Содержание

Линейное напряжение — Asutpp

В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

4-проводная сеть

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор — линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Расчет

Соединение

Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.

Схема звезда и треугольник

Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.

Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.

Формулы для расчета двигателей

Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.

В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.

Стабилизатор напряжения с защитой от перегрузок

Расчет

Для того чтобы рассчитать линейное напряжение используется формула Киргофа:

n  

∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.

k=1

 

И закон Ома:

I =   U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.

При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:

IL = IF – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.

Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.

Для этого используется формула: Uл=Uф∙√3, где:

Uл –линейное, Uф – фазовое. Формула справедлива только если IL = IF.

При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.

При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:

Q = Qа + Qb + Qс

Аналогичный вид имеет формула активной:

P = Pа + Pb + Pс

Соотношение между фазными и линейными напряжениями

Напряжение фаз нагрузки отличны от значения ЭДС генератора из-за падения напряжения на линии от генератора к потребителю. Длина этих линий может составлять несколько метров, а может и пару сотен метров, также возможна длина и в тысячи километров. Вопросы о падении напряжений на линиях электрических передач ЛЭП, снабжающих потребителей энергией электрической от электрических станций будут рассматриваться чуть позже, в последующих статьях. Для упрощения расчетов указанным значением падений напряжений можно пренебречь.

Соединение звездой

При принятых допущениях для соединенных источников звездой:

применив второй закон Кирхгофа получим:

Из выражения (1) можно сделать вывод, что при симметричной системе ЭДС генератора его фазные напряжения также симметричны, и, соответственно, их векторная диаграмма:

не будет отличатся от векторной диаграммы ЭДС:

Исходя из уравнений, составленных по второму закону Кирхгофа для контуров (схема соединения в звезда указана выше):

Исходя из этих уравнений можно составить следующие уравнения, которые связывают линейные и фазные напряжения:

Использовав выражение (2) при наличии векторов фазных напряжений можно построить векторы линейных напряжений Uab, Ubc, Uca.

Исследовав векторную диаграмму при соединении звездой можно сделать вывод, что линейные напряжения будут равны и, как и фазные, сдвинуты друг относительно друга на угол 1200 или 2π/3. Векторы линейных напряжений чаще всего показывают как соединенные фазные направления:

Из этого следует:

Соответственно такие же соотношение и между остальными фазными и линейными значениями:

Соединение треугольником

Выражения (1) будут правильны и при соединении в треугольник источника. Из формул (2) следует равенство фазных и линейных напряжений при соединении треугольником, и это можно представить в таком виде:

Или можно записать как Uл = Uф.

Векторная диаграмма при соединении треугольником для линейных и фазных напряжений:

Номинальные напряжения

Из выше перечисленного можно сделать такие выводы как – трехфазная сеть имеет два напряжения, а именно фазные и линейные. При соединении звездой линейные напряжения больше фазных, а при соединении треугольником равны. Этот фактор необходимо учитывать при подключении нагрузки, чтоб не произошло аварийных ситуаций и выхода оборудования из строя.

Линейные напряжения тоже сдвинуты друг относительно друга на угол 1200 или 2π/3.

Номинальные напряжения – напряжения, на которые рассчитываются потребители электроэнергии, и которые соответствуют их нормальной работе.

Наиболее распространенными напряжениями в сетях до 1000 В являются 380В, 220В, 127В. 380 В и 220 В наиболее распространены в промышленности, а 220 В и 127 В в бытовых электросетях. Также при четырехпроводной электросети (соединения звезда с нулевым проводом) существует возможность получения фазного напряжения, которые при линейном 380 В будут равны , а при линейном 220 В будут равны . Такое соединение дает плюс в виде возможности при наличии четырехпроводной сети производить подключение как трехфазных потребителей 380 В, так и однофазных с номиналом в 220 В.

Линейное и фазное напряжение: трехфазные цепи

Линейное и фазное напряжение – отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком – среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, – называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, – называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Особенности линейного напряжения

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична. Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными. А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.

Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.

  1. Подобная схема подключения пригодна для многих устройств, которым необходима высокая мощность, чтобы работать. ЛН позволяет увеличить КПД двигателя на33%.

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Чему равно линейное напряжение

В большей части стран мира стандартное ЛН составляет примерно 380В.

В трёхфазных цепях фазное и линейное напряжение находятся в соотношении 220В/380В соответственно.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Фазное

Для того чтобы получить показания подключения фазного вида, потребуется специальное оборудование, например, мультиметр, вольтметр. Для того чтобы измерить токи и напряжения в трёхфазных цепях обычно достаточно знать данные одного линейного тока и одного ЛН.

ФН измеряется при проседании (падении) линейного. Из линейных величин извлекается Квадратный корень из трёх. Полученный показатель и есть параметры ФН.

Линейное

Для расчёта соотношения линейного проводника и фазы применяется формула: Uл=Uф∙√3, Uф — фазовое, Uл — линейное.

Важно! Формула справедлива, только если IL = IF. Когда в цепь добавлены другие отводящие элементы, то для них потребуется сделать персональный расчёт фазового напряжения. Тогда Uф нужно заменить цифровыми величинами самостоятельного клейма.

Реактивная трёхфазная мощность рассчитывается по формуле: Q = Qа + Qb + Qс. Значение активной мощности можно найти, используя аналогичную формулу: P = Pа + Pb + Pс. Необходимость в подобных расчётах возникает, если к электрической сети подключается промышленная система.

Распространённость сетей с линейным током объясняется их относительной безопасностью и несложностью разведения электропроводки. Электрооборудование присоединено исключительно к одному фазному проводу (по нему проходит ток) и только он может быть опасен, второй — это заземление. ЛН возникает в трёхфазной цепи и даёт увеличение приблизительно на 73%.


Фазное и линейное напряжение

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.

Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.

Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

В чем главные отличия линейного и фазного напряжения?

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

Что такое линейное и фазное напряжение, каково их соотношение?

Переменное напряжение и его величины

Напряжение различают по роду тока: переменное и постоянное. Переменное может быть разной формы, основная суть в том, что с течением времени изменяется его знак и величина. У постоянного знак всегда одной полярности, а величина может быть стабилизированной или нестабилизированной.

В наших розетках напряжение переменное синусоидальной формы. Выделяют разные его значения, чаще всего используются понятия мгновенное, амплитудное и действующее. Как понятно из названия, мгновенное напряжение — это количество вольт в конкретный момент времени. Амплитудное – это размах синусоиды относительно нуля в вольтах, действующее — это интеграл от функции напряжения по времени, соотношение между ними такое: действующее в √2 или 1,41 раз меньше амплитудного. Вот как это выглядит на графике:

Напряжение в трехфазных цепях

В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).

Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.

Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.

Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.

КРАТКО: Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.

С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:

Линейное напряжение больше фазного в √3 или в 1,73 раза.

Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода. Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного. В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.

Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.

Для примера: обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль. Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).

Схемы подключения потребителей к трём фазам

Все двигателя, мощные нагреватели и прочая трёхфазная нагрузка может быть подключена по схеме звезды или треугольника. При этом большинство электродвигателей в борно имеют набор перемычек, которые в зависимости от их положения формируют звезду или треугольник из обмоток, но об этом позже. Что такое соединение звездой?

Соединение звездой предполагает соединение обмоток генератора таким образом, когда концы обмоток соединяются в одну точку, а к началам обмоток подключается нагрузка. Звездой же соединяются и обмотки двигателя и мощных нагревателей, только вместо обмоток в них выступают ТЭНы.

Давайте рассуждать на примере электродвигателя. При соединении его обмоток звездой линейное напряжение 380 В приложено к двум обмоткам, и так с каждой парой фаз.

На рисунке A, B, C – начала обмоток, а X, Y, Z – концы, соединенные в одну точку и эта точка заземлена. Здесь вы видите сеть с глухозаземленной нейтралью (провод N). На практике это выглядит так, как на фото борно электродвигателя:

Красным квадратом выделены концы обмоток, они соединены между собой перемычками, такое расположение перемычек (в линию) говорит о том, что они соединены по звезде. Синим цветом – питающие три фазы.

На этом фото промаркированы начала (W1, V1, U1) и концы (W2, V2, U2), обратите внимание на то, что они сдвинуты относительно начал, это нужно для удобного соединения в треугольник:

При соединении в треугольник к каждой обмотке приложено линейное напряжение, это приводит к тому, что протекают большие токи. Обмотка должна быть рассчитана на такое подключение.

У каждого из способов включения есть свои достоинства и недостатки, некоторые двигателя вообще в процессе пуска переключаются со звезды на треугольник.

Нюансы

В продолжение разговора о двигателях нельзя оставить без внимания вопрос выбора схемы включения. Дело в том, что обычно двигателя на своем шильдике содержат маркировку:

В первой строке вы видите условные обозначения треугольника и звезды, обратите внимание, треугольник идет первым. Далее 220/380В – это напряжение на треугольнике и звезде, значит, что при соединении треугольником нужно, чтобы линейное напряжение было равно 220В. Если в вашей сети напряжение равно 380 – значит нужно подключать двигатель в звезду. В то время как фазное всегда на 1,73 меньше, не зависимо от величины линейного.

Отличным примером является следующий двигатель:

Здесь номинальные напряжения уже 380/660, это значит, что его для линейного 380 нужно подключать треугольником, а звезда предназначена для питания от трёх фаз 660В.

Если в мощных нагрузках чаще оперируют с величинами межфазного напряжения, то в осветительных цепях в 99% % случаев используют фазное напряжение (между фазой и нулем). Исключением являются электрокраны и подобное, где может использоваться трансформатор с вторичными обмотками с линейным 220 В. Но это скорее тонкости и специфика конкретных устройств. Новичкам запомнить проще так: фазное напряжение – это то, которое в розетке между фазой и нулем, линейное – в линии.

Линейное и фазное напряжение: трехфазные цепи

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

– экономичность передачи электроэнергии на большие расстояния;

– самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

– возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

– уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии – линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; – фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

;(1)
;(2)
.(3)

Отметим, что всегда – как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае

(4)

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

.(5)

В заключение отметим, что помимо рассмотренных соединений «звезда – звезда» и «треугольник – треугольник» на практике также применяются схемы «звезда – треугольник» и «треугольник – звезда».

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой принцип действия у трехфазного генератора?
  2. В чем заключаются основные преимущества трехфазных систем?
  3. Какие системы обладают свойством уравновешенности, в чем оно выражается?
  4. Какие существуют схемы соединения в трехфазных цепях?
  5. Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
  6. Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
  7. Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
  8. На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
  9. Какие схемы соединения обеспечивают автономность работы фаз нагрузки?

Разбираемся в разнице между фазным и линейным напряжениями

Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.

На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.

Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.

Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.

В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.

Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.

У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.

Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.

Что такое фаза: определяемся в значении

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Разберёмся что такое фазное напряжение

Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.

Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.

Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.

На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:

  • L1 — коричневый;
  • L2 — чёрный;
  • L3 — серый;
  • N — синий;
  • Жёлто‑зелёный для защитного заземления.

Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.

Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.

Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.
По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.

Что такое линейное напряжение сети

Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.

Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.

Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.

Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.

Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.

Каково основное отличие этих напряжений

Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».

Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».

Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».

При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.

Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.

Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.

Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.

Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.

Фазное и линейное напряжение

Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, трехфазные, шестифазные и т.д.

Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.

Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.

Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.

Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – определяется как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.

В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин – 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные – на 220 вольт.

Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом отсутствие заземления повышает риск поражения током, когда нарушена изоляция.

Отличие линейного напряжения от фазного

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.

Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.

Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.

Контроль и выравнивание данного параметра осуществляется с помощью линейного стабилизатора напряжения. Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.

Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.

Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.

Перекос фазных и линейных напряжений. / Блог uimpuls / Cs-Cs.Net: Сообщество

Как-то мне довелось сделать маленький щиток, одному знакомому для управления электрическим котлом на даче.

Основная идея была такова. Товарищ решил, что 25 января (суббота) он поедет на дачу. Прогноз говорит, что температуру 25 января ожидают -20 градусов. Он в пятницу звонит своему котлу, где-то так часиков в 9:00 и «просит» протопить к его приезду до +18.

Блок управления котлом (БУК), обычный симисторный регулятор мощности с фазовым управлением. В обратной связи датчик температуры теплоносителя. Из органов управления 3-ех полюсной автомат с дистанционным расцепителем и регуляторы -макс.мощность, макс.температура теплоносителя и температура помещения которая мной не использовалась. Питание БУКа 3-ех фазное.

Товарищ меня сразу предупредил. У нас в поселке очень плохая сеть. Ладно думаю, учту. Первым делом я начал разбираться, что делает расцепитель. Отреверсировав схему, понимаю что он вырубает питание не только в случае перегрева котла, а еще и в случае проседания или пропадания одной из фаз. А это уже, с учетом их качества сети важный момент.

Ситуация могла бы быть такой. Подрубаем мы котел дистанционно, а через пол часа просела одна фаза и расцепитель хлоп… и усе… приезжаем 25 января, а в доме не многим теплей чем на улице. К воскресному вечеру может и протопим.

Собираю щит у себя. Ставлю реле контроля фаз CKF-337, имитирую различные аварийные ситуации, все в поряде. В полной уверенности, что перекос фазных напряжений, сопровождается перекосом линейных.
Приезжаю к нему на дачу, монтирую щиток, подключаю котел, пробный пуск, все в порядке. Проходит некоторое время, расцепитель хлоп и сработал. Во интересно думаю я. Быстро давай мерить линейные напряжения и что вижу.


Все в порядке. И реле контроля фаз как ни в чем не бывало, говорит что все в норме.

Тут же меряю фазные и … вот оно что!!!



Хотя по теории получается, что при таких фазных линейные должны быть как указано на картинке. Ua,Ub,Uc – это нормальное напряжение. Все те же самые, но с добавлением индекса «р» — перекосные.

В итоге я поставил реле контроля фазных напряжений и с того момента, расцепитель ни разу не срабатывал.

Делал я это, достаточно давно, года 2 назад, а на днях для своего щита решил заморочиться с ОМ-310. Уточнил у новатэковцев, меряют ли они фазные напряжения и если меряют, то не дают ли они аварию по этому параметру. Идея была использовать его и как ограничитель мощности и как реле контроля напряжения одновременно.
Новатэковцы мне ответили, что мерять меряем, а аварии не даем. А зачем, у нас есть авария по перекосу линейных напряжений.

Так что имейте ввиду, кто не сталкивался с такими костылями, что перекос фазных и линейных, не всегда идут «рука об руку».

Почему так происходит, я лишь могу предположить, что или контакт «ноля» хреновый или… черт его знает. В итоге «ноль» на диаграмме уплывает куда-то в сторону.

красный — нормальное напряжение
синий — теоретическое перекосное напряжение
зеленый — на глазок изображено, практическое перекосное.

С удовольствием бы выслушал ваши мнения.

Ток в 3 фазной сети. Фазные и линейные токи и напряжения. Численные соотношения между фазными и линейными величинами. Соединение потребителя треугольником

Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой .
Фазное напряжение – возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.

Линейное – которое определяют еще как межфазное или между фазное – возникающее между двумя проводами или одинаковыми выводами разных фаз. Показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт.

Измерение линейных напряжений – самый общий случай

Линейное напряжение представляет собой векторную сумму линии к нейтральному напряжению. Следующая фазовая диаграмма поможет визуализировать математическую формулу, необходимую для преобразования от линейных напряжений к линейному напряжению. Линейные расчетные фазоры.

Как было описано выше, линейное напряжение представляет собой фазовую сумму линейно-нейтральных напряжений, поэтому. Номинально каждая фаза в трехфазной системе разнесена ровно на 120 градусов друг от друга. Однако, поскольку мы намерены выполнять измерения в системе, мы не можем считать ее идеальной.

Так, токи, протекающие в каждой фазе, именуют фазными и условно обозначают IА, IB, IC либо условно Iф. Токи в ветвях нагрузки именуют линейными. Их величина обуславливается величиной фазных напряжений, типом нагрузки. При сугубо активной нагрузке токи идентичны с напряжениями по фазе, а при индуктивной либо емкостной нагрузке, токи могут опережать или отставать от напряжения.

Измерение линейных напряжений, когда линейное разделение составляет 120 градусов

Из прямоугольных компонентов мы можем рассчитать величину линии к линейному напряжению. Если мы можем гарантировать, что линия «линия-линия» составляет ровно 120 градусов, то приведенные выше уравнения могут быть несколько упрощены. Это может иметь место, когда источником питания является генератор с тремя витками ротора, физически 120 градусов друг от друга.

Это устраняет необходимость вычисления функций синуса и косинуса, хотя операции с квадратным корнем и арктангенсом по-прежнему необходимы. На приведенной ниже диаграмме диаграммы показаны зависимости величины и фазы между всеми линиями-нейтралью и линейным напряжением в системе.

В традиционных электросетях имеет место 2 метода соединения:

Треугольник;

При соединении ветвей схемы треугольником конец одной обмотки подключается к началу другой, т.е. получается замкнутый контур. Для каждого узла схемы выполняется баланс – сумма входящих токов равна сумме исходящих. При таком подключении и симметричной нагрузке выполняется соотношение:

Величина и отношение фаз всех напряжений в системе. Сегодня трехфазные системы используются для производства и распределения электрической энергии. Это имеет ряд преимуществ. Первым и, возможно, самым значительным преимуществом является экономия, получаемая при распределении электрической энергии в трехфазной системе. В трехфазной системе мы имеем два разных типа напряжений, фазных напряжений и линейных напряжений.

Некоторые особенности сети

Линейные напряжения – это те напряжения, которые существуют между разными фазами. Как вы можете себе представить, существуют различия между фазными напряжениями и линейными напряжениями. Напряжения на линии обычно на √3 выше фазных напряжений. Все будет зависеть от того, как подключен генератор. Он может быть подключен в виде звезды или треугольника. С двумя разными напряжениями мы можем выделить самые высокие для отрасли и самые низкие для жилых районов или домов. Кроме того, в промышленности мы используем электрические машины, такие как трансформаторы, трехфазные двигатели и т.д.

При соединении ветвей элементов схемы звездой все окончания обмоток фаз подключают в один узел 0. Ввиду того, что фазы генератора соединяются последовательно с фазами электроприемников (нагрузки), то линейные токи по величине равны фазным:

21. Соединение потребителей трехфазного тока по схеме “звезда”. Симметричный и несимметричный режимы.

Понятия, связанные с трехфазной системой

В трехфазной системе мы должны четко понимать некоторые понятия и, кроме того, каждое понятие должно интерпретироваться в соответствии с его контекстом. Когда мы находим выражение этого стиля, это означает, что не существует 120 ° смещения между различными фазовыми синусоидальными сигналами, и это может быть серьезной проблемой, потому что мы будем нагружать одну фазу больше, чем другой трансформатор фазового сдвига. Это электрическая машина или машина, способная перемещать фазы. Он управляется по принципу трансформатора.

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X , Y и Z соединяют в одну общую точку N , называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Z a , Z b , Z c ) также соединяют в одну точку n . Такое соединение называется соединение звезда.

Провода A a , B b и C c , соединяющие начала фаз генератора и приемника, называются линейными, провод N n , соединяющий точкуN генератора с точкой n приемника, – нейтральным.

Последовательность фаз. Мы ссылаемся на порядок, в котором расположены этапы. Важно знать последовательность фаз, потому что она будет зависеть, например, от направления вращения двигателя. Общая точка называется нейтральной. Поскольку схема должна быть симметричной и сбалансированной, можно в принципе вывести, что потенциал обоих равен, и поэтому между ними нет тока. Таким образом, соединение нейтральных точек теоретически не нужно.

В трехфазных схемах общие обозначения. Предельные или фазовые токи являются напряжением между выводами элементов или токами, которые циркулируют через них. Напряжения или линейные токи являются напряжением между проводниками межсоединений или токами, которые циркулируют через них.

Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.

Для уменьшения количества проводов между генератором и потребителем фазные обмотки должны быть соединены между собой определённым образом, как в генераторе, так и у потребителя. Обмотки генератора обозначаются: U

Трехфазный электрический ток

Вышеуказанные напряжения, конечно, являются напряжениями, приложенными к соответствующим импедансам нагрузки. Однако это отношение применимо только к эффективным или пиковым значениям. На рисунке 02 показаны графические суммы для предыдущих результатов. Линейные напряжения смещаются на 30 ° относительно фазы. Расположение схемы позволяет сделать вывод о том, что линейные токи совпадают с соответствующими фазовыми токами.

Отличие линейного от фазного напряжения

Нейтральный ток можно рассчитать по формуле. Но сумма между скобками – это сумма напряжений источников, которая равна нулю, как показано на предыдущей странице. Мы можем интерпретировать сложную передачу напряжения по модульной и аргументальной, соответственно амплитудной и фазовой характеристике. Амплитудная характеристика выражает зависимость модуля переноса двухбронов от частоты. Фазовая характеристика представляет собой зависимость фазового сдвига двойной полосы от частоты. Графическое представление этих характеристик в данном частотном диапазоне хорошо подходит для описания двухсторонних свойств.

1 – U 2 ,

V 1 – V 2 , W 1 – W 2 (фазы A, B, C). Индексом 1 обозначается начало обмотки, индексом 2 – конец.

В практике используют 2 различные соединения: соединение звездой и треугольником.

Соединение звездой.

Условимся, что положительно направленный ток выходит из обмотки генератора через её начало и входит в неё через её конец. Если все концы обмоток генератора соединить в одной точке О, а к их началам подсоединить провода, идущие к приёмникам электрической энергии, у которых концы также соединены в одной точке О´, то получим соединение звездой .

И16 Режимы работы трехфазного премника

Возможное фазовое смещение и модуль, соответственно, фазовые и амплитудные характеристики очень многочисленны. Всесторонняя передача мощности описывает свойства двухпортового. Двустороннее – это общее электронное устройство с входным и выходным воротами.

Если мы построим входной вентиль с двойным затвором с гармоническим сигналом, и все временные задержки будут решены, мы можем определить сложную передачу напряжения такого двойного блока как выход выходного и входного напряжений. Мы можем разделить это сложное выражение на реальную и мнимую компоненту, соответственно на модуль и аргумент. Комплексный модуль передачи напряжения обеспечивается выходным и входным напряжениями.

По общему обратному проводу будет протекать ток:

I N = I 1 + I 2 + I 3 . Общий провод называется нейтральным (или нулевым) проводом.

Если все три фазы имеют одинаковые нагрузки, то фазные токи будут равны по модулю, отличаясь друг от друга по фазе на 120˚:

i 1 = I 1 ∙sinωt,

i 2 = I 2 ∙sin(ωt – 120˚),

Сложный аргумент напряжения передачи делится на аргументы выходного и входного напряжения. Мы называем этот аргумент фазовым сдвигом. Как комплексные, так и модули передающего преобразователя часто зависят от большинства общих линейных биполярных систем. Таким образом, модуль и спектр подходят для интерпретации как функция частоты. Частотную зависимость комплексного модуля передачи напряжения, мы называем характеристикой модуля. Частотная зависимость аргумента передачи комплексного напряжения называется характеристикой аргумента.

i 3 = I 3 ∙sin(ωt + 120˚).

Сложим токи с помощью векторной диаграммы.

Суммарный ток, т.е. ток в общем проводе равен нулю, поэтому провод ОО´ называется нулевым. Провода, соединяющие начала обмоток генератора с приёмником электроэнергии, называются линейными. Система трёхфазного тока с нулевым проводом (или нейтралью) называется четырёхпроводной.

Чтобы описать большинство методов сложных методов управления передачей, описанных выше, обычно можно использовать следующую упрощенную блок-схему сложного процесса двойной трансмиссии. Генератор гармонических сигналов с переменными выходными частотами подключен к входному затвору. С помощью двух альтернативных вольтметров измеряется амплитуда напряжений на входных и выходных выходах и измеряется фазовый сдвиг напряжений между входным и выходным вентилями.

Большинство «простых» методов относятся к измерению амплитудных и фазовых характеристик отдельно и «по точкам» и относятся к приведенной выше общей модели, показанной на рисунке. Измерение этими методами происходит в одной точке, поэтому всегда для одного значения частоты. Для управления амплитудными и фазовыми характеристиками необходимо выполнить достаточное количество измерений для отдельных значений частоты во всем исследуемом диапазоне частот.

В цепях трёхфазного тока различают два типа напряжений: линейные и фазные . То же относится и к токам. Напряжение между двумя линейными проводами называется линейным, а между линейным проводом и нейтралью – фазным. Соответственно, токи, протекающие в линейных проводах, называются линейными, а в фазных – фазными.


Линейные напряжения обозначаем двойными индексами, а фазные – одинарными. При соединении звездой линейный ток совпадает с фазным. Построим диаграмму линейных и фазных напряжений при соединении звездой.

Из рис.5.5 видим, что

U 12 = U 1 – U 2

U 23 = U 2 – U 3

U 31 = U 3 – U 1

Мы видим, что линейные напряжения также образуют трёхлучевую звезду, повёрнутую относительно звезды фазных напряжений на угол 30˚ против часовой стрелки. Рассмотрим соотношение между модулями линейных и фазных напряжений. Из треугольника U 12 U 1 N получим U 12 /2 = U 1 ∙ cos30˚ = U 1 ∙√3/2,

U 12 = √3∙ U 1 , т.е. в трёхфазной системе при соединении звездой U л = √3U ф (5.5). Если линейное напряжение 220В, то фазное – 220/√3 = 127В.

Если фазное напряжение равно 220В, то линейное – 380В. Если нагрузка становится неравномерной, то можно считать, что соотношение (5.5) соблюдается, только в этом случае в нейтральном проводе течёт ток.

Соединение звездой без нулевого провода применяется при подключении трёхфазных двигателей (здесь нагрузка симметричная), а соединение с нулевым проводом – при электрификации жилых домов. К дому подводят три фазы и нейтральный провод, а внутри дома стремятся равномерно нагрузить каждую из фаз, чтобы общая нагрузка была симметричной.

Различные примеры соединения потребителя звездой.


Найти токи потребителей и в нейтральном проводе, если U л = 400В.

U 1 = U 2 = U 3 =U л /√3 = 400/√3 = 230В.

Токи потребителей:

I 1 = U 1 /R 1 = 2,3А;

I 2 = U 2 /R 2 = 230/230 = 1А;

I 3 = U 3 /R 3 = 230/57,3 = 4А.

Для получения геометрической суммы токов используем векторную диаграмму.

Масштаб возьмём

I 1 + I 2 + I 3 = I N

Из векторной диаграммы определяем, что I N = 2,5А.

Рассмотрим особый случай, когда несимметричность получается в результате повреждения одной из фаз (например, сгорел предохранитель).

Если нейтральный проводник целый, то повреждённая фаза останется без питания. В остальных фазах нормальная работа продолжится. I 2 = U 2 /R 2 и I 3 = U 3 /R 3 .

Ток в нейтральном проводе будет равен геометрической сумме I 2 + I 3 .

В нейтральный провод нельзя ставить предохранители, выключатели и другие устройства, которые могут привести к его размыканию. В случае обрыва нейтрали фазовое напряжение может превысить обусловленное значение .

Если в системе нет нейтрального провода, то обрыв фазы приведёт к положению, как в однофазной сети.


Потребители во второй и третьей фазах будут соединены последовательно и

I 2 = I 3 = U 23 /(R 2 +R 3).

Ещё раз о соединении обмоток генератора или трансформатора. Важно учитывать, чтобы обмотки трансформатора или генератора были соединены правильно. Это значит, что начала обмоток соединяются с линейным проводом, а концы между собой. Если одна из обмоток подсоединена неправильно, то возникает несимметричная линейная система, что показано на рисунке, где мы видим, что представляют собой линейные и фазные напряжения, если обмотка V 1 – V 2 соединена неправильно. U 12 , U 23 и U 31 теперь не равны и образуют несимметричную систему.


Соединение треугольником

При соединении треугольником соединяют конец первой фазовой обмотки U 2 с началом второй фазовой обмотки V 1 , её конец соединяют с началом третьей обмотки W 1 , а конец третьей обмотки соединяют с началом первой обмотки U 1 .

Три обмотки генератора образуют теперь замкнутую цепь с очень маленьким сопротивлением. Но короткого замыкания там не получится, т.к. сумма ЭДС будет равна нулю.

Линейные напряжения в случае соединения треугольником равны фазовым напряжениям: U 1 = U 12 , U 2 = U 23 , U 3 = U 31 соответственно, т.е.U ф =U л.

Главное, что надо иметь в виду, чтобы обмотки генератора или трансформатора были соединены правильно. Если одна из фазовых обмоток соединена наоборот, тогда сумма ЭДС в цепи не будет равна нулю, а сравняется с двукратным фазным напряжением.


7.4. Соединение потребителя треугольником

Потребители соединяются треугольником, если их рабочее напряжение равно линейному напряжению. Существуют два вида изображений на схемах: потребители расположены под углом 120˚ или параллельно друг другу.

При соединении в треугольник линейные напряжения равны фазному напряжению U л = U ф . Токи в фазах: I 12 = U 12 /R 12 , I 23 = U 23 /R 23 , I 31 = U 31 /R 31 .

Векторные диаграммы при соединении треугольником можно тоже рисовать по-разному. Можно рисовать векторы, исходящими из одной начальной точки, а можно векторы напряжений изобразить треугольником (рис.130). При симметричной нагрузке векторы фазовых токов равны, и векторная диаграмма симметрична. Если нагрузка не симметрична, то этого не будет.

В трёхфазной сети с напряжением 400В объединены в треугольник потребители с разным сопротивлением нагрузки.


Найдём фазовые и линейные токи в этой цепи.

Фазовые токи:

I 12 = U 12 / R 12 = 4A;

I 23 = U 23 /R 23 = 8A;

I 31 = U 31 /R 31 = 2A.

Линейные токи можно найти из векторной диаграммы, учитывая следующие соотношения: I 1 + I 31 = I 12 , I 2 + I 12 = I 23 , I 3 + I 23 = I 31 . Здесь в масштабе построены вычисленные фазовые токи и геометрическим сложением определены линейные токи.

Особый случай несимметричной нагрузки получается при обрыве одного из проводов. Посмотрим, что получится при обрыве L1.


Схема в этом случае приобретёт следующий вид:

R 23 будет работать в нормальном режиме: I 23 = U 23 /R 23 . Потребители R 12 и R 31 будут подсоединены неправильно и их ток: I 12 = I 31 = U 23 /(R 12 + R 31). Линейный ток I 2 будет равен геометрической сумме токов I 23 и I 12 .


Трехфазное питание: объяснение треугольника и звезды

Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру. Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях. Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем обогрева, инверторов, выпрямителей, источника питания и индукционных цепей.Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.

В трехфазной системе есть три проводника, по которым протекает переменный ток. Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одну и ту же частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, обеспечивая постоянную передачу мощности во время электрических циклов.

Конфигурации с трехфазным питанием особенно важны, поскольку они могут поддерживать в три раза больше мощности, используя всего в 1 ½ – 2 раза больше проводов, чем конфигурация с однофазным питанием. Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы. Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.

Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой высшие гармоники различных частот переключения.

По этой причине трехфазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они снижают уровень электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.

Различия между Delta и WYE

Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода после соединения друг с другом.«Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и текущем потоке. Конфигурация WYE приобрела популярность в последние годы, потому что она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).

Что такое фильтры трехфазной сети?

Трехфазные фильтры электромагнитных помех

разработаны в соответствии со строгими требованиями норм электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), допустимые на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери. В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.

Delta 3-фазный фильтр электромагнитных помех

3-фазные фильтры электромагнитных помех

Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токопроводящих жилы и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.

В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия не подключена / заземлена.Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.

Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость. Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.

Проектирование и трехфазный дельта-фильтр электромагнитных помех
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на линейное напряжение.
  4. Умножьте предыдущий ответ на квадратный корень из 3.
Преимущества дельта-конфигурации
  • Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
  • Защита для дельта-конфигураций может быть простой.
  • Конфигурации
  • Delta обычно устанавливаются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.

WYE 3-фазный фильтр для защиты от электромагнитных помех

Фильтры EMI

WYE предназначены для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три провода под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, к которой подключается нейтральный провод.

Когда нагрузки WYE-конфигурации полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока) в фильтре, что может привести к экономии затрат, веса и объема.

Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.

Проектирование и трехфазный фильтр электромагнитных помех WYE
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на напряжение между фазой и нейтралью / землей.
Преимущества конфигураций WYE
  • Предпочтительно для распределения электроэнергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
  • Точка звезды обычно заземлена, что делает ее идеальной для несимметричных нагрузок.
  • Для такой же поддержки напряжения требуется меньшая изоляция.

Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE

Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более экономичной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.

Astrodyne TDI Трехфазный фильтр электромагнитных помех Дельта- и WYE-конфигурации

Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь уменьшить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480/520 В до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.

Благодаря нашему обширному ассортименту фильтров и сильным конструктивным возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазного фильтра электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.

Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.

Вольт Line-Line в Line-Neutral – Преобразование фаза-фаза в фазу-нейтраль

Здесь вы узнаете, как автоматически, легко и бесплатно преобразовать из Linea в Linea напряжение в Linea в Neutro напряжение, для большего удобства в нашем случае слово Phase похоже на Linea.

У нас также есть формула, которая используется при расчете напряжения между фазой и нейтралью, шаги для перехода от напряжения линия-линия к напряжению фаза-нейтраль со многими иллюстрированными примерами и таблицей с основным линейным напряжением. преобразование в Line-Neutral.

Формула напряжения фаза-фаза-нейтраль:

  • В LN = Вольт фаза-нейтраль.
  • В LL = Линия-Линия Вольт.

Как преобразовать напряжение фаза-фаза в фазу-нейтраль только за 1 шаг:

Шаг 1:

Это очень просто, вам нужно только разделить линию напряжения на линию (фаза -Phase) между корнем 3 (√3). Пример: один конденсаторный кондиционер имеет напряжение фаза-фаза 480 В, чтобы узнать напряжение фаза-нейтраль конденсатора, просто разделите 480 В на √3, получится следующее: 480 В / √3, в результате получится 277 В.

Примеры преобразования напряжения фаза-фаза в напряжение фаза-нейтраль:

Пример 1:

Линейное напряжение на штамповочном станке составляет 240 Вольт, сколько вольт линейно-нейтраль имеет штамповочный станок? .

Ответ: // Чтобы узнать напряжение линейной нейтрали пресса, линейное напряжение, разделенное на три, необходимо разделить следующим образом: V LN = 240 В / √3, что даст 138 вольт нейтрали. Линия.

Пример 2:

Промышленный высекальный пресс имеет фазо-фазное напряжение 600 В, какое будет напряжение между фазой и нейтралью, которое будет у этой машины?

Ответ: // Решение простое, вам нужно только разделить 600 Вольт между корнем из 3 следующим образом: V LN = 600 В / √3 = 346 Вольт фаза-нейтраль.

Пример 3:

Кофейная мельница имеет линейное напряжение 13200 Вольт, какое линейное и нейтральное напряжение будет иметь мельница?

Ответ: // Чтобы узнать ответ, вам нужно только разделить линейное напряжение между √3 по формуле V LN = 13200V / √3, получив в результате: 7621Voltios Linea-Neutro.

Таблица преобразования напряжения фаза-фаза в напряжение фаза-нейтраль: Эквивалентно 110 В фазо-нейтраль 9017 Вольт 9017 Вольт FN 9017 Вольт3 9017 9017 Вольт FN Вольт
Сколько межфазного напряжения составляет Эквивалентность напряжения фаза-нейтраль
208 В FF 120 В FN
220 В FF 127 В FN
230 В FF
230 В FF2 1337 В 9017 В 139 Вольт FN
380 Вольт FF 219 Вольт FN
400 Вольт FF 231 Вольт FN
415 Вольт FF 9017 240 Вольт FF 9017 9017 Вольт 254 Вольт FN
460 Вольт FF 266 Вольт FN
480 Вольт FF 277 Вольт FN 9017 7
500 Вольт FF 289 Вольт FN
600 Вольт FF 346 Вольт FN
4160 Вольт FF 2402 Вольт FN
13200 Вольт FF 7621 Вольт FN
15000 Вольт FF 8660 Вольт FN
34500 Вольт FF 19919 Вольт FN
57500 Вольт FF 33198 Вольт FN
66000 Вольт FF 38105 Вольт FN
115000 Вольт FF 66395 Вольт FN
Нейтральное напряжение

калькулятор:

Первое и единственное, что вы должны сделать, это вставить напряжение в линию, которую вы хотите преобразовать, затем нажмите на кнопку конвертировать и вперед.

Однофазный трехпроводной:

Также известен как система Эдисона, разделенная или нейтральная фаза с центральным впуском. Это наиболее распространенная услуга по проживанию в Северной Америке. Линия 1 к нейтрали и линия 2 к нейтрали используются для питания нагрузок на 120 вольт освещения и электрических розеток. Линия 1 – линия 2 используется для питания однофазных нагрузок 240 В, таких как водонагреватель или кондиционер. Глаза эти линии в данном случае не эквивалентны Фазам, это нити, а не Фазы или линии.

Трехфазная звезда-звезда:

Наиболее распространенная коммерческая строительная электрическая сеть в Северной Америке – это звезда 120/208 вольт, которая используется для питания 120-вольтовых розеток, освещения и небольших систем отопления, вентиляции и кондиционирования воздуха.

В более крупных установках напряжение составляет 277/480 В и используется для подачи напряжения фаза-нейтраль 277 В для освещения и более высоких нагрузок HVAC. В западной Канаде чаще встречается напряжение 347/600 В.

Трехфазный трехпроводной, треугольник:

Он в основном используется на промышленных объектах для обеспечения питания нагрузок трехфазных двигателей и распределительных сетей.Номинальное рабочее напряжение составляет 240, 400, 480, 600 и выше.

Calificar convertor de Voltaje Linea-Linea a Linea-Neutro: [kkstarratings]

Линейное напряжение и фазное напряжение в трехфазном электричестве

Линейное напряжение и фазное напряжение в трехфазном электричестве

Эта страница дает определение фазного и линейного напряжения в трех фазах. электроэнергии, и дает соотношение между среднеквадратичными значениями фазное напряжение и линейное напряжение.

В трехфазном электричестве есть три отдельных напряжения колеблется с той же частотой, но каждый из них колеблется шага с двумя другими.{2 \ pi} {1 \ over2} (1+ \ cos2 \ theta) d \ theta} \\ & = {V_0 \ over \ sqrt2} \ end {align} $$

Интеграл – это просто $ {\ pi} $, потому что член $ \ cos2 \ theta $ оценивается как ноль в этом диапазоне. 2d \ theta}.{2 \ pi} {3 \ over2} d \ theta \ end {align} $$

поскольку тригонометрические члены в $ \ cos2 \ theta $ и $ \ sin2 \ theta $ исчезают по всему диапазону, давая

$$ V _ {\ rm AB \ rms} = V_0 \ sqrt {3 \ over2} $$

Таким образом, действующее значение линейного напряжения в $ \ sqrt3 $ умножается на действующее значение фазного напряжения.

Интернет-ссылки


Авторские права © Бен Баллок, 2009-2021. Все права защищены. С комментариями, вопросами и исправлениями обращайтесь по электронной почте. Бен Баллок ( [email protected] ) или воспользуйтесь группой обсуждения в группах Google.Новости о сайте. / Конфиденциальность / Отказ от ответственности

Сравнение соединений звездой и треугольником в трехфазных системах

Соединение звездой (Y или звезда) Соединение треугольником (Δ)
Соединение звездой – это 4-проводное соединение (в некоторых случаях 4-й провод является дополнительным ) Соединение треугольником – это 3-проводное соединение.
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. При соединении треугольником возможна только 3-проводная 3-фазная система.
Из 4 проводов 3 провода являются фазами, а 1 провод – нейтралью (которая является общей точкой 3 проводов). Все 3 провода являются фазами при соединении треугольником.
При соединении звездой один конец всех трех проводов подключается к общей точке в форме Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. . При соединении треугольником каждый провод соединяется с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы.
Общая точка звездообразного соединения называется нейтральной или звездной точкой. В соединении треугольником нет нейтрали.
Линейное напряжение (напряжение между любыми двумя фазами) и фазное напряжение (напряжение между любой фазой и нейтралью) различаются. Линейное и фазное напряжение одинаковы.
Линейное напряжение равно трехкратному основному фазному напряжению, то есть VL = √3 VP. Здесь VL – линейное напряжение, а VP – фазное напряжение. Линейное напряжение равно фазному напряжению, то есть VL = VP.
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP разные. Например, в системе 230 В / 400 В напряжение между любым фазным проводом и нейтральным проводом составляет 230 В, а напряжение между любыми двумя фазами – 400 В. При соединении треугольником мы получаем только одно значение напряжения.
Линейный ток и фазный ток одинаковы. Линейный ток в три раза больше тока фазы.
В соединении звездой, IL = IP. Здесь IL – линейный ток, а IP – фазный ток. При соединении треугольником, IL = √3 IP
Общая трехфазная мощность при соединении звездой может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Общая трехфазная мощность при соединении треугольником может быть рассчитана по следующим формулам.
P = 3 x VP x IP x Cos (Φ) или
P = √3 x VL x IL x Cos (Φ)
Поскольку линейное и фазовое напряжение различны (VL = √3 VP), изоляция требуется для каждой фазы меньше при соединении звездой. При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция.
Обычно соединение звездой используется как в передающих, так и в распределительных сетях (с однофазным питанием или трехфазным. Delta Connection обычно используется в распределительных сетях.
Поскольку требуется меньшая изоляция, соединение звездой может использоваться на больших расстояниях. Соединения треугольником используются для меньших расстояний.
Соединения “звездой” часто используются в приложениях, требующих меньшего пускового тока. Соединения “треугольник” часто используются в приложениях, требующих высокого пускового момента.

Подключение трехфазного трансформатора | электрическаялегкость.com

Подключение трехфазного трансформатора В трехфазной системе три фазы могут быть подключены по схеме звезды или треугольника. Если вы не знакомы с этими конфигурациями, изучите следующее изображение, которое объясняет конфигурацию звезды и треугольника. В любой из этих конфигураций между любыми двумя фазами будет разность фаз 120 °.

Подключение трехфазного трансформатора

Обмотки трехфазного трансформатора могут быть соединены в различных конфигурациях: (i) звезда-звезда, (ii) треугольник-треугольник, (iii) звезда-треугольник, (iv) треугольник-звезда, (v) открытый треугольник и (vi) Связь со Скоттом.Эти конфигурации объясняются ниже.
Звезда-звезда (Y-Y)
  • Соединение звезда-звезда обычно используется для небольших высоковольтных трансформаторов. Из-за соединения звездой количество необходимых витков на фазу уменьшается (поскольку фазное напряжение при соединении звездой составляет только 1 / √3 раз от напряжения сети). Таким образом, уменьшается и количество необходимой изоляции.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Линейные напряжения на обеих сторонах синфазны.
  • Это соединение можно использовать только в том случае, если подключенная нагрузка сбалансирована.
Дельта-дельта (Δ-Δ)
  • Это соединение обычно используется для больших низковольтных трансформаторов. Количество необходимых фаз / витков относительно больше, чем для соединения звезда-звезда.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Это соединение можно использовать даже при несимметричной нагрузке.
  • Еще одним преимуществом этого типа подключения является то, что даже если один трансформатор отключен, система может продолжать работать в режиме открытого треугольника, но с уменьшенной доступной мощностью.
Звезда-треугольник ИЛИ звезда-треугольник (Y-Δ)
  • Первичная обмотка соединена звездой звезда (Y) с заземленной нейтралью, а вторичная обмотка соединена треугольником.
  • Это соединение в основном используется в понижающем трансформаторе на стороне подстанции линии передачи.
  • Отношение вторичного напряжения к первичному в 1 / √3 раза больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Дельта-звезда ИЛИ треугольник-звезда (Δ-Y)
  • Первичная обмотка соединена треугольником, а вторичная обмотка соединена звездой с заземленной нейтралью. Таким образом, его можно использовать для обеспечения 3-фазной 4-проводной связи.
  • Этот тип подключения в основном используется в повышающих трансформаторах в начале линии передачи.
  • Отношение вторичного напряжения к первичному в √3 раз больше коэффициента трансформации.
  • Между напряжениями первичной и вторичной сети имеется сдвиг на 30 °.
Вышеуказанные конфигурации подключения трансформатора показаны на следующем рисунке.

Открытое соединение треугольником (V-V)

Используются два трансформатора, а первичные и вторичные соединения выполняются, как показано на рисунке ниже. Открытое соединение треугольником может использоваться, когда один из трансформаторов в группе Δ-Δ отключен, и обслуживание должно продолжаться до тех пор, пока неисправный трансформатор не будет отремонтирован или заменен.Его также можно использовать для небольших трехфазных нагрузок, когда нет необходимости в установке полной трехтрансформаторной батареи. Общая допустимая нагрузка при подключении по схеме «открытый треугольник» составляет 57,7%, чем при подключении по схеме «треугольник».

Скотт (Т-Т) соединение

В этом типе подключения используются два трансформатора. Один из трансформаторов имеет центральные отводы как на первичной, так и на вторичной обмотке (который называется главным трансформатором). Другой трансформатор называется трансформатором-тизером.Соединение Скотта также можно использовать для преобразования трех фаз в двухфазное. Подключение выполняется, как показано на рисунке ниже.

3-х фазное напряжение. Линейное и фазное напряжение

Получение трехфазного тока. Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых действует ЭДС. источники энергии имеют одинаковую частоту, но сдвинуты по фазе. Однофазная цепь в такой системе называется фазной.Каждая ЭДС может действовать в своей собственной цепочке и не быть связана с другими ЭДС. В этом случае электрическая система называется несвязанной. Связанные многофазные системы, в которых отдельные фазы электрически соединены между собой, получили широкое распространение на практике.

По сравнению с однофазным многофазным током есть несколько преимуществ. Для передачи такой же мощности требуется провод меньшего сечения. В работе двигателей и устройств переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.

Рис. Один

Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Трехфазный ток можно объяснить следующим образом. Если в однородном магнитном поле (рис.1) расположить три витка под углом 120 ° друг к другу и вращать их с постоянной угловой скоростью, в катушках будет наведена ЭДС, которая также будет сдвинута по фазе. на 120 ° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, смещенные одна относительно другой на 120 ° .Такие обмотки называются фазами генератора.


Фиг.2

Звездообразное соединение. Соединив фазные обмотки генератора или потребителя так, чтобы концы обмоток замкнулись в одну общую точку, и соединив начала обмоток с линейными проводами, мы получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании трехфазной системы, соединенной звездой из трех однофазных систем переменного тока, вместо шести проводов требуется только четыре.Условно соединение звездой обозначается как Y . Точки, в которых соединяются концы фазных обмоток, называются нулевыми, а провод, соединяющий их, нулевым или нейтральным. Три провода, соединяющие свободные концы фаз генератора с концами фаз потребителя, называются линейными.

При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; Вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей невозможно добиться равномерной нагрузки фаз.Поэтому в таких случаях нулевой провод необходим, хотя его сечение равно половине сечения линейного провода.


Фиг.3

При таком соединении конец первой фазы связан с началом второй, конец второй – с началом третьей, а конец третьей – с началом первой фазы, а линейные провода подключаются к точкам соединения фаз (рис.3). Соединение треугольником условно знаком Δ .

При соединении треугольником фазы генератора образуют замкнутый контур с низким сопротивлением. При неправильном подключении обмотки ЭДС могут увеличиваться вдвое. При небольшом сопротивлении цепи можно установить режим, близкий к короткому замыканию.

При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в этом случае линейно. Соединительный треугольник используется для освещения и силовых нагрузок.

В трехфазных двигателях обычно выводятся все шесть концов трех обмоток, которые при желании можно соединить звездой или треугольником.

В электрооборудовании жилых многоквартирных домов, а также в частном секторе, трехфазных и однофазных сетях. Первоначально электрическая сеть идет от трехфазной электростанции, а чаще всего к жилым домам. Подключается трехфазное электроснабжение. Кроме того, он имеет разветвление на отдельные фазы.Этот метод используется для создания максимально эффективной передачи электрического тока от электростанции к месту назначения, а также для снижения потерь при транспортировке.

Чтобы определить количество фаз в вашей квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке или прямо в квартире, и посмотреть, сколько проводов идет в квартиру. Если сеть однофазная, то будет 2 провода. Возможен еще один третий провод – заземление.

Трехфазные сети в квартирах редко используют в случаях подключения старых электроплит с тремя фазами, или мощных нагрузок в виде циркулярной пилы или нагревательных приборов.Количество фаз также можно определить по входному напряжению. В 1-фазной сети напряжение 220 вольт, в 3-х фазной тоже 220 вольт между фазой и нулем, между 2 фазами – 380 вольт.

Отличия

Если не учитывать разницу в количестве проводов сетей и схеме подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.

При трехфазном питании от сети возможен дисбаланс фаз из-за неравномерного разделения фаз нагрузки.На одну фазу можно подключить мощный обогреватель или печку, а на другую телевизор и стиральную машину. Затем возникает этот негативный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что приводит к выходу из строя бытовых устройств. Чтобы не допустить подобных факторов, необходимо перед прокладкой проводов электрической сети предварительно распределить нагрузку по фазам.
Для трехфазной сети требуется больше кабелей, проводов и переключателей, а это значит, что это не слишком экономит деньги.
Возможности однофазной бытовой сети значительно меньше трехфазной по мощности. Если вы планируете использовать несколько мощных потребителей и бытовую технику, электроинструменты, желательно подвести к дому или квартире трехфазную электросеть.
Основным преимуществом трехфазной сети является небольшое падение напряжения по сравнению с однофазной сетью при одинаковой мощности. Это можно объяснить тем, что в 3-х фазной сети ток в фазном проводе в три раза меньше, чем в 1-фазной сети, а по нулевому проводу ток отсутствует.


Преимущества однофазной сети

Главное преимущество – эффективность его использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в трехфазных сетях – пятипроводные. Для защиты оборудования в однофазных сетях необходимы однополюсные защитные, а в трехфазных сетях без трехполюсных автоматов не обойтись.

В связи с этим размеры устройств защиты также будут существенно отличаться.Даже на одной электрической машине уже есть экономия двух модулей. А по размеру он составляет порядка 36 мм, что существенно повлияет на размещение машин в нем. А при установке экономия места составит более 100 мм.

Трехфазные и однофазные сети для частного дома

Потребление электроэнергии населением постоянно увеличивается. В середине прошлого века в частных домах было относительно мало бытовой техники.Сегодня это совсем другая картина. Бытовые потребители энергии в частных домах растут не по дням, а по часам. Поэтому в их частной собственности больше не стоит вопрос, какие электросети выбрать для подключения. Чаще всего в частных домах выполняют электроснабжение в трехфазную сеть, а от однофазной сети отказываются.

Но стоит ли трехфазная сеть такого преимущества при установке? Многие считают, что, соединив три фазы, можно будет использовать большое количество устройств.Но не всегда получается. Максимально допустимая мощность определяется техническими условиями на подключение. Обычно для всех частных домохозяйств этот параметр составляет 15 кВт. В случае однофазной сети этот параметр примерно такой же. Поэтому понятно, что особой выгоды по мощности нет.

Но нужно помнить, что если трехфазная и однофазная сети имеют одинаковую мощность, то для трехфазной сети это можно применить, так как мощность и ток распределяются по всем фазам, следовательно, она нагружает меньше отдельных фаз. проводники.Номинальный ток автоматического выключателя для 3-х фазной сети также будет ниже.

Большое значение имеет размер, который для трехфазной сети будет иметь размер значительно больше. Это зависит от размера трехфазного, который больше, чем однофазный, и вводной автомат будет занимать больше места. Поэтому коммутатор для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.

Но у трехфазного питания есть свои преимущества, которые выражаются в том, что можно подключать приемники трехфазного тока.Они могут быть и другими мощными устройствами, что является преимуществом трехфазной сети. Рабочее напряжение Трехфазная сеть равна 380 В, что выше, чем в однофазной сети, а это значит, что вопросам электробезопасности придется уделять больше внимания. То же самое и с пожарной безопасностью.

Недостатки трехфазной сети для частного дома

Как следствие, есть несколько недостатков использования трехфазной сети для частного дома:

  1. Необходимо получить технические условия и разрешение на подключение к сети от электросети.
  2. Повышается опасность поражения электрическим током, а также опасность возгорания из-за повышенного напряжения.
  3. Значительные габаритные размеры распределительного щита. Для владельцев загородных домов такой недостаток не имеет большого значения, так как в них достаточно места.
  4. Требуется установка в виде модулей на лицевую панель. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частного дома
  1. Можно равномерно распределить нагрузку по фазам, чтобы избежать фазового дисбаланса.
  2. Возможность подключения к сети мощных трехфазных потребителей энергии. Это самая ощутимая ценность.
  3. Снижение номиналов входных защитных устройств, а также уменьшение входных.
  4. Во многих случаях можно получить разрешение от компании на продажу энергии для увеличения допустимого максимального уровня потребления электроэнергии.

В результате можно сделать вывод, что практически рекомендуется ввод трехфазной электросети для частных домов и домов с жилой площадью более 100 м 2.Трехфазное питание особенно подходит тем владельцам, которые собираются установить циркулярную пилу, отопительный котел, различные приводы механизмов с трехфазными электродвигателями.

Остальным владельцам частных домов переходить на трехфазное питание не нужно, так как это может создать только дополнительные проблемы.

В настоящее время так называемая трехфазная система переменного тока, изобретенная и разработанная в 1888 году русским инженером-электриком Доливо-Добровольским, получила самое широкое распространение во всем мире.Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее благоприятные условия для передачи электрической энергии по проводам и позволяет встраивать простые в устройстве и удобные в эксплуатации электродвигатели.

Трехфазная система электрических цепей – это система, состоящая из трех цепей, в которой действуют переменные электродвижущие силы одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j = 120 °).Каждая цепь такой системы называется фазой, а система из трех переменных токов, сдвинутых по фазе в таких цепях, называется трехфазным током.

Поддержание постоянного фазового сдвига между колебаниями напряжения на выходе трех независимых генераторов – довольно техническая задача. На практике трехфазные генераторы используются для выработки трех противофазных токов. Дроссель в генераторе представляет собой электромагнит, обмотка которого запитана постоянным током.Индуктор – это ротор, а якорь генератора-статора. Каждая обмотка генератора представляет собой отдельный генератор тока. Подключив провода к концам каждого из них, как показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, потребуется шесть проводов. Однако можно соединить между собой обмотки генератора трехфазного тока, чтобы уложиться в четыре или даже три провода, то есть значительно сэкономить проводку.Первый из этих методов называется звездой. При этом все концы фазных обмоток X, Y, Z соединяются с общим узлом O (он называется нейтральной или нулевой точкой генератора) и начинают служить зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называется фазным напряжением ( U f ) и напряжение между началами обмоток, то есть точками A и B, B и C, C и A, называется линейным напряжением ( U л ). В этом случае действующее значение линейного напряжения превышает действующее значение фазного напряжения в

В случае равномерной нагрузки всех трех фаз ток в нейтральном проводе равен нулю и его нельзя использовать. При несимметричной нагрузке ток в нейтральном проводе не равен нулю, а намного меньше, чем ток в линейных проводах. Поэтому нейтральный провод может быть тоньше фазы.

Обмотки трехфазного генератора можно соединять треугольником.Конец каждой обмотки соединяется с началом следующей, так что они образуют замкнутый треугольник, а линейные провода соединяются с вершинами

Содержимое:

Одним из вариантов многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях синусоидальные электродвижущие силы действуют с той же частотой. Они отличаются друг от друга по фазе и созданы из общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, различающиеся своими электрическими характеристиками.

Что такое фаза

Каждая часть многофазной системы с одинаковой токовой характеристикой называется фазой. Следовательно, определение фазы в электротехнике имеет двоякое значение. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет название цепей: двухфазная, шестифазная и т. Д.

Наиболее распространенные цепи в современной энергетике – трехфазные.Они имеют ряд преимуществ перед другими типами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью просто формируется вращающийся круг, обеспечивающий работу асинхронных двигателей. Это явление известно как ЭДС или иначе индукция электродвижущей силы.

Вращающийся магнит называется ротором, а расположенные вокруг него катушки образуют статор.Напряжение переменного тока получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.


Изменение магнитного потока происходит за счет вращения ротора, что приводит к образованию переменного напряжения. В статоре три катушки, каждая из которых имеет свою отдельную электрическую цепь. Каждая катушка смещена относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита то же самое происходит во всех катушках.Напряжение переменного тока между фазами в трехфазной сети.

Трехфазные цепи позволяют получить на одной установке два рабочих напряжения – фазное и линейное.

Фазное и линейное напряжение в трехфазных цепях

Фазное напряжение – возникает между началом и концом любой фазы. В противном случае оно также определяется как напряжение между одним из фазных проводов и нулевым проводом.

Линейный – определяется как межфазный или межфазный – возникает между двумя проводами или одними и теми же клеммами разных фаз.

Рассматривая фазные и линейные напряжения и токи, следует отметить, что индикаторное фазное напряжение составляет примерно 58% от линейных параметров. Таким образом, в нормальных условиях эксплуатации линейные показатели такие же и превышают фазовые в 1,73 раза. То есть, если линейное напряжение равно 380, которое равно фазному напряжению, можно определить с помощью этого коэффициента.

В трехфазной сети напряжение обычно оценивается по данным сетевого напряжения.Для трехфазных линий, отходящих от подстанции, устанавливается линейное напряжение 380 вольт. Это соответствует фазному напряжению 220 вольт. В трехфазных четырехпроводных сетях указывается номинальное напряжение с обозначением обеих величин – 380/220 В. Это означает, что к такой сети подключаются как устройства на 380 вольт, так и однофазные – 220 вольт.

Наиболее распространенная трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные приборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов.Трехфазные приборы подключаются к трем разным фазным проводам. В последнем случае использование нейтрального провода не требуется, при этом повышается риск поражения электрическим током при нарушении изоляции.

Разница линейного напряжения относительно фазы

Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем отличаются линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникать либо между двумя фазами, либо между одной из фаз и нейтральным проводом.Такое взаимодействие становится возможным за счет использования в схеме четырехпроводной трехфазной схемы. Его основные характеристики – это напряжение и частота.


Предполагается, что напряжение, возникающее между двумя фазными проводниками, является линейным, а фаза находится между фазой и нулем. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам можно подключать не только трехфазные контакты, но и однофазные, например, различную бытовую технику.Номинальное значение сетевого напряжения составляет 380 В. Иногда оно меняется под воздействием различных факторов, возникающих в локальной сети. Таким образом, все основные различия между двумя типами напряжения заключаются в способах соединения обмоток.

Наиболее распространенное линейное напряжение, благодаря безопасному использованию и удобному распределению сетей. Для его измерения достаточно мультиметра, а для определения характеристик фазного напряжения необходимы вольтметры, датчики тока и другие специальные устройства.

Контроль и настройка этого параметра осуществляется с помощью. Этот прибор поддерживает этот показатель на стандартном уровне, в том числе нормализует и повышенное напряжение.

Использование линейного и фазного напряжения

Классическим примером использования линейного и фазного напряжений считается подключение, используемое при запуске. трехфазный генератор. В его конструкцию входят первичная и вторичная обмотки, которые могут быть соединены звездой или треугольником.


Схема «треугольник» предполагает соединение конца первой фазы с началом второй.Кроме того, каждый фазовый провод подключается к линейным проводам источника тока. В результате токи выравниваются, и фазное напряжение становится линейным. Таким же образом подключаются электродвигатели и трансформаторы.

Другой вариант – звездообразная схема. В этом случае пуск всех обмоток подключается к одной сети перемычками. Таким образом, ток с характеристиками этой сети будет течь в обмотки, и межфазное напряжение будет взаимодействовать со всеми активными контактами.

Между двумя фазными проводами его иногда называют межфазным или межфазным. Фаза – это напряжение между нулевым проводом и одной из фаз. В нормальных условиях эксплуатации линейные напряжения одинаковы и в 1,73 раза превышают фазное напряжение.

Рабочие напряжения трехфазной цепи

Трехфазные цепи имеют ряд преимуществ по сравнению с многофазными и однофазными цепями, с их помощью можно легко получить вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. .Напряжение трехфазной цепи оценивается по ее линейному напряжению; для линий, отходящих от подстанций, устанавливается на 380 В, что соответствует фазному напряжению 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используются оба значения – 380/220 В, Подчеркивая, что подключайте не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные – на 220 В.

Фаза – это часть многофазной системы, имеющая такую ​​же токовую характеристику.Независимо от способа подключения фаз, существует три действующих значения напряжения трехфазной цепи. Они сдвинуты друг относительно друга по фазе на угол 2π / 3. Четырехпроводная схема, помимо трех линейных напряжений, имеет еще и трехфазную.

Номинальное напряжение

Наиболее распространенные номинальные напряжения приемников переменного тока – 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В используются для бытовых приборов. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети.Их наличие в четырехпроводной сети позволяет подключать однофазные приемники, рассчитанные на 220 и 127 В или 380 и 220 В.

Различия в системах распределения питания

Трехфазные 380/220 В трехфазные Наиболее распространена фазовая система с заземленной нейтралью, но есть и другие способы распределения электроэнергии. Например, в некоторых населенных пунктах можно встретить трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.

В этом случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет к незаземленной нейтрали.Трехфазные приемники подключаются к трем фазным проводам, а однофазные проводники подключаются к линейному напряжению между любой парой фазных проводов.

Векторная диаграмма соединения звездой и треугольником – нарушение напряжения

В этой статье звезда (звезда) и соединение треугольником обсуждается в отношении напряжений линия-линия, фаза-нейтраль. и токи. Кроме того, векторные фазовые углы между соединением треугольником и звездой также обсуждается.

Соединение WYE- Напряжение

Для соединения WYE источник нейтраль подключена к нейтрали нагрузки.Даже если нет нейтрального провод, но нейтраль источника и нейтраль нагрузки заземлены (заземлены) применимы те же обсуждения. Если нейтраль источника и нагрузки и незаземленная, напряжения будут такими же, как и при заземленной нейтрали, ЗА ИСКЛЮЧЕНИЕМ неисправности в система. Когда есть замыкание на землю на источнике с незаземленной звездой, напряжения станут несимметричными. Когда есть замыкание на землю на заземленной звездой источник, напряжения будут по большей части сбалансированы.

Напряжение соединения звездой

Для этого обсуждения предположим, что напряжения источника фаза-нейтраль следующие:

Линия к нейтрали напряжения нагрузки при подключенной звездой нагрузке будет такой же, как указано выше.

Однако линейное напряжение (фаза-фаза) на нагрузке будет иметь следующий вид:

То есть в трехфазном Система с заземлением звездой с напряжениями прямой последовательности, линейное напряжение составляет √3, умноженное на напряжения фаза-нейтраль, и выводов на 30 0 . Векторная диаграмма ниже представлена ​​эта величина и изменение фазового угла.

Векторы напряжения соединения звездой

Следует отметить следующие важные моменты:

Напряжение фаза-нейтраль: для сбалансированной системы сумма напряжение фаза-нейтраль (Van + Vbn + Vcn) равно нулю.Для несимметричного напряжения эта сумма не будет равным нулю и приведет к нулевому напряжению нейтрали и приведет к протеканию тока нейтрали, если нейтрали соединены вместе.

Линейное напряжение: Для симметричной или несимметричной системы сумма линейных напряжений (Vab + Vbc + Vca) равно нулю. Это потому, что линейно-линейные векторы образуют замкнутый треугольник и даже если одна из величин напряжения уменьшается, другие напряжения корректируются до образуют замкнутый треугольник.

Соединение звездой треугольник напряжения

Соединение WYE – Текущее

Для нагрузки, подключенной звездой со звездочкой подключенный источник, линейные токи уравновешены смещением 120 0 между любыми двумя фазами.Линейные токи и ток нагрузки будут равны.

Соединительные токи звезды

Для нагрузки, подключенной звездой, нейтраль ток вычисляется путем добавления следующего векторно . Это означает, что амплитуда и фазовый угол должны быть считается.

Для симметричных трехфазных токов сумма Ia + Ib + Ic будет равна нулю. Даже если сопротивление на соединение нейтрали изменяется от 0 до ∞, ток нейтрали будет равен нулю при условии, что система сбалансирована .Если система несбалансированная нейтральная ток будет течь между нейтральными точками источника нагрузки и источника.

Соединение ТРЕУГОЛЬНИКОМ – Напряжение

Для нагрузки, подключенной по схеме треугольник, линейное напряжение источника и треугольник подключенная нагрузка линейные напряжения будут такими же . Хотя нет нейтраль для дельта-системы, воображаемая нейтраль в центре тяжести дельты можно предположить треугольник. Когда система уравновешена, эта воображаемая нейтральная и нейтраль источника будет на то же самое потенциал земли .Следовательно, когда дельта сбалансирована, линия-земля потенциал на нагрузке такой же, как напряжение между фазой и нейтралью источника. Когда есть замыкание на землю в системе треугольник (система становится несбалансированной), напряжения относительно земли не совпадают.

Напряжение соединения треугольником

Соединение ТРЕУГОЛЬНИКОМ – Текущий

На рисунке ниже изображена звезда подключенный источник, питающий сбалансированную нагрузку, подключенную по схеме треугольника. Линейные токи в этот кейс присваивается:

Для сбалансированных токов нагрузки по трем треугольникам сумма IAB + IBC + ICA будет равна нулю.Если дельта-импедансы нагрузки не сбалансированы, то фазные токи (IAB, IBC и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *