хотя бы один из них будет передан вам.

    Используя метод, который мы вам научим, общая идея состоит в том, чтобы преобразовать трехфазную систему в однофазную.

    Однако для того, чтобы выполнить это преобразование, вы должны понимать, что для наших целей трехфазная система по существу вырабатывает в 3 раза больше киловатт, чем однофазная; Эта разница в производимой мощности позволяет легко понять, почему некоторые люди переходят на трехфазное питание.

    Полная мощность также увеличивается в три раза в трехфазной системе.

    Тем не менее, чтобы рассчитать трехфазный ток питания с помощью этого метода, вам нужно разделить мощность на 3, прежде чем подставлять значение в эту формулу:

    кВА = кВт / пф

    Вы должны заметить, что это точно такая же формула, которая использовалась выше для однофазных систем.

    Затем вы должны следовать этой формуле, разделив кВА на напряжение (ваш VLN в случае трехфазной системы), чтобы рассчитать ток.

    Однако в этом случае есть дополнительный шаг.

    Помните, что вы разделили на 3, чтобы составить уравнение для однофазной системы. Таким образом, из-за этого разделения ваш ответ отражает только результат одной фазы.

    Чтобы найти выход трехфазной системы, с которой вы начали, вам нужно только умножить рассчитанный вами ток на 3.

    Просто, правда?

    Ну только если система сбалансирована.

    Хотя наши расчеты предполагают, что трехфазная система будет сбалансирована, на самом деле большинство систем не так удобно сбалансировано.То есть каждая фаза не всегда производит одинаковое количество энергии.

    В таких случаях вам придется полагаться на гораздо более сложную математику, чтобы получить точный ответ. Эта математика, однако, слишком сложна (полярные координаты и все такое), чтобы вдаваться в подробности здесь.

    Итак, что вы делаете?
    Как насчет большей МОЩНОСТИ?

    Как оказалось, некоторые источники говорят, что вы можете взять среднее значение трех фаз и использовать это значение в своих уравнениях.Тем не менее, следует отметить, что этот метод не даст точного ответа.

    Даже если вы не можете рассчитать точный ответ, имея дело с несбалансированной системой, вы, по крайней мере, выяснили (численно, конечно), что делает трехфазное питание таким популярным ребенком на игровой площадке, который нужен многим предприятиям. их сторона.

    А кто знает? Возможно, однажды вы даже захотите, чтобы он был на вашей стороне. Хотите узнать больше
    о мощности вашего предприятия или объекта? Позвоните в службу Precision Motor Repair для устройств Dyna-Phase
    и получите трехфазный ток питания, необходимый для более эффективной работы.

    Калькулятор силы тока

    - Deelat Industrial USA

    Используйте этот калькулятор для определения электрического тока в амперах (A).

    Текущий тип Постоянный токAC - однофазныйAC - трехфазный

    Тип напряжения Линия на линию Линия на нейтраль

    Как пользоваться калькулятором силы тока

    1. Выберите тип тока (постоянный ток, переменный ток - однофазный, или переменный - трехфазный)
    2. Введите мощность в ваттах
    3. Введите напряжение в вольтах
    4. (для систем переменного тока) Введите коэффициент мощности
    5. (только для трехфазного переменного тока) Введите тип напряжения: от линии к линии или от линии к нейтрали
    6. Нажмите РАССЧИТАТЬ

    Преобразование ватт в амперы (система постоянного тока)

    Вычислить ток I в амперах (A) можно, разделив мощность P в ваттах (Вт) на напряжение V в вольтах (В):

    Преобразование ватт в амперы (однофазная система переменного тока)

    Определите фазный ток I в амперах (A), разделив мощность P в ваттах (Вт) на коэффициент мощности PF, умноженный на действующее значение напряжения V в вольтах (В):

    (Коэффициент мощности - это отношение реальной мощности, протекающей к нагрузке, к полной мощности в цепи.Значения коэффициента мощности могут находиться в диапазоне от 0 до 1.

    Среднеквадратичное значение напряжения - это квадратный корень из среднего квадрата мгновенного напряжения за один цикл.)

    Преобразование ватт в амперы (трехфазная система переменного тока)

    Линейное напряжение:

    Рассчитайте фазный ток I в амперах (A), разделив мощность P в ваттах (Вт) на квадратный корень из 3-кратного коэффициента мощности PF, умноженного на среднеквадратичное напряжение VL-L между линиями в вольтах (В):

    (Коэффициент мощности - это отношение реальной мощности, протекающей к нагрузке, к полной мощности в цепи.Значения коэффициента мощности могут находиться в диапазоне от 0 до 1.

    Линейное напряжение - это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.)

    Напряжение между фазой и нейтралью:

    Определите фазный ток I в амперах (A), разделив мощность P в ваттах (Вт) на 3-кратный коэффициент мощности PF, умноженный на действующее значение напряжения VL-N между фазой и нейтралью в вольтах (В):

    (Коэффициент мощности - это отношение реальной мощности, протекающей к нагрузке, к полной мощности в цепи.Значения коэффициента мощности могут находиться в диапазоне от 0 до 1.

    Напряжение между фазой и нейтралью - это напряжение, измеренное между любой линией и нейтралью.)

    Формулы и расчеты двигателя, Указатель полезных инструментов

    Формулы и расчеты, приведенные ниже, следует использовать только для целей оценки. Заказчик обязан указать требуемые мощность двигателя, крутящий момент и время разгона для своего приложения. Продавец может пожелать проверить указанные заказчиком значения с помощью формул в этом разделе, однако, если есть серьезные сомнения в отношении приложения заказчика или если заказчик требует гарантированной производительности двигателя / приложения, заказчик должен нанять инженера-электрика для точного определения расчеты.

    Чтобы получить подробное описание каждой формулы, нажмите на ссылки ниже, чтобы перейти прямо к ней.


    Практические правила (приближение)

    Механические формулы
    Крутящий момент, фунт-фут. = л.
    5250

    Преобразование температуры
    ° C = (° F - 32) x 5/9

    ° F = (° C x 9/5) + 32

    Преобразование температуры Формула

    9101
    R = 1.8 K + 0,6
    .K = 5 / 9 (R-0,6)
    F = 1,8C + 32
    C = 5 / 9 (F-32)
    R = F + 460
    .K = C + 273

    C = Цельсий, градусы
    F = Фаренгейт, градусы
    .K = Кельвин
    R = Ранкин, градусы
    по C Темп. по F
    -17,8
    10,8
    37,8
    65,6
    93,3
    0
    50
    100
    150
    200
    32,0
    122,0

    10 212,0
    900,0
    301 212,0
    900
    302,0
    900
    176,7
    204,4
    232,2
    250
    300
    350
    400
    450
    482,0
    572,0
    662,0
    752,0
    842,0
    260,0
    287,7
    315.6
    343,3
    500
    550
    600
    650
    932,0
    1022,0
    1112,0
    1202,0
    к C Темп. по F
    371,1
    398,9
    426,7
    454,4
    482,2
    700
    750
    800
    850
    900
    1572,0
    138210619 900
    1292,0
    138210,0
    1292,0
    138210,0
    1292,0
    138210,0
    О 1350
    2192,0
    2282,0
    2372,0
    2462,0
    619 10195 8995 1750
    1800
    1850
    по C Темп. по телефону
    760.0
    787,8
    815,6
    843,3
    872,1
    1400
    1450
    1500
    1550
    1600
    2552,0
    2642,0
    2732,0
    2822,0
    2912,0
    3002,0
    3092,0
    3182,0
    3272,0
    3362,0
    1038,8
    1066,6
    1094,3
    1121,1
    1900
    1950
    9052
    20500
    3542,0
    3632,0
    3722,0

    Высокая инерционная нагрузка
    t = WK 2 x об / мин
    90 средн.
    ----- WK 2 = инерция в фунт-фут. 2
    t = время разгона в сек.
    T = Av. ускоряющий момент фунт-фут.
    T = WK 2 x об / мин

    308 xt
    Частота и количество полюсов электродвигателей переменного тока
    инерция, отраженная двигателю = инерция нагрузки нагрузка об / мин

    Обороты двигателя
    2
    n s = 120 xf

    P
    ----- f = P xn s

    120
    --- - P = 120 xf

    n s

    Взаимосвязь между мощностью, крутящим моментом и скоростью
    л.с. = T xn

    5250
    ----- ----- T = 5250 л.

    n s
    x 100
    91.3-7,09
    Код кВА / л.с.
    Код кВА / л.с.
    Код кВА60 / л.с. кВА / л.с.
    A 0-3.14
    F 5,0 -5,59
    L 9,0-9,99
    S 16,0-17,99
    B 5,6 -6,29
    M 10,0-11,19
    T 18,0-19,99
    C 3,55-3,9921

    N 11,2-12,49
    U 20,0-22,39
    D 4,0 -4,49
    I
    P 12,5-13,99
    V 22,4 и более поздние версии
    E 4,5 -4,99
    K 8,0 -8,99 9060-15,99



    Символы
    9 1471 EFF
    I = ток в амперах
    E71 вольт6 = мощность в киловаттах
    кВА = полная мощность в киловольт-амперах
    л.с. скорость в оборотах в минуту (об / мин)
    нс = синхронная скорость в оборотах в минуту (об / мин)
    P = количество полюсов
    f = частота в циклах в секунду (CPS)
    T = крутящий момент в фунт-футах
    = КПД в десятичном виде
    PF = Коэффициент мощности в десятичном формате

    Эквивалентная инерция

    В механических системах все вращающиеся части обычно не работают с одинаковой скоростью .Таким образом, нам необходимо определить «эквивалентную инерцию» каждой движущейся части при определенной скорости первичного двигателя.

    Общий эквивалент WK 2 для системы представляет собой сумму WK 2 каждой части, относящуюся к скорости первичного двигателя.

    Уравнение говорит:

    Влияние линейного напряжения на ток заторможенного ротора (IL) (прибл.)

    WK 2 EQ = WK 2 часть N часть

    N первичный двигатель
    2

    Это уравнение становится общим знаменателем, на котором могут основываться другие вычисления.Для устройств с регулируемой скоростью инерция сначала должна быть рассчитана на низкой скорости.

    Давайте посмотрим на простую систему, которая имеет первичный двигатель (PM), редуктор и нагрузку.

    WK 2 = 100 фунт-фут. 2
    WK 2 = 900 фунт-фут. 2
    (если смотреть на выходной вал)

    WK 2 = 27000 фунт-фут. 2

    Формула утверждает, что эквивалент системы WK 2 равен сумме WK 2 частей на оборотах первичного двигателя, или в данном случае:

    Примечание: Обороты редуктора = Обороты нагрузки

    Эквивалент WK 2 равен WK 2 первичного двигателя плюс WK 2 нагрузки.Это равно WK 2 первичного двигателя, плюс WK 2 времени редуктора (1/3) 2 , плюс WK 2 времени загрузки (1/3) 2 .

    Это отношение редуктора к ведомой нагрузке выражается формулой, приведенной ранее:


    WK 2 EQ = WK 2 часть N часть

    N Первичный двигатель
    2

    Другими словами, когда деталь вращается со скоростью (N), отличной от первичного двигателя, WK 2 EQ равен WK 2 квадрата передаточного отношения детали.

    В этом примере результат может быть получен следующим образом:

    Эквивалент WK 2 равен:

    Наконец:


    WK 2 EQ = фунт-фут. 2 pm + 100 фунт-фут. 2 Красный + 3000 фунт-фут 2 Нагрузка

    WK 2 EQ = 3200 фунт-фут. 2

    Общий эквивалент WK 2 - это то, что WK 2 видит первичный двигатель на его скорости.


    Электрические формулы (Дополнительные формулы см. В разделе «Формулы»)

    I = Амперы; E = Вольт; Eff = Эффективность; pf = коэффициент мощности; кВА = Киловольт-амперы; кВт = киловатт


    Ток заторможенного ротора (IL) из данных паспортной таблички
    Трехфазный: I L = 577 x л.с. x кВА / л.с.

    E
    См. диаграмму кВА / л.с.
    Однофазный: I L = 1000 x HP x кВА / HP

    E
    Название двигателя: , 3 фазы, 460 Вольт, код F.
    I L = 577 x 10 x (5,6 или 6,29)

    460
    I L = 70,25 или 78,9 Ампер (возможный диапазон)
    I L @ E LINE = I L @ E N / P x E LINE

    E N / P
    ПРИМЕР: Двигатель имеет ток заторможенного ротора (бросок 100 ампер (I L ) при номинальном напряжении, указанном на паспортной табличке (E N / P ) 230 вольт.

    Что такое I L с напряжением 245 В (E LINE ), приложенным к этому двигателю?

    I L при 245 В. = 100 x 254 В / 230 В

    I L при 245 В. = 107 ампер


    Основные расчеты мощности в лошадиных силах

    Лошадиная сила - это работа, выполненная в единицу времени. Один HP равен 33 000 фут-фунт работы в минуту. Когда источник крутящего момента (T) выполняет работу по вращению (M) вокруг оси, выполняемая работа составляет:


    радиус x 2 x об / мин x фунт.или 2 TM

    При вращении со скоростью N об / мин доставленное HP составляет:


    HP = радиус x 2 x об / мин x фунт

    33000
    = TN

    5250

    Для вертикального или подъемного движения:


    л.с.
    W = общий вес в фунтах.поднимается двигателем
    S = скорость подъема в футах в минуту
    E = общий механический КПД подъемника и зубчатой ​​передачи. Для оценки
    E = 0,65 для эфф. подъемника и связанного механизма.

    Для вентиляторов и нагнетателей:

    6

    96

    6

    л.с.

    Или


    л.с. = Объем (куб. Фут / мин) x давление (фунт.На кв. Фут.)

    3300 x Механический КПД вентилятора

    Или


    л.с. = Объем (куб. Фут / мин) x давление (фунт на кв. Дюйм. )

    229 x Механический КПД вентилятора

    Для оценки эфф. вентилятора или нагнетателя можно принять равным 0,65.

    Примечание: Объем воздуха (куб. Фут / мин) напрямую зависит от скорости вентилятора.Развиваемое давление зависит от скорости вращения вентилятора в квадрате. Hp зависит от скорости вращения вентилятора.

    Для насосов:

    Или


    HP = GPM x Давление в фунтах на кв. Дюйм x Удельный вес

    1713 x Механический КПД насоса

    л.с. = галлонов в минуту x общий динамический напор в футах x удельный вес

    3960 x механический КПД насоса

    где общий динамический напор = статический напор + напор трения

    Для оценки КПД насоса можно принять равным 0.70.


    Ускоряющий момент

    Эквивалентная инерция привода с регулируемой скоростью указывает энергию, необходимую для поддержания работы системы. Однако запуск или ускорение системы требует дополнительной энергии.

    Крутящий момент, необходимый для разгона кузова, равен WK 2 кузова, умноженному на изменение оборотов, деленное на 308-кратный интервал (в секундах), в котором происходит это ускорение:


    УСКОРИТЕЛЬНЫЙ МОМЕНТ = WK 2 Н (фунт-сила)футов)

    308 т

    Где:


    33 L =
    N = Изменение оборотов в минуту
    K = Радиус вращения
    t = Время разгона (сек.)
    WK 2 = Эквивалент Эквивалент = Константа пропорциональности

    Или


    (308) выводится путем преобразования линейного движения в угловое с учетом ускорения свободного падения.Если, например, у нас есть просто первичный двигатель и груз без регулировки скорости:

    Пример 1

    T Acc = WK 00 2 N
    9
    WK 2 = 200 фунт-фут. 2
    WK 2 = 800 фунт-фут. 2

    WK 2 EQ определяется как и раньше:


    WK 2 EQ = WK 2 pm + WK 2 Нагрузка
    WK 2 EQ = 200 + 800
    WK 2 EQ = 1000 футов.фунт 2

    Если мы хотим разогнать эту нагрузку до 1800 об / мин за 1 минуту, имеется достаточно информации, чтобы определить величину крутящего момента, необходимого для ускорения нагрузки.

    В формуле указано:


    T Acc = WK 2 EQ N

    308t
    или 1000 x 1800
    60619 или

    1800000

    18480

    Другими словами, 97.4 фунт-фут. крутящего момента необходимо приложить, чтобы эта нагрузка вращалась со скоростью 1800 об / мин за 60 секунд.

    Обратите внимание, что T Acc - это среднее значение ускоряющего момента во время рассматриваемого изменения скорости. Если требуется более точный расчет, может оказаться полезным следующий пример.

    Пример 2

    Время, необходимое для разгона асинхронного двигателя с одной скорости на другую, можно найти из следующего уравнения:


    t = WR 2 x изменение об / мин

    308 x T

    Где:


    T = Среднее значение ускоряющего момента во время рассматриваемого изменения скорости.
    t = Время, необходимое двигателю для разгона от начальной до конечной скорости.
    WR 2 = Эффект маховика или момент инерции для ведомого оборудования плюс ротор двигателя в фунто-футах. 2 (WR 2 ведомого оборудования должно относиться к валу двигателя).

    Теперь мы рассмотрим применение приведенной выше формулы на примере.На рисунке A показаны кривые скорость-крутящий момент асинхронного двигателя с короткозамкнутым ротором и вентилятора, который он приводит в действие. При любой скорости нагнетателя разница между крутящим моментом, который двигатель может передать на валу, и крутящим моментом, необходимым для нагнетателя, представляет собой крутящий момент, доступный для ускорения. Ссылка на рисунок A показывает, что ускоряющий момент может сильно изменяться в зависимости от скорости. Когда кривые скорость-крутящий момент для двигателя и нагнетателя пересекаются, крутящий момент отсутствует для ускорения. Затем двигатель приводит в движение вентилятор с постоянной скоростью и просто передает крутящий момент, необходимый для нагрузки.

    Для определения общего времени, необходимого для разгона двигателя и нагнетателя, область между кривой «скорость-крутящий момент» двигателя и кривой «скорость-крутящий момент» вентилятора разделена на полосы, концы которых представляют собой прямые линии. Каждая полоса соответствует приросту скорости, происходящему в течение определенного интервала времени. Сплошные горизонтальные линии на рисунке А представляют границы полос; длины пунктирных линий - средние ускоряющие моменты для выбранных интервалов скорости.Чтобы рассчитать общее время разгона двигателя и воздуходувки с прямым подключением, необходимо найти время, необходимое для разгона двигателя от начала одного интервала скорости до начала следующего интервала, и сложить инкрементальные времена для все интервалы, чтобы получить общее время разгона. Если WR 2 двигателя, кривая скорость-крутящий момент которого приведена на рисунке A, составляет 3,26 фут-фунт. 2 и WR 2 воздуходувки, относящейся к валу двигателя, имеют длину 15 футов.фунтов 2 , общий WR 2 составляет:


    15 + 3,26 = 18,26 фут-фунт. 2 ,

    И общее время разгона составляет:

    Или

    Рисунок A
    Кривые, используемые для определения времени, необходимого для разгона асинхронного двигателя и нагнетателя

    Ускоряющие моменты
    T
    T 900 1 = 46 фунт-фут. T 4 = 43,8 фунт-фут. Т 7 = 32.8 фунт-фут.
    T 2 = 48 фунт-фут. T 5 = 39,8 фунт-фут. T 8 = 29,6 фунт-фут.
    T 3 = 47 фунт-фут. T 6 = 36,4 фунт-фут. T 9 = 11 фунт-фут.




    Рабочие циклы

    Заказы на продажу часто вводятся с пометкой с пометкой, такой как:

    ----- «Подходит для 10 пусков в час»
    или
    ---- » Подходит для 3 реверсов в минуту "
    или
    -----" Двигатель должен иметь возможность ускоряться до 350 фунтов.ft. 2 "
    или
    -----" Подходит для 5 пусков и остановок в час "

    Заказы с такими примечаниями не могут быть обработаны по двум причинам.

    1. Соответствующая группа продуктов должна быть проконсультировались, чтобы увидеть, доступна ли конструкция, которая будет выполнять требуемый рабочий цикл, и, если нет, чтобы определить, соответствует ли требуемый тип конструкции нашей нынешней линейке продуктов.
    2. Ни одно из приведенных выше примечаний не содержит достаточно информации для выполнения необходимой нагрузки расчет цикла.Для проверки рабочего цикла информация о рабочем цикле должна включать следующее:
      1. Инерция, отраженная на валу двигателя.
      2. Крутящая нагрузка на двигатель на всех этапах рабочего цикла, включая пуски, время работы, остановки или реверсирование.
      3. Точное время каждой части цикла.
      4. Информация о том, как выполняется каждый шаг цикла. Например, остановка может осуществляться выбегом, механическим торможением, динамическим торможением постоянным током или закупориванием.Обратное движение может быть выполнено путем заглушки, или двигатель может быть остановлен каким-либо образом, а затем снова запущен в противоположном направлении.
      5. Когда двигатель многоскоростной, цикл для каждой скорости должен быть полностью определен, включая метод переключения с одной скорости на другую.
      6. Любые особые механические проблемы, особенности или ограничения.

    Получение этой информации и проверка группы продуктов перед вводом заказа может сэкономить много времени, средств и переписки.

    Рабочий цикл относится к подробному описанию рабочего цикла, который повторяется в определенный период времени. Этот цикл может включать в себя частые запуски, остановки, реверсирование или остановку. Эти характеристики обычно используются в процессах периодического действия и могут включать в себя галтовочные барабаны, определенные краны, экскаваторы и драглайны, демпферы, приводы для позиционирования затвора или плуга, подъемные мосты, грузовые лифты и подъемники для персонала, экстракторы прессового типа, некоторые питатели, прессы и т.д. определенные типы, подъемники, индексаторы, сверлильные станки, машины для шлакоблоков, сиденья для ключей, тестомесильные машины, тянущие машины, шейкеры (литейные или автомобильные), обжимные и стиральные машины, а также определенные грузовые и легковые автомобили.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *