Содержание

Методика измерения петли Фаза-Ноль – Электролаборатория

1.Цель проведения измерения.

       Измерение сопротивления петли  “фаза-нуль” проводится с целью проверки срабатывания защиты электрооборудования и отключения аварийного участка при замыкании фазы на корпус. По измеренному полному сопротивлению петли  “фаза-нуль” определяется ток однофазного короткого замыкания. Полученная расчетом величина тока сравнивает с номинальным током защитного аппарата.

2.Меры безопасности.

Пред началом работ необходимо:

  • Получить наряд (разрешение) на производство работ
  • Подготовить рабочее место в соответствии с характером работы: убедиться в достаточности принятых мер безопасности со стороны допускающего (при работах по наряду), либо принять все меры безопасности самостоятельно (при работах по распоряжению).
  • Подготовить необходимый инструмент и приборы.
  • При выполнении работ действовать в соответствии с программами (методиками) по испытанию электрооборудования типовыми или на конкретное присоединение.
  • При окончании работ на электрооборудовании убрать рабочее место, восстановив нарушенные в процессе работы коммутационные соединения (если таковое имело место).
  • Сдать наряд (сообщить об окончании работ руководителю или оперативному персоналу).
  • Оформить протокол на проведённые работы

Измерения сопротивления петли «фаза – нуль» необходимо производить, пользуясь диэлектрическими перчатками, предварительно необходимо обесточить испытуемую цепь. Только после отключения напряжения необходимо проводить подключение прибора с последующей подачей напряжения и проведением измерения.

3.Нормируемые величины.

      Измерения сопротивления петли “фаза-нуль” проводится в сроки, устанавливаемые графиком планово-предупредительного ремонта (ППР). По сопротивлению петли “ фаза-нуль”  Zфо (Ом) ток короткого замыкания Iкз (А) определяется по формуле  Iкз=Uср/Zфо

      где Uср — среднее значение питающего напряжения, В.

      В электроустановках до 1кВ с глухим заземленной нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:

  • в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;
  • в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.

    При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, умноженной на коэффициент, учитывающий разброс(по заводским данным), и на коэффициент запаса 1,1.

4.Определяемые характеристики.

Согласно ПУЭ в электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего значений, указанных в табл. 1.7.1.

Таблица 1.7.1 Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение U0, В

Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1. В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Допускаются значения времени отключения более указанных в табл. 1.7.1, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:

1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

 

50=Zц/U0,

 

где Zц — полное сопротивление цепи «фаза-нуль», Ом;

U0 — номинальное фазное напряжение цепи, В;

50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

Допускается применение УЗО, реагирующих на дифференциальный ток.

А также ток возникающий при однофазном КЗ во взрывоопасных зонах должен превышать:

В 6 раз номинальный ток автоматического выключателя с обратнозависимой характеристикой

во взрывоопасном помещении.

В 4 раза номинальный ток плавкой вставки во взрывоопасном помещении

При защите автоматическими выключателями имеющими только электромагнитный расцепитель время отключения должно соответствовать данным таблицы 1.7.1

Для расчёта тока однофазного КЗ по результатам измерения сопротивления петли «фаза–нуль» используют следующую формулу:

Z = U / I,

 

где Z— сопротивление петли «фаза—нуль», Ом;

U — измеренное испытательное напряжение, В ;

I — измеренный испытательный ток, А..

По рассчитанному току однофазного КЗ определяют пригодность аппарата защиты установленного в цепи питания электроприёмника.

В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 1.7.2.

Таблица 1.7.2 Наибольшее допустимое время защитного автоматического отключения для системы IT

Номинальное линейное напряжение U0, В

Время отключения, с

220

0,8

380

0,4

660

0,2

Более 660

0,1

Для определения времени отключения аппарата защиты после измерения сопротивления петли «фаза-нуль» и расчёта тока однофазного КЗ необходимо использовать время-токовые характеристики данного аппарата (смотри «Методику проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ»).

5.Условия испытаний и измерений

Измерение сопротивления петли «фаза – нуль» следует производить при положительной температуре окружающего воздуха, в сухую, спокойную погоду. Атмосферное давление особого влияние на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

Влияние нагрева проводников на результаты измерений:

а) Рассмотрение повышения сопротивления проводников, вызванного повышением температуры.

Когда измерения проведены при комнатной температуре и малых токах, чтобы принять в расчет повышение сопротивления проводников в связи с повышением температуры, вызванного током замыкания, и убедиться для системы TN в соответствии измеренной величины сопротивления петли «фаза—нуль» требованиям таблицы 1.7.1, может быть применена нижеприведенная методика.

Считают, что требования таблицы 1.7.1 выполнимы, если петля «фаза—нуль» удовлетворяет следующему уравнению

                       Z S(m)≤ 2U0 / 3Ia,                       

 

Где ZS(m) — измеренная величина сопротивления петли «фаза—нуль», Ом;

U0 — фазное напряжение. В;

Ia — ток, вызывающий автоматическое срабатывание аппаратов защиты в течение времени, указанного в таблице 1.7.1., или в течение 5 с для стационарных электроприёмников

Если измеренная величина сопротивления петли «фаза—нуль» превышает 2 U0/3Iа, более точную оценку соответствия требованиям таблицы 1.7.1 можно сделать путем измерения величины сопротивления петли «фаза—нуль» в следующей последовательности:

— сначала измеряют сопротивление петли «фаза—нуль» источника питания на вводе электроустановки Ze;

— измеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления;

— измеряют сопротивление фазного и защитного проводников от распределительного пункта или щита управления до электроприемника;

— величины сопротивлений фазного и нулевого защитного проводников увеличивают для учета повышения температуры проводников при протекании по ним тока замыкания. При этом необходимо учитывать величину тока срабатывания аппаратов защиты;

— эти увеличенные значения сопротивления добавляют к величине сопротивления петли «фаза—нуль» источника питания Ze и в результате получают реальную величину ZS в условиях замыкания.

  1. Применяемые приборы, инструменты и аппараты.

      Измерения проводятся специальным приборами типа EurotestXE 2,5 кВ MI 3102H, позволяющим определять полное сопротивление петли “фаза-нуль” при наличии напряжения на источнике питания в электроустановках напряжением 380 В с глухозаземленной нейтралью питающего трансформатора. Во время работы применяют инструмент с изолированными ручками и индикатор напряжения.

  1. Методика проведения измерения.

      7.1 Полное сопротивление контура и предполагаемый ток короткого замыкания

В данной функции доступны две подфункции измерения полного сопротивления контура: Подфункция Z LOOP применяется для измерения полного сопротивления контура в системах питания без встроенного УЗО. Подфункция Zs (узо) – функция блокировки срабатывания УЗО – применяется для измерения полного сопротивления контура в системах питания со встроенным УЗО.

 

7.1.1. Полное сопротивление контура

Полное сопротивление контура представляет собой полное сопротивление контура  повреждения при возникновении короткого замыкания на открытых проводящих частях (замыкание между фазным проводником и защитным проводником заземления).

7.1.2. Порядок проведения измерения полного сопротивления контура

Шаг 1.  С помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию полного сопротивления контура Z LOOP. Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3. Для измерения полного сопротивления контура подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1.

Рисунок 1: Подключение измерительного кабеля с вилкой и 3-проводного измерительного кабеля

 

Шаг 4.  Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата.

Отображаемые результаты:

Z ………….Полное сопротивление контура,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого замыкания (если применяется).

Примечания:

􀂉 Измерительные выводы L и N автоматически заменяются в следующих случаях: если измерительные провода L/L1 и N/L2 (3-проводный измерительный кабель) подключены в обратном порядке, если выходы сетевой вилки перепутаны или если щуп «commander» перевернут.

􀂉 Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

􀂉 Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений. 􀂉 Измерение полного сопротивления контура в подфункции Z LOOP приводит к срабатыванию УЗО.

 

7.1.3. Функция блокировки срабатывания УЗО

В данной подфункции Zs (узо) измерение полного сопротивления контура не вызывает срабатывания УЗО, благодаря низкому измерительному току. Данная подфункция также может применяться для измерения полного сопротивления контура в электроустановках, оснащенных УЗО с номинальным током срабатывания 10 мA.

 

7.1.4. Порядок проведения измерения полного сопротивления контура в функции блокировки срабатывания УЗО

Шаг 1. С помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию блокировки срабатывания УЗО Zs (узо). Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3. Для измерения полного сопротивления контура в функции блокировки срабатывания УЗО подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1. При необходимости воспользуйтесь меню помощи.

Шаг 4.  Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка

результата.

Отображаемые результаты:

Z ………….Полное сопротивление контура,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого замыкания (если применяется). Сохраните отображенные результаты с целью дальнейшего документирования.

 

Примечания:

􀂉 При проведении измерения полного сопротивления контура в функции блокировки срабатывания УЗО, срабатывания УЗО, как правило, не происходит. Однако срабатывание УЗО может произойти вследствие протекания тока утечки по РЕ-проводнику или в случае наличия емкостного соединения между фазным и защитным проводниками.

􀂉Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений.

 

7.2. Полное сопротивление линии и предполагаемый ток короткого замыкания

Полное сопротивление линии – это полное сопротивление токовой петли при возникновении короткого замыкания между фазным и нулевым проводниками в однофазной системе или между двумя фазными проводниками в трехфазной системе.

 

7.2.1Порядок проведения измерения полного сопротивления линии

Шаг 1. С помощью переключателя функций выберите функцию Линия.

Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3.Для измерения сопротивления линии фаза – фаза или фаза – нейтраль подключите прибор к испытываемому объекту согласно схеме соединений, приведенной на рисунке 2.

Рисунок 2: Подключение измерительного кабеля с вилкой или 3-проводного измерительного кабеля при измерении полного сопротивления линии

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата

Отображаемые результаты:

Z ………….Полное сопротивление линии,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого

замыкания (если применяется).

Примечания:

􀂉 Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

􀂉 Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений.

 8.Оформление результатов измерений.

Первичные записи рабочей тетради должны содержать следующие данные:

-дату измерений

-температуру,

-влажность и давление

-наименование, тип, заводской номер оборудования

-номинальные данные объекта испытаний

-результаты испытаний

-используемую схему

По данным испытаний и измерений производятся соответствующие расчёты и сравнения. Вычислив ток однофазного КЗ необходимо определить время срабатывания защитного аппарата по его время-токовой характеристике, и затем дать заключение о времени срабатывания выключателя и его соответствии требованиям ПУЭ. Пример работы с время- токовой характеристикой автоматического выключателя, выполненного в соответствии с ГОСТ Р 50345-99 представлен на рисунке 5. Определённый (измеренный, рассчитанный) ток однофазного КЗ откладывается на время-токовой характеристике в виде вертикальной прямой линии. Токи правее зоны срабатывания обеспечивает срабатывание автоматического выключателя со временем менее 0,4 с. Токи внутри зоны срабатывания обеспечивают отключение автоматического выключателя со временем менее 5 с. Таким образом считаем, что для обеспечения требуемого времени срабатывания автоматического выключателя в пределах менее 0,4 с, ток КЗ должен превышать 10Iн для автоматического выключателя с характеристикой типа С (работает электромагнитный расцепитель).

 

Рисунок 3. Работа с время-токовой характеристикой автоматического выключателя с характеристикой типа С

Если время срабатывания автоматического выключателя должно быть не более 5 с, то в этом случае считаем, что наиболее вероятно срабатывание обратнозависимого расцепителя, поэтому для определения зоны срабатывания необходимо пользоваться индивидуальной время-токовой характеристикой конкретного автоматического выключателя. На рисунке 5 индивидуальная время-токовая характеристика построена черной линией, принципы построения данной индивидуальной характеристики описаны в «Методике проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ». При работе с время токовой характеристикой автоматических выключателей промышленного исполнения уставка электромагнитного расцепителя считается основой для определения времени срабатывания. Соответственно при величине однофазного тока КЗ, превышающем уставку электромагнитного расцепителя, считаем, что автоматический выключатель отключится за время меньше 0,4 с. Для определения тока однофазного КЗ при котором автоматический выключатель отключится с временем не более 5 с необходимо, как и в первом случае, пользоваться индивидуальной время-токовой характеристикой для конкретного автоматического выключателя. Цепи с применением УЗО в качестве дополнительных защитных устройств также необходимо проверять на соответствие полного сопротивления петли «фаза-нуль» и времени срабатывания защитных аппаратов, реагирующих на сверхток.

Измерение полного сопротивления петли «фаза-нуль»

Электролаборатория

Измерение полного сопротивления петли «фаза-нуль» (тока однофазного короткого замыкания) в установках напряжением до 1000В с глухозаземленной нейтралью.

В электроустановках напряжением ниже 1000В с глухозаземлённой и изолированной нейтралью защита участков сети осуществляется автоматическими выключателями реагирующими на сверхток, как основной параметр аварийного состояния электроустановки (ГОСТ Р50571-2, ПУЭ). В электроустановках с изолированной нейтралью участки сети могут дополнительно защищаться устройствами защитного отключения (УЗО), реагирующими на сверхток, устройствами контроля изоляции и т.п. В электроустановках с глухозаземлённой нейтралью УЗО также могут применяться для защиты розеточных групп зданий, при условии, что к этим розеткам могут быть подключены переносные электроприборы.

Для проверки временных параметров срабатывания защитных устройств реагирующих на сверхток (автоматических выключателей) проводится измерение полного сопротивления петли «фаза-нуль» или токов однофазных замыканий. Работа устройств защитного отключения проверяется другим образом.

Полное сопротивление петли «фаза-нуль», и, соответственно, ток однофазного замыкания будет зависеть в основном от нескольких факторов: характеристик силового трансформатора, сечения фазных и нулевых жил питающего кабеля или ВЛ и контактных соединений в цепи. Проводимость фазных и нулевых проводников на практике можно не только определить, но и изменить, кроме того, расчётное определение проводимости, в стадии проектирования электроустановки может исключить множество проектных ошибок.

Главной целью измерения полного сопротивления петли «фаза-нуль» (тока однофазного короткого замыкания) является определение соответствия номинального тока аппаратов защиты требуемым стандартам. Вторичная цель – это выяснение сечения проводов данной цепи. В большинстве случаев замеры петли «фаза-ноль» осуществляются на самых удаленных точках электрооборудования текущего участка.

В электроустановках напряжением до 1000В с глухозаземленной нейтралью

В электроустановках напряжением до 1000В с глухозаземленной нейтралью безопасность работы оборудования обеспечивается отключением поврежденного участка с как можно более меньшим временем при пробое на корпус. Когда фазный провод замыкается на нулевой провод, соединенный с нейтралью, например, трансформатора или генератора, то это образует контур, который принято называть петлей «фаза-ноль».

Периодичность измерения полного сопротивления петли фаза-ноль в электроустановках напряжением до 1000В с глухозаземленной нейтралью определяется общим состоянием оборудования и условиями эксплуатации. Рекомендуется проводить данные испытания при ремонте. Наиболее эффективна проверка примерно 1 или 2 раза в год.

Любая проверка – плановая или внеплановая – будет всегда актуальной, поэтому не стоит пренебрегать этим, ведь от этого может зависеть не только работоспособность оборудования и системы электроснабжения в целом, но и жизни людей. Частые проверки – это гарантия того, что короткое замыкание не случится и не вызовет пожар, последствия которого могут быть самыми плачевными.

Для измерения петли «фаза-нуль» используют несколько методов

Для измерения петли «фаза-нуль» используют несколько методов, однако самым популярным и наиболее эффективным является метод падения напряжения на нагрузочном сопротивлении. Этот метод весьма отличается безопасностью и быстротой осуществления. Каждый наш клиент в лице частного лица или коммерческой организации желает, чтобы его электрооборудование работало максимально надежно и эксплуатировалось без сбоев. Это особо актуально для случаев короткого замыкания или скачков напряжения в сети, приводящим к перегрузкам.

Необходимо, чтобы в таких ситуациях, от которых, к сожалению, никто не застрахован на 100 процентов, мгновенно срабатывали системы защиты, которые защищают оборудование и проводку от выхода из строя.

Нужно проводить своевременные измерения и диагностики всей системы

Самое главное – это, чтобы каждый работник вашего предприятия был максимально защищен, что также в большой степени зависит от таких систем автоматического срабатывания. Практически все аварии происходят от того, что электрическая сеть неисправна или часть ее необходимо заменить, чтобы продлить срок службы и исключить любые аварийные ситуации. Нужно проводить своевременные измерения и диагностики всей системы в целом и каждого ее модуля. Одним из таких измерений является замер полного сопротивления петли «фаза – нуль». Измерения сопротивления цепи «фаза-нуль» необходимо осуществлять с частотой, предписанной системой планово-предупредительного ремонта (ППР).

Согласно ПТЭЭП, проверка петли «фаза-нуль» проводится при:

  • • Ремонте;
  • • В обязательном порядке не менее одного раза в два года;
  • • Отказе устройств защиты.

Электробезопасность – Измерение цепи фаза-нуль


ИЗМЕРЕНИЕ ПАРАМЕТРОВ ЦЕПИ ФАЗА-НУЛЬ, ПОЛНОГО СОПРОТИВЛЕНИЯ, ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ И ЗАЩИТНОГО ОТКЛЮЧЕНИЯ

Петлёй «ФАЗА-НУЛЬ» принято называть цепь, состоящую из фазы трансформатора и проводников – нулевого и фазного.
По измеренному полному сопротивлению петли «ФАЗА-НУЛЬ» производится расчет тока однофазного короткого замыкания. Основной целью является проверка временных параметров срабатывания аппаратов защиты от cверхтоков при замыкании фазы на корпус. Данная проверка так же подверждает непрерывность PE цепи. Время срабатывания аппаратов защиты должно удовлетворять требованиям п.1.7.79 ПУЭ.
Надёжность срабатывания защиты от сверхтоков является одним из основных требований как при проектировании, так и при монтаже и требует расчетной и натурной проверки.

Поскольку речь идёт о замыкании на корпус, то под нулевым проводником мы понимаем совокупность защитных (PE) и защитно-рабочих (PEN) проводников от “корпуса” до трансформатора. Таким образом, проверка петли “ФАЗА-НУЛЬ” позволяет оценить и качество защитной цепи.


ИЗМЕРЕНИЯ

Существует несколько методик измерения сопротивления петли «ФАЗА-НУЛЬ» и токов короткого замыкания, как с отключением напряжения линии, так и без.
В настоящее время в основном применяются современные микропроцессорные измерительные приборы, реализующие методику измерения полного сопротивления петли «ФАЗА-НУЛЬ» без отключения напряжения, и автоматического расчета тока короткого замыкания на основании значения сопротивления петли. Применение данных приборов упрощает процесс испытаний. Кроме того, испытания оказываются более щадящими по отношению к испытываемым линиям и аппаратам защиты. Некоторые из этих приборов позволяют проводить измерения без искючения из испытываемой линии

УЗО и не вызывают их срабатывания, что представляется достаточно важным и удобным, поскольку измерения проводятся между фазным проводником и нулевым защитным проводником. Измерения проводятся на концах проводников, защищаемых аппаратами защиты от сверхтока.

Результаты измерений оформляются протоколом установленного образца.

Перед проведением измерений петли «ФАЗА-НУЛЬ» рекомендуется провести измерение сопротивлений защитных проводников, проверку их непрерывности (проверка металлосвязи, проверка заземления).


УСТРАНЕНИЕ ДЕФЕКТОВ

Если при проведении измерений петли «ФАЗА-НУЛЬ» в действующей электроустановке получены неудовлетворительные результаты, то требуется срочное устранение дефекта. Как правило, бывает достаточно заменить аппарат защиты от сверхтоков на другой, с более подходящими характеристиками. Но иногда требуется замена существующего кабеля на кабель с другим сечением жил. Подобные случаи, как правило, сложнее с точки зрения монтажа.


РАСЧЁТ ПЕТЛИ «ФАЗА-НУЛЬ»

С целью своевременного согласования параметров кабельных линий и аппаратов защиты от сверхтоков необходимо производить расчёты петли «ФАЗА-НУЛЬ» на стадии проектных работ. Подобные расчеты удобно проводить в комплексе: мощность нагрузки; cos φ; длина кабельной линии; сечение жилы; вид монтажа; падение напряжения на линии; расчетное полное сопротивление петли; прогнозируемый ток короткого замыкания; номинальный ток аппарата защиты; характеристика аппарата защиты. Расчет петли «ФАЗА-НУЛЬ» является одним из наиболее сложных, поскольку требует принятия во внимание ряда трудно учитываемых параметров.

 


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Согласно ГОСТа Р 50345-99, п.3.5.17 – это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. его электромагнитная защита.

В этом же ГОСТе Р 50345-99, п.5.3.5., говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

B — от 3·In до 5·In
C — от 5·In до 10·In
D — от 10·In до 20·In (встречаются от 10·In до 50·In)
In – номинальный ток автоматического выключателя.

Рассмотрим каждый вид характеристики на примере модульного автоматического выключателя ВА47-29.


Время-токовая характеристика типа В

На графике (кривой) показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.

График разделен двумя линиями, которые и определяют разброс времени срабатывания тепловой и электромагнитной защит автомата. Нижняя линия — это горячее состояние автомата (после срабатывания), а верхняя линия — это холодное состояние.

 

Характеристики практически всех автоматов изображаются при температуре +30°С. 

На представленных время-токовых характеристиках (сокращенно, ВТХ) пунктирная линия — это верхняя граница (предел) для автоматов с номинальным током меньше 32 (А).

По графику видно:

1. Если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 35 секунд в холодном состоянии (для автоматов менее 32А) и до 80 секунд в холодном состоянии 

2. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,04 секунды в холодном.(для автоматов более 32А). 

Автоматы с характеристикой В применяются в основном для защиты потребителей с преимущественно активной нагрузкой, например, электрические печи, электрические обогреватели, цепи освещения.

Правда, в магазинах их количество почему то всегда ограничено, т.к. распространенным видом является характеристика С. И кто так решил? Вполне целесообразно на автоматы групповых линий для освещения и розеток ставить именно тип В, а на вводной автомат — тип С. Так будет соблюдена селективность, и при коротком замыкании где нибудь в линии не будет отключаться вводной автомат и «гасить» всю квартиру.


Время-токовая характеристика типа С

Вот ее график:

1. Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 11 секунд в холодном состоянии (для автоматов менее 32А) и до 25 секунд в холодном состоянии (для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,03 секунды в холодном.

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.


Время-токовая характеристика типа D

График:

1. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время 0,02 секунды в горячем состоянии, до 3 секунд в холодном состоянии (для автоматов менее 32А) и до 7 секунд в холодном состоянии (для автоматов более 32А).

2. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за 0,009 секунд в горячем состоянии или за 0,02 секунды в холодном.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).


ПЛАВКИЕ ПРЕДОХРАНИТЕЛИ

Плавкие предохранители — это электрические аппараты, защищающие установки от перегрузок и токов короткого замыкания.
Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство, гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

  1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта.
  2. При коротком замыкании предохранители должны работать селективно.
  3. Время срабатывания предохранителя при коротком замыкании должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением.
  4. Характеристики предохранителя должны быть стабильными. Разброс параметров из-за производственных отклонений не должен нарушать защитные свойства предохранителя.
  5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.
  6. Замена сгоревшего предохранителя или плавкой вставки не должна требовать много времени.

В промышленности наибольшее распространение получили предохранители типа и ПН-2.


ВРЕМЯ-ТОКОВЫЕ ХАРАКТЕРИСТИКИ ПРЕДОХРАНИТЕЛЕЙ СЕРИИ ПН2


Устройство предохранителей ПН-2

Эти предохранители более совершенны, чем предохранители ПР-2. Корпус квадратного сечения №1 предохранителя типа ПН-2 изготавливается из прочного фарфора или стеатита. Внутри корпуса расположены ленточные плавкие вставки №2 и наполнитель — кварцевый песок №3. Плавкие вставки привариваются к диску №4, который крепится к пластинам №5, связанным с ножевыми контактами №9. Пластины №5 крепятся к корпусу винтами.

В качестве наполнителя в предохранителях ПН-2 используется кварцевый песок с содержанием SiO2 не менее 98 %, с зернами размером (0,2—0,4)10-3 м и влажностью не выше 3 %. Перед засыпкой песок тщательно просушивается при температуре 120—180 °С. Зерна кварцевого песка имеют высокую теплопроводность и хорошо развитую охлаждающую поверхность.

Плавкая вставка предохранителей ПН-2 выполняется из медной ленты толщиной 0,1— 0,2 мм. Для получения токоограничения вставка имеет суженные сечения №8. Плавкая вставка разделена на три параллельных ветви для более полного использования наполнителя. Применение тонкой ленты, эффективный теплоотвод от суженных участков позволяют выбрать небольшое минимальное сечение вставки для данного номинального тока, что обеспечивает высокую токоограничивающую способность. Соединение нескольких суженных участков по-следовательно способствует замедлению роста тока после плавления вставки, так как возрастает напряжение на дуге предохранителя. Для снижения температуры плавления на вставки наносятся оловянные полоски №7 (металлургический эффект).


Принцип действия предохранителя ПН-2

При коротком замыкании плавкая вставка предохранителя ПН-2 сгорает и дуга горит в канале, образованном зернами наполнителя. Из-за горения в узкой щели при токах выше 100 А дуга имеет возрастающую вольт-амперную характеристику. Градиент напряжения на дуге очень высок и достигает (2—6)104 В/м. Этим обеспечивается гашение дуги за несколько миллисекунд.

После срабатывания предохранителя плавкие вставки вместе с диском №4 заменяются, после чего патрон засыпается песком. Для герметизации патрона под пластины №5 кладется асбестовая прокладка №6 что предохраняет песок от увлажнения. При номинальном токе 40 А и ниже предохранитель имеет более простую конструкцию.


Технические характеристики предохранителей ПН-2

Предохранители ПН-2 выполняются на номинальный ток до 630 А. Предельный отключаемый ток короткого замыкания, который может отключаться предохранителем, достигает 50 кА (действующее значение тока металлического короткого замыкания сети, в которой устанавливается предохранитель).
Малые габариты, незначительная затрата дефицитных материалов, высокая токоограничивающая способность являются достоинствами плавкого предохранителя ПН-2.


Материал плавких вставок предохранителей

Плавкие вставки изготовляются из меди, цинка, свинца или серебра.

В современных наиболее совершенных предохранителях отдают предпочтение медным вставкам с оловянным растворителем. Широко распространены также цинковые вставки.
Медные вставки для предохранителей наиболее удобны, просты и дешевы. Улучшение их характеристик достигается наплавлением оловянного шарика в определенном месте, примерно в середине вставки. Такие вставки применяются, например, в упомянутой серии насыпных предохранителей ПН2. Олово плавится при температуре 232°, значительно меньшей, чем температура плавления меди, и растворяет медь вставки в месте соприкосновения с нею. Появляющаяся при этом дуга уже расплавляет всю вставку и гасится. Цепь тока оказывается отключенной.
Таким образом, наплавление оловянного шарика приводит к следующему.
Во-первых, медные вставки начинают реагировать с выдержкой времени на столь малые перегрузки, на которые они при отсутствии растворителя вовсе не реагировали бы. Например, медная проволока диаметром 0,25 мм с .растворителем расплавилась при температуре 280° за 120 мин.

Во-вторых, при одной и той же достаточно большой температуре (т. е. при одинаковой нагрузке) вставки с растворителем реагируют много быстрее, чем вставки без растворителя.
Например, медная проволока диаметром 0,25 мм без растворителя при средней температуре 1 000° расплавилась за 120 мин, а такая же проволока, но с растворителем при средней температуре только 650°, расплавилась всего за 4 мин.

Применение оловянного растворителя позволяет иметь надежные и дешевые медные вставки, работающие при сравнительно низкой эксплуатационной температуре, имеющие относительно малый объем и вес металла (что благоприятствует коммутационной способности предохранителя) и в то же время обладающие большим быстродействием при больших перегрузках и реагирующие с выдержкой времени на относительно малые перегрузки.

Цинк часто используется для изготовления плавких вставок. В частности, такие вставки применяются в упомянутой серии предохранителей ПР-2.
Вставки из цинка более устойчивы против коррозии. Поэтому, несмотря на относительно малую температуру плавления, для них, вообще говоря, можно было бы допустить такую же предельную эксплуатационную температуру, как для меди (250°), и конструировать вставки с меньшим сечением. Однако электрическое сопротивление цинка примерно в 3,4 раза больше, чем у меди.
Чтобы сохранить ту же температуру, надо уменьшить потери энергии в ней, соответственно увеличив ее сечение. Вставка получается значительно более массивной. Это при прочих равных условиях приводит к понижению коммутационной способности предохранителя. Кроме того, при массивной вставке с температурой 250° не удалось бы в тех же габаритах удержать на допустимом уровне температуру патрона и контактов.
Все это заставляет снизить предельную температуру цинковых вставок до 200°, а для этого — еще больше увеличивать сечение вставки. В итоге предохранители с цинковыми вставками при тех же размерах обладают значительно меньшей устойчивостью к токам короткого замыкания, чем предохранители с медными вставками и оловянными растворителями.

Инструкция по охране труда при измерении сопротивления цепи фаза-нуль





1. Общие положения

1.1. Данная инструкция разработана на основании Правил безопасности с инструментом и приспособлениями (НПАОП 0.00-1.30-01), Правил безопасной эксплуатации электроустановок (НПАОП 40.1-1.01-97), Правил безопасной эксплуатации электроустановок потребителей (НПАОП 40.1-1.21-98) и действующих нормативных актов по охране труда.
1.2. Данная инструкция относится к нормативным актам об охране труда, действующим в ДФ ГП «Региональные электрические сети» и является обязательной для исполнения для всех работников, выполняющих работы по при измерению сопротивления цепи фаза-нуль.
1.3. Инструкция по охране труда является нормативным документом, устанавливающим правила безопасного выполнения работ в производственных помещениях предприятия, на территории предприятия, строительных площадках.
1.4. К выполнению работ по измерению сопротивления изоляции мегаомметром допускаются работники не моложе 18 лет, не имеющие противопоказаний по состоянию здоровья, прошедшие:
– предварительный медицинский осмотр и периодический медицинский осмотр;
– вводный инструктаж;
– первичный инструктаж на рабочем месте, повторный инструктаж работник проходит не реже одного раза в 3 месяца;
– целевой инструктаж;
– инструктаж по пожарной безопасности.
1.5. Состав бригады должен быть не менее двух человек: руководитель работ и член бригады с группой по ЭБ не ниже III.
1.6. Для измерения сопротивления цепи фаза-нуль применяются приборы М417, Щ41160.
1.7. Применять приборы следует только поверенные в Госстандарте и имеющие штамп поверки в паспорте прибора.

2. Требования безопасности перед началом работ

2.1. При измерениях сопротивления петли фаза-нуль без снятия напряжения в действующих электроустановках необходимо выполнить следующие требования:
– оградить расположенные вблизи рабочего места другие токоведущие части, находящиеся под напряжением, к которым возможно случайное прикосновение;
– работать в диэлектрических галошах или стоя на изолирующей подставке либо на резиновом диэлетрическом коврике;
– применять изолированный инструмент, пользоваться диэлектрическими перчатками.
2.2. Измерение должно производится при температуре не ниже +5°С.
2.3. Работники, выполняющие данную работу в действующих электроустановках (за исключением щитов управления, помещений с релейными панелями, и им подобных), в колодцах, туннелях, траншеях, должны пользоваться защитными касками. ЗАПРЕЩАЕТСЯ работать в одежде с короткими или засученными рукавами.
2.4. При подготовке рабочего места: прибрать посторонние предметы, которые могут мешать работе, убедиться, что в зоне рабочего места отсутствуют посторонние лица.
2.5. ЗАПРЕЩАЕТСЯ в электроустановках работать в согнутом положении, если при выпрямлении расстояние до токоведущих частей будет менее указанного в таблице 5.1 «Правил безопасной эксплуатации электроустановок». ЗАПРЕЩАЕТСЯ в электроустановках станций и подстанций 6-110 кВ при работе около неогражденных токоведущих частей располагаться так, чтобы эти части были сзади или с двух боковых сторон.
2.6. При приближении грозы должны быть прекращены все работы на ВЛ, ВЛС; в ОРУ и ЗРУ на выводах и линейных разъединителях ВЛ; на КЛ подключенных к участкам ВЛ.

3. Требования безопасности во время работы

3.1. Перед началом измерения необходимо:
– проверить пригодность средств индивидуальной защиты: произвести осмотр диэлектрических перчаток на наличие повреждений (порывов, проколов), проверить срок следующего испытания.
– проверить состояние изоляции соединительных проводов (для сборки схемы измерения применяются провода с двойной изоляцией имеющей большой запас эл.прочности, изоляция проводов не должна иметь порезов и загрязнений).
3.2. Подготовить прибор к работе (для М417):
– установить прибор на горизонтальную поверхность;
– ручку «калибровка» установить в левое крайнее положение;
– присоединить соединительные проводники к зажимам прибора;
– один проводник подсоединить к корпусу контролируемого объекта, а второй проводник к одной из фаз питающей сети.
3.3. Измерение сопротивления следует проводить в следующем порядке (для М417):
3.3.1. Подать напряжение на измеряемый участок сети. На приборе загиртся лампа «Z ≠ ∞».
3.3.2. Нажать кнопку «Проверка калибровки» и ручкой «калибровка», установить стрелку прибора на отметку «0».
3.3.3. Нажать кнопку «измерения» и отсчитать показания по шкале отсчетного устройства. Величина сопротивления цепи фаза-нуль равно показанию прибора минус 0,1 Ом (сопротивление соединительных шнуров). Время измерения не должно превышать 7с с интервалом между измерениями не менее 0,5 мин.
3.3.4. Загорание сигнала лампы «Z > 2 Ом» при нажатой кнопке «измерения» свидетельствуют о том, что сопротивление цепи фаза-нуль контролируемого объекта больше 2 Ом.
3.3.5. Повторные измерения производить только после проверки калибровки.
3.4. У розеток, имеющих защитный заземляющий контакт, измерение сопротивления петли фаза-нуль производится между фазным и нулевым защитным проводником. Если эти розетки включены через устройство защитного отключения (УЗО), то прямые измерения полного сопротивления цепи фаза-нуль произвести невозможно, т.к. тестирующие токи существующих приборов, осуществляющих эти измерения, больше номинальных дифференциальных отключающих токов УЗО. В этом случае, для избежания демонтажа или шунтирования УЗО, измерения проводятся по участкам цепи.

4. Требования безопасности по окончании работ

4.1. После окончания работ по измерению сопротивления цепи фаза-нуль необходимо:
4.1.1. Уведомить бригаду об окончании измерения.
4.1.2. Разобрать схему измерения.
4.1.3. Собрать соединительные провода.
4.1.4. Удалить бригаду с рабочего места, закрыть наряд или распоряжение.
4.2. Рабочее место после полного окончания работ должно быть сдано допускающему, в случае совмещения обязанностей руководителя работ и допускающего, руководитель работ сам с членом бригады состояние рабочего места и докладывает об окончании работ и сдаче рабочего места работнику, выдавшему разрешение на подготовку рабочего места и допуск.
4.3. Доложить об окончании работ и о том, что сделано, непосредственному руководителю.
4.4. Доложить непосредственному руководителю обо всех неисправностях, имевших место во время работы.
4.5. Вымыть лицо, руки с мылом, при возможности, принять душ. Переодеться в чистую одежду.

5. Требования безопасности в аварийных ситуациях

5.1. Аварийная ситуация может возникнуть в результате пожара, взрыва, поражения электрическим током и т.д.
5.2. Если есть потерпевшие, необходимо оказать им первую медицинскую помощь; при необходимости, вызвать скорую медицинскую помощь.
5.3. Оказание первой медицинской помощи.
5.3.1. Первая помощь при поражении электрическим током:
При поражении электрическим током необходимо немедленно освободить потерпевшего от действия электрического тока, отключив электроустановку от источника питания, а при невозможности отключения – оттянуть его от токопроводящих частей за одежду или применив подручный изоляционный материал.
При отсутствии у потерпевшего дыхания и пульса необходимо сделать ему искусственное дыхание и косвенный (внешний) массаж сердца, обращая внимание на зрачки. Расширенные зрачки свидетельствуют о резком ухудшении кровообращения мозга. При таком состоянии оживления начинать необходимо немедленно, после чего вызвать скорую медицинскую помощь.
5.3.2. Первая помощь при ранении:
Для предоставления первой помощи при ранении необходимо раскрыть индивидуальный пакет, наложить стерильный перевязочный материал, который помещается в нем, на рану и завязать ее бинтом.
5.3.3. Первая помощь при переломах, вывихах, ударах:
При переломах и вывихах конечностей необходимо поврежденную конечность укрепить шиной, фанерной пластинкой, палкой, картоном или другим подобным предметом. Поврежденную руку можно также подвесить с помощью перевязки или платка к шее и прибинтовать к туловищу.
При переломе черепа (несознательное состояние после удара по голове, кровотечение из ушей или изо рта) необходимо приложить к голове холодный предмет (грелку со льдом, снегом или холодной водой) или сделать холодную примочку.
При подозрении перелома позвоночника необходимо пострадавшего положить на доску, не поднимая его, повернуть потерпевшего на живот лицом вниз, наблюдая при этом, чтобы туловище не перегибалось, с целью избежания повреждения спинного мозга.
При переломе ребер, признаком которого является боль при дыхании, кашле, чихании, движениях, необходимо туго забинтовать грудь или стянуть их полотенцем во время выдоха.
5.3.4. Первая помощь при кровотечении:
Для того чтобы остановить кровотечение, необходимо:
5.3.4.1. Поднять раненную конечность вверх.
5.3.4.2. Рану закрыть перевязочным материалом (из пакета), сложенным в клубок, придавить его сверху, не касаясь самой раны, подержать на протяжении 4-5 минут. Если кровотечение остановилось, не снимая наложенного материала, сверх него положить еще одну подушечку из другого пакета или кусок ваты и забинтовать раненное место (с некоторым нажимом).
5.3.4.3. В случае сильного кровотечения, которое нельзя остановить повязкой, применяется сдавливание кровеносных сосудов, которые питают раненную область, при помощи изгибания конечности в суставах, а также пальцами, жгутом или зажимом. В случае сильного кровотечения необходимо срочно вызвать врача.
5.4. Если произошел пожар, необходимо вызвать пожарную часть и приступить к его гашению имеющимися средствами пожаротушения.

6. Ответственность за нарушение инструкции.

6.1. Работники, допустившие нарушение инструкции по охране труда, или не принявшие меры к ее выполнению привлекаются к ответственности согласно действующему законодательству.
6.2. Кроме того, на работников, нарушающих инструкции по охране труда, распространяется талонная система и внеочередная проверка знаний по охране труда.


Всего комментариев: 0


Сопротивление цепи фаза – ноль

Таблица 1

Сечение фазных жил   мм2

Сечение нулевой жилы мм2

Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов

Материал жилы:

 

 

Алюминий

Медь

 

 

R фазы

R нуля

Z цепи (кабеля)

R фазы

R нуля

Z цепи (кабеля)

1,5

1,5

14,55

14,55

29,1

2,5

2,5

14,75

14,75

29,5

8,73

8,73

17,46

4

4

9,2

9,2

18,4

5,47

5,47

10,94

6

6

6,15

6,15

12,3

3,64

3,64

7,28

10

10

3,68

3,68

7,36

2,17

2,17

4,34

16

16

2,3

2,3

4,6

1,37

1,37

2,74

25

25

1,47

1,47

2,94

0,873

0,873

1,746

35

35

1,05

1,05

2,1

0,625

0,625

1,25

50

25

0,74

1,47

2,21

0,436

0,873

1,309

50

50

0,74

0,74

1,48

0,436

0,436

0,872

70

35

0,527

1,05

1,577

0,313

0,625

0,938

70

70

0,527

0,527

1,054

0,313

0,313

0,626

95

50

0,388

0,74

1,128

0,23

0,436

0,666

95

95

0,388

0,388

0,776

0,23

0,23

0,46

120

35

0,308

1,05

1,358

0,181

0,625

0,806

120

70

0,308

0,527

0,527

0,181

0,313

0,494

120

120

0,308

0,308

0,616

0,181

0,181

0,362

150

50

0,246

0,74

0,986

0,146

0,436

0,582

150

150

0,246

0,246

0,492

0,146

0,146

0,292

185

50

0,20

0,74

0,94

0,122

0,436

0,558

185

185

0.20

0,20

0,40

0,122

0,122

0,244

240

240

0,153

0,153

0,306

0,090

0,090

0,18

   

Таблица 2

Мощность трансформатора, кВ∙А

25

40

69

100

160

250

400

630

1000

Сопротивление трансформатора, Zт/3, Ом  (Δ/Υ)

0,30

0,19

0,12

0,075

0,047

0,03

0,019

0,014

0,009

 

  

Таблица 3

I ном. авт. выкл, А

1

2

6

10

13

16

20

25

32-40

50 и более

R авт., Ом

1,44

0,46

0,061

0,014

0,013

0,01

0,007

0,0056

0,004

0,001

 

Таблица 4

R цепи, Ом

0,05

0,1

0,2

0,3

0,4

0,5

0,6

0,8

1,0

1,5

2 и более

Rдуги, Ом

0,015

0,022

0,032

0,04

0,045

0,053

0,058

0,075

0,09

0,12

0,15

 

    При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность  ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

RLN= Rрасп + Rпер.гр + Rавт.гр+  Rnгр∙Lnгр +Rдуги (2)

где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.

    Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.

 

Исходные данные:

– трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» – по таблице 2 находим  Zт/3=0,014 Ом;

– питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм2  и нулевой – 50 мм2. По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

– распределительная сеть – кабель с медными жилами  длиной 50 метров и сечением жил 35 мм2. По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

– групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм2. По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

– автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

– переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

    Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RLN=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RLN=0,80 Ом+0,075 Ом=0,875 Ом.

    В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

    Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты  от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в  1,2 – 1,25 раза.

    В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

Uф/ RLN=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

    Максимальное сопротивление цепи фаза – ноль для  автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом – 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

    Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

    Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.

 

9 марта 2013 г.

К ОГЛАВЛЕНИЮ

Измерение петли фаза-ноль, замер полного сопротивления цепи фаза-нуль

Измерение цепи фаза-нуль

2.00 Br

Мы проводим измерение петли фаза-ноль, работаем с любыми объектами на всей территории Республики Беларусь. Оперативно и качественно выполняем проверку, быстро оформляем протоколы и гарантируем честные цены.

Стоимость можно рассчитать онлайн в нашем Калькуляторе. Не забудьте нажать на кнопку «Получить предложение», чтобы коммерческое предложение с уникальной скидкой пришло на вашу электронную почту.

Рассчитать цену онлайн

Заказать обратный звонок

Заказать обратный звонок

Описание

Есть такое явление как короткое замыкание.  Когда оно возникает на оборудовании, петля фаза-нуль  дает определенное сопротивление для срабатывания защиты оборудования. Измерения сопротивления петли фаза-нуль  проводятся для того, чтобы обеспечить безопасную работу оборудования и определить соответствие параметров щитка с автоматом и проводки.

Когда нужно делать измерение цепи фаза-нуль?

Замер полного сопротивления цепи фаза-нуль входит в обязательный список мероприятий ЭФИ. Периодичность установлена в ТКП 181-2009 – 1 раз в 6 лет. После процедур специалисты должны оформить и выдать протокол установленного образца.

Сделать замеры можно лишь с помощью профессионального оборудования.

Как проводят измерения петли фаза-нуль?

Измерения проводятся на самом отдаленном объекте. Прибором измеряется полное сопротивление цепи фаза-нуль, потом рассчитывается ток короткого замыкания, время срабатывания и другие параметры.

Бывают случаи, когда автоматы срабатывают только от короткого замыкания, но не срабатывают от теплового тока. Тогда специалисты проверяют полное сопротивление цепи фаза-нуль, чтобы автомат срабатывал в двух случаях.

Стоимость измерений сопротивления цепи фаза-нуль?

Цена рассчитывается индивидуально после получения информации о количестве точек на объекте. Обратитесь к нашему специалисту, даже если не знаете количество точек. Менеджер уточнит всю необходимую информацию и подготовит ценовое предложение.

Помните, проверка сопротивления  петли фаза-нуль позволяет определить корректность работы эксплуатируемых сетей и оценить надежность защитного оборудования. Позаботьтесь о своей безопасности, позвоните нам!

Мы выезжаем на объекты в Минске и за его пределами – работаем по всей территории Беларуси.

Замер полного сопротивления цепи фаза-нуль | Проверка петли фаза-ноль в Москве и МО

Измерение полного сопротивления петли «фаза-нуль» – это распространенный тип исследования кабельной линии. Выполняется он с целью выяснения предельного тока КЗ на исследуемой линии и для подтверждения правильного выбора защитного автомата.

Данный тип испытаний важен для всех организаций, которые устанавливают и используют кабельные линии и электрооборудование. Выполняются такие исследования в соответствии с графиком планово-предупредительных мероприятий и согласно предписанию контролирующих организаций. Периодичность их проведения зависит от типа здания и составляет:

 

  • для обычных объектов – офисов, жилых зданий, административных сооружений и пр. – минимум раз в 3 года;
  • для промышленных объектов, составляющих опасность для окружающей среды – минимально раз в год.

Замер петли «фаза-ноль» позволяет убедиться в надежности используемых автоматических выключателей и своевременно принять меры для недопущения аварий. Итоги проведенных замеров вносятся в протокол технического отчета и хранятся до дальнейших проверок. Это дает возможность сопоставить итоги испытаний в различные эксплуатационные периоды и принять необходимые меры для обеспечения безопасной эксплуатации и эффективной работы электрооборудования.

 

Особенности испытаний петли «фаза-нуль»

В случае возникновения КЗ проходящий по кабелю ток достигает максимума и значительно превышает номинальное значение тока для применяемого сечения провода. Чтобы не допустить аварии, важно применять автоматический выключатель. Он мгновенно отключается под воздействием высокого тока и за доли секунды блокирует его дальнейшее прохождение, обеспечивая безопасность находящихся на объекте людей и техники. Длина линии, потребительская мощность, сечение кабеля и другие параметры подбираются в соответствии с ПУЭ.

Испытания петли «фаза-ноль» в электроустановках проходят под напряжением. Выбирается самый удаленный потребитель, и затем производятся замеры сопротивления петли «фаза-ноль» и тока КЗ. Для замеров применяется специальный прибор – специалисты инженерного центра «ПрофЭнергия» используют в этих целях аппарат MI 3102HCL производства компании Metrel. Итоги проведенных замеров вносятся в журнал испытаний.

Инженер оформляет протокол №4 техотчета и делает заключение о надежности проверенного аппарата защиты. Параметры вносятся в протокол, который визируется инженерами, выполнившими проверку. В завершение оформленный документ проверяет и визирует начальник электротехнической лаборатории.

 

Тонкости расчета тока однофазного КЗ

Проверка согласования параметров цепи «фаза-нуль» должна выполняться опытными специалистами. Важно учесть, что в некоторых формулах для расчета тока 1-фазного КЗ приняты допущения, снижающие точность результатов. В частности, может пренебрегаться сопротивление питающей системы, при этом мощность указывается как достаточная. А если в расчетах элементарно суммировать полные сопротивления, результат будет завышенным.

Чтобы правильно измерить сопротивление цепи «фаза-нуль», максимально точно рассчитать предельный ток КЗ, проверить надежность автоматов и выявить скрытые дефекты, воспользуйтесь профессиональной помощью наших специалистов. Регулярное проведение таких измерений поможет обеспечить стабильную и бесперебойную работу электрооборудования, избежать аварийных ситуаций, не допустить выхода из строя дорогостоящего оборудования и минимизировать риск получения производственных травм.

 

ПРОТОКОЛ № 4

проверки согласования параметров цепи «фаза – нуль» с характеристиками аппаратов защиты и непрерывности защитных проводников

Климатические условия при проведении измерений:

Температура воздуха +22°С.  Влажность воздуха 41 %. Атмосферное давление 749 мм.рт.ст.
Цель измерений (испытаний): приемо-сдаточные
Нормативные и технические документы, на соответствие требованиям которых проведены измерения (испытания):
                ПУЭ Раздел 1. Глава 1.7. п.1.7.1. Глава 1.8. п.1.8.39 п.п. 4. Раздел 3. Глава 3.1. п.3.1.8; ГОСТ Р 50030.2, ГОСТ 50345.

1. Результаты измерений:

 

п/п

 

Проверяемый участок цепи, место установки аппарата защиты

Аппарат защиты от сверхтока

Измеренное значение сопротивления цепи «фаза – нуль», (Ом)

Измеренное (расчётное) значение тока однофазного замыкания, (А)

Время срабатывания аппарата защиты, (сек)

Типовое обозначение

Тип расцепи

теля

Ном. ток, (А)

Диапазон тока срабатывания расцепителя короткого замыкания, (А)

A

B

C

A

B

C

Допуст.

в/т

х-ка

                           

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 

ЩР

 

 

 

 

 

 

 

 

 

 

 

 

1

Ввод

Sh303L

ОВВ МД-C

20

100-200

0,39

0,39

0,38

569

568

576

5,0

< 0,1

2

Группа от QF1

Legrand

ОВВ МД-C

16

80-160

0,62

355

0,4

< 0,1

3

Группа от QF2

Legrand

ОВВ МД-C

16

80-160

0,62

355

0,4

< 0,1

4

Группа от QF3

S201

ОВВ МД-C

16

80-160

0,61

360

0,4

< 0,1

5

Группа от QF4

S201

ОВВ МД-C

16

80-160

0,70

315

0,4

< 0,1

6

Группа от QF5

S201

ОВВ МД-C

16

80-160

0,60

365

0,4

< 0,1

7

Группа от QF6

S201

ОВВ МД-C

16

80-160

0,67

328

0,4

< 0,1

8

Группа от QF7

S201

ОВВ МД-C

10

50-100

0,87

254

0,4

< 0,1

9

Группа от QF8

Legrand

ОВВ МД-C

16

80-160

0,61

359

0,4

< 0,1

10

Группа от QF9

Legrand

ОВВ МД-C

16

80-160

0,66

333

0,4

< 0,1

2. Измерения проведены приборами:

п/п

Тип

Заводской номер

Метрологические характеристики

Дата поверки

№ аттестата

(свидетельства)

Орган государственной метрологической службы, проводивший поверку

Диапазон измерения

Класс точности

последняя

очередная

1

2

3

4

5

6

7

8

9

1.

Измеритель параметров электроустано-вок  MI 3102 H ВТ

18120530

0,00-19,99 Ом

20-1999 Ом

±0,03Rизм ±0,05Rизм

09.06.2018

08.06.2020

КСП-919-2018

ИП Казаков П.С.

2.

Прибор для измерений климатических параметров

Метео-10

230

-10…+50°С

10-96%

600-795 мм.рт.ст

±0,5°С

±5,0%

±7,5 мм.рт.ст

07.11.2018

06.11.2019

СП 1846550

ФБУ Ростест-Москва

3.    При проведении измерений проверено:
a.    Отсутствие предохранителей и однополюсных выключающих аппаратов в нулевых рабочих проводниках.
b.    Соответствие плавких вставок и уставок автоматических выключателей проекту и требованиям нормативной и технической документации.
c.    Качество сварных соединений-ударами молотка, стабилизация разъёмных контанктных соединений по II классу в соответствии с ГОСТ 10434
Обозначение типов расцепителей:
1.    В, С, D – тип мгновенного расцепления по ГОСТ Р 50345-99    3.    НВВ – максимальный расцепитель тока с независимой выдержкой времени
2.    ОВВ – максимальный расцепитель тока с обратно-зависимой выдержкой времени    4.    МД – максимальный расцепитель тока мгновенного действия
4. Заключение: время защитного отключения соответствуют нормам ПУЭ.


Измерение петли фаза-ноль в электролаборатории ПрофЭнергия

Мы проводим проверку сопротивления петли фаза-нуль.

Наши лицензии позволяют осуществлять все необходимые замеры и испытания, а благодарственные письма, подтверждают высокий уровень оказанных услуг.

Стоимость проверки петли фаза-нуль

Для экономии времени наши специалисты могут бесплатно выехать на объект и оценить объем работ

Заказать бесплатную диагностику и расчет стоимости

Остались вопросы?

Для консультации по интересующим вопросам, или оформления заявки, свяжитесь с нами по телефону:

+7 (495) 181-50-34 

 

Фаза 0 / подходы к микродозированию: время для массового применения при разработке лекарств?

  • 1.

    FDA. Инновации или застой: вызовы и возможности на критическом пути к новым медицинским продуктам. http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html (2004 г.).

  • 2.

    Paul, S. M. et al. Как повысить продуктивность НИОКР: грандиозная задача фармацевтической отрасли. Нац. Rev. Drug Discov. 9 , 203–214 (2010).

    CAS PubMed Google ученый

  • 3.

    Сканнелл, Дж. У., Бланкли, А., Болдон, Х. и Уоррингтон, Б. Диагностика снижения эффективности фармацевтических исследований и разработок. Нац. Rev. Drug Discov. 11 , 191–200 (2012).

    CAS PubMed Google ученый

  • 4.

    Morgan, P. et al. Влияние пятимерной структуры на производительность НИОКР в AstraZeneca. Нац. Rev. Drug Discov. 17 , 167–181 (2018).

    CAS PubMed Google ученый

  • 5.

    ДиМази, Дж. А., Фельдман, Л., Секлер, А. и Уилсон, А. Тенденции рисков, связанных с разработкой новых лекарств: показатели успеха исследуемых лекарств. Clin. Pharmacol. Ther. 87 , 272–277 (2010).

    CAS PubMed Google ученый

  • 6.

    Суинни Д. К. и Энтони Дж. Как были открыты новые лекарства? Нац. Rev. Drug Discov. 10 , 507–519 (2011).

    CAS PubMed PubMed Central Google ученый

  • 7.

    Берт, Т., Баттон, К. С., Том, Х., Новек, Р. Дж. И Мунафо, М. Р. Бремя «ложноотрицательных результатов» в клинической разработке: анализ текущих и альтернативных сценариев и корректирующие меры. Clin. Пер. Sci. 10 , 470–479 (2017).

    CAS PubMed PubMed Central Google ученый

  • 8.

    Button, K. S. et al. Сбой питания: почему небольшой размер выборки подрывает надежность нейробиологии. Нац. Rev. Neurosci. 14 , 365–376 (2013).

    CAS PubMed Google ученый

  • 9.

    Bauer, M. et al. Исследование микродозирования с помощью позитронно-эмиссионной томографии потенциального антиамилоидного препарата у здоровых добровольцев и пациентов с болезнью Альцгеймера. Clin. Pharmacol. Ther. 80 , 216–227 (2006).

    CAS PubMed Google ученый

  • 10.

    Byun, B.H. et al. Прямое сравнение 11 C-PiB и 18 F-FC119S для визуализации Abeta у здоровых субъектов, пациентов с легкими когнитивными нарушениями и пациентов с болезнью Альцгеймера. Медицина 96 , e6441 (2017).

    PubMed PubMed Central Google ученый

  • 11.

    Kusuhara, H. et al. Сравнение фармакокинетики недавно открытых ингибиторов ароматазы методом кассетного микродозирования у здоровых японцев. Drug Metab. Фармакокинет. 32 , 293–300 (2017).

    CAS PubMed Google ученый

  • 12.

    Xiao, H. et al. Разработка подхода к кассетному микродозированию для увеличения пропускной способности скрининга агентов ПЭТ-визуализации. J. Pharm. Биомед. Анальный. 154 , 48–56 (2018).

    CAS PubMed Google ученый

  • 13.

    Окур, М.и другие. Исследование микродоз на людях антималярийного препарата GSK31

    на здоровых добровольцах. руб. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.13476 (2017).

    Артикул PubMed PubMed Central Google ученый

  • 14.

    Cahn, A. et al. Безопасность, переносимость, фармакокинетика и фармакодинамика GSK2239633, антагониста CC-хемокинового рецептора 4, у здоровых мужчин: результаты открытого и рандомизированного исследования. BMC Pharmacol. Toxicol. 14 , 14 (2013).

    CAS PubMed PubMed Central Google ученый

  • 15.

    Эл Идрус, A. Presage подписывают свою третью сделку по исследованиям фазы 0 – и еще больше впереди. FierceBiotech https://www.fiercebiotech.com/biotech/presage-inks-its-third-deal-around-phase-0-studies-more-to-come (2019).

  • 16.

    Jonas, O. et al. Имплантируемое микроустройство для проведения высокопроизводительных тестов in vivo на лекарственную чувствительность опухолей. Sci. Пер. Med. 7 , 284ра257 (2015).

    Google ученый

  • 17.

    Sjogren, E., Halldin, M. M., Stalberg, O. & Sundgren-Andersson, A.K. Доклиническая характеристика трех временных антагонистов рецепторного потенциала ваниллоидного рецептора 1 для раннего использования в исследованиях внутрикожных микродоз анальгетиков на людях. евро. Дж. Пейн https://doi.org/10.1002/ejp.1175 (2018).

    Артикул PubMed Google ученый

  • 18.

    Gundle, K. R. et al. Мультиплексная оценка микродозированных противоопухолевых агентов in situ в микроокружении опухоли пациентов с саркомой мягких тканей. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-20-0614 (2020).

    Артикул PubMed Google ученый

  • 19.

    Лаппин, Г. и Гарнер, Р. К. Большая физика, малые дозы: использование AMS и ПЭТ в микродозировании разрабатываемых лекарственных препаратов для человека. Нац.Rev. Drug Discov. 2 , 233–240 (2003).

    CAS PubMed Google ученый

  • 20.

    Combes, R.D. et al. Ранние исследования микродоз лекарств на людях-добровольцах могут свести к минимуму испытания на животных: материалы семинара, организованного волонтерами для исследования и тестирования. евро. J. Pharm. Sci. 19 , 1–11 (2003).

    CAS PubMed Google ученый

  • 21.

    Bergstrom, M., Grahnen, A. & Langstrom, B. Микродозирование с помощью позитронно-эмиссионной томографии: новая концепция, применяемая при разработке индикаторов и ранних клинических лекарств. евро. J. Clin. Pharmacol. 59 , 357–366 (2003).

    PubMed Google ученый

  • 22.

    MHLW. Руководство: Клинические исследования микродоз (изд. Министерства труда и социального обеспечения, Бюро фармацевтической и медицинской безопасности) (MHLW, 2008).

  • 23.

    FDA. Руководство для промышленности, исследователей и рецензентов Исследовательских исследований IND. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM078933.pdf (2006 г.).

  • 24.

    EMEA. Программный документ CPMP / SWP / 2599 (2004).

  • 25.

    ICH. Руководство по доклиническим исследованиям безопасности для проведения клинических испытаний на людях и разрешения на продажу фармацевтических препаратов M3 (R2) 8–16 (Секретариат ICH, 2009).

  • 26.

    Бертино, Дж. С. Младший, Гринберг, Х. Э. и Рид, М. Д. Заявление позиции Американского колледжа клинической фармакологии по использованию микродозирования в процессе разработки лекарств. J. Clin. Pharmacol. 47 , 418–422 (2007).

    CAS PubMed Google ученый

  • 27.

    Роуленд М. Комментарий к изложению позиции ACCP по использованию микродозирования в процессе разработки лекарств. Дж.Clin. Pharmacol. 47 , 1595–1596 (2007). ответ автора 1597-1598.

    PubMed Google ученый

  • 28.

    Burt, T. et al. Внутрицелевое микродозирование (ITM): новый подход к разработке лекарств, направленный на обеспечение более безопасного и раннего преобразования биологических идей в тестирование на людях. Clin. Пер. Sci . 1–14, https://doi.org/10.1111/cts.12464 (2017).

  • 29.

    Босгра, С., Вламинг, М.L. & Vaes, W.H. Применять микродозирование или нет? Рекомендации по выделению соединений с нелинейной фармакокинетикой. Clin. Фармакокинет. 55 , 1–15 (2016).

    CAS PubMed Google ученый

  • 30.

    Лаппин, Г., Новек, Р. и Берт, Т. Микродозирование и разработка лекарств: прошлое, настоящее и будущее. Мнение эксперта. Drug Metab. Toxicol. 9 , 817–834 (2013).

    CAS PubMed PubMed Central Google ученый

  • 31.

    Сугияма Ю. и Ямасита С. Влияние клинического исследования микродозирования – почему это необходимо и насколько полезно? Adv. Препарат Делив. Ред. 63 , 494–502 (2011).

    CAS PubMed Google ученый

  • 32.

    Роуленд, М. Микродозирование: критическая оценка человеческих данных. J. Pharm. Sci. 101 , 4067–4074 (2012).

    CAS PubMed Google ученый

  • 33.

    Burt, T. et al. Микродозирование и другие клинические испытания фазы 0: содействие развитию лекарств. Clin. Пер. Sci. 9 , 74–88 (2016).

    CAS PubMed PubMed Central Google ученый

  • 34.

    Хендерсон, П. Т. и Пан, С. X. Микродозирование человека для прогнозирования реакции пациента. Биоанализ 2 , 373–376 (2010).

    CAS PubMed PubMed Central Google ученый

  • 35.

    Vlaming, M. et al. Микродозирование меченного углеродом-14 белка у здоровых добровольцев точно предсказывает его фармакокинетику при терапевтических дозах. Clin. Pharmacol. Ther. 98 , 196–204 (2015).

    CAS PubMed Google ученый

  • 36.

    ван Нуланд, М., Розинг, Х., Хайтема, А. Д. Р. и Бейнен, Дж. Х. Прогностическое значение фармакокинетики микродоз. Clin. Фармакокинет. 58 , 1221–1236 (2019).

    PubMed Google ученый

  • 37.

    Malfatti, M. A., Lao, V., Ramos, C. L., Ong, V. S. и Turteltaub, K. W. Использование микродозирования и масс-спектрометрии ускорителя для оценки фармакокинетической линейности нового трициклического ингибитора GyrB / ParE у крыс. Антимикробный. Агенты Chemother. 58 , 6477–6483 (2014).

    PubMed PubMed Central Google ученый

  • 38.

    Sandhu, P. et al. Оценка стратегий микродозирования для исследований в доклинической разработке лекарств: демонстрация линейной фармакокинетики у собак аналога нуклеозида в 50-кратном диапазоне доз. Drug Metab. Dispos. 32 , 1254–1259 (2004).

    CAS PubMed Google ученый

  • 39.

    Snoeys, J., Beumont, M., Monshouwer, M. & Ouwerkerk-Mahadevan, S. Механистическое понимание нелинейной фармакокинетики и межпредметной изменчивости симепревира: подход к разработке лекарств на основе PBPK. Clin. Pharmacol. Ther. 99 , 224–234 (2016).

    CAS PubMed Google ученый

  • 40.

    Pierrillas, P. B. et al. Прогнозирование нелинейной фармакокинетики человека нового ингибитора Bcl-2 с использованием моделирования PBPK и стратегии межвидовой экстраполяции. Drug Metab. Dispos. 47 , 648–656 (2019).

    CAS PubMed Google ученый

  • 41.

    Lappin, G. et al. Использование микродозирования для прогнозирования фармакокинетики в терапевтической дозе: опыт применения 5 препаратов. Clin. Pharmacol. Ther. 80 , 203–215 (2006).

    CAS PubMed Google ученый

  • 42.

    Hah, S. S., Sumbad, R. A., de Vere White, R. W., Turteltaub, K. W. & Henderson, P. T. Характеристика образования аддукта оксалиплатин-ДНК в ДНК и дифференциация лекарственной чувствительности раковых клеток при микродозах. Chem. Res. Toxicol. 20 , 1745–1751 (2007).

    CAS PubMed Google ученый

  • 43.

    Yamane, N. et al. Клинические испытания микродоз: количественное определение никардипина и прогнозирование метаболитов в плазме крови человека. Drug Metab. Фармакокинет. 24 , 389–403 (2009).

    CAS PubMed Google ученый

  • 44.

    Lappin, G. et al. Фармакокинетика фексофенадина: оценка микродозы и оценка абсолютной биодоступности при приеме внутрь. евро. J. Pharm. Sci. 40 , 125–131 (2010).

    CAS PubMed Google ученый

  • 45.

    Ni, J. et al. Оценка чувствительности и пропорциональности метаболитов от микродозы до высокой дозы у крыс с использованием LC-MS / MS. Биоанализ 2 , 407–419 (2010).

    CAS PubMed Google ученый

  • 46.

    Prueksaritanont, T. et al. Валидация микродозового коктейля лекарств для клинической оценки лекарственного взаимодействия для переносчиков лекарств и CYP3A. Clin. Pharmacol. Ther. 101 , 519–530 (2017).

    CAS PubMed Google ученый

  • 47.

    Wagner, C.C. et al. Комбинированное исследование микродоз на человека с масс-спектрометрией и позитронно-эмиссионной томографией на ускорителе с использованием верапамила, меченного 14 C и 11 C. Clin. Фармакокинет. 50 , 111–120 (2010).

    Google ученый

  • 48.

    Yamazaki, A. et al. Исследование микродоз субстрата Р-гликопротеина, фексофенадина, с использованием препарата, не меченного радиоизотопами, и ЖХ / МС / МС. J. Clin. Pharm. Ther. 35 , 169–175 (2010).

    CAS PubMed Google ученый

  • 49.

    Хендерсон, П.T. et al. Подход микродозирования для характеристики образования и восстановления моноаддуктов карбоплатин-ДНК и химиорезистентности. Внутр. J. Cancer 129 , 1425–1434 (2011).

    CAS PubMed PubMed Central Google ученый

  • 50.

    Ieiri, I. et al. Клиническое исследование микродозирования: фармакокинетический, фармакогеномный (SLCO2B1) и взаимодействия (грейпфрутовый сок) профили целипролола после пероральной микродозы и терапевтической дозы. J. Clin. Pharmacol. 52 , 1078–1089 (2011).

    PubMed Google ученый

  • 51.

    Ieiri, I. et al. Фармакокинетические и фармакогеномные профили телмисартана после пероральной микродозы и терапевтической дозы. Pharmacogenet. Геномика 21 , 495–505 (2011).

    CAS PubMed Google ученый

  • 52.

    Кусухара, Х.и другие. Влияние ингибитора белка MATE, пириметамина, на выведение метформина почками при пероральных микродозах и терапевтических дозах у здоровых людей. Clin. Pharmacol. Ther. 89 , 837–844 (2011).

    CAS PubMed Google ученый

  • 53.

    Lappin, G. et al. Сравнительная фармакокинетика микродозы и терапевтической дозы кларитромицина, суматриптана, пропафенона, парацетамола (ацетаминофена) и фенобарбитала у людей-добровольцев. евро. J. Pharm. Sci. 43 , 141–150 (2011).

    CAS PubMed Google ученый

  • 54.

    Maeda, K. et al. Идентификация определяющего скорость процесса печеночного клиренса аторвастатина в клиническом исследовании микродозирования кассет. Clin. Pharmacol. Ther. 90 , 575–581 (2011).

    CAS PubMed Google ученый

  • 55.

    Маэда К. и Сугияма Ю. Новые стратегии для исследований микродоз с использованием соединений, не содержащих радиоактивной метки. Adv. Препарат Делив. Ред. 63 , 532–538 (2011).

    CAS PubMed Google ученый

  • 56.

    Maeda, K. et al. Нелинейная фармакокинетика перорального хинидина и верапамила у здоровых субъектов: клиническое исследование микродозирования. Clin. Pharmacol. Ther. 90 , 263–270 (2011).

    CAS PubMed Google ученый

  • 57.

    Minamide, Y., Osawa, Y., Nishida, H., Igarashi, H. & Kudoh, S. Высокочувствительный метод ЖХ-МС / МС, позволяющий одновременно количественно определять целипролол и атенолол в плазме человека для кассетного холодного микродозирования. учиться. J. Separ. Sci. 34 , 1590–1598 (2011).

    CAS Google ученый

  • 58.

    Yamane, N. et al. Клиническая значимость тандемной масс-спектрометрии с жидкостной хроматографией как аналитического метода в клинических исследованиях микродоз. Pharm. Res. 28 , 1963–1972 (2011).

    CAS PubMed Google ученый

  • 59.

    Chen, J. et al. Двухфазное устранение дифосфата тенофовира и нелинейная фармакокинетика зидовудинтрифосфата в исследовании микродозирования. J. Acquir. Иммунодефицит. Syndr. 61 , 593–599 (2012).

    CAS PubMed PubMed Central Google ученый

  • 60.

    Крофт, М., Кили, Б., Моррис, И., Танн, Л. и Лаппин, Г. Прогнозирование потенциальных жертв лекарств-кандидатов в наркотики с помощью микродозирования. Clin. Фармакокинет. 51 , 237–246 (2012).

    CAS PubMed Google ученый

  • 61.

    Ieiri, I. et al. Фармакогеномная / фармакокинетическая оценка коктейля из четырех зондов для CYP и OATP после перорального микродозирования. Внутр. J. Clin. Pharmacol. Ther. 50 , 689–700 (2012).

    CAS PubMed Google ученый

  • 62.

    Cho, DY, Bae, SH, Shon, JH & Bae, SK Высокочувствительный метод ЖХ-МС / МС для одновременного определения мироденафила и его основного метаболита, SK-3541, в плазме крови человека: применение к микродозам клинических исследований мироденафила. J. Separ. Sci. 36 , 840–848 (2013).

    CAS Google ученый

  • 63.

    Ikeda, T. et al. Фармакогенетическое исследование микродоз 14 C-толбутамида на здоровых людях с помощью ускорительной масс-спектрометрии для изучения влияния CYP2C9 * 3 на его фармакокинетику и метаболизм. евро. J. Pharm. Sci. 49 , 642–648 (2013).

    CAS PubMed Google ученый

  • 64.

    Ламерс, Р. Дж., Де Йонг, А. Ф., Лопес-Гутьеррес, Дж. М. и Гомес-Гусман, Дж. Микродозирование йода-129 для разработки белковых и пептидных лекарств: эритропоэтин в качестве примера. Биоанализ 5 , 53–63 (2013).

    CAS PubMed Google ученый

  • 65.

    Schou, M. et al. Радиомечение агониста каннабиноидных рецепторов AZD1940 с использованием микродозирования углеродом-11 и ПЭТ у нечеловеческих приматов. Nucl. Med. Биол. 40 , 410–414 (2013).

    CAS PubMed Google ученый

  • 66.

    Burt, T. et al.Внутриартериальное микродозирование: новый подход к разработке лекарств, испытание концепции ПЭТ на крысах. J. Nucl. Med. 56 , 1793–1799 (2015).

    CAS PubMed PubMed Central Google ученый

  • 67.

    Fujita, K. et al. Клиническое фармакокинетическое исследование микродозирования доцетаксела у японских больных раком. Рак химиотерапия. Pharmacol. 76 , 793–801 (2015).

    CAS PubMed Google ученый

  • 68.

    Yamashita, S. et al. Оценка пероральной биодоступности трех блокаторов Са-каналов с использованием кассетно-микродозового исследования: новая стратегия оптимизации разработки пероральных лекарств. J. Pharm. Sci. 104 , 3154–3161 (2015).

    CAS PubMed Google ученый

  • 69.

    Madeen, E. P. et al. Микродозирование человека канцерогенными полициклическими ароматическими углеводородами: фармакокинетика дибензо [def, p] хризена и метаболитов in vivo с помощью масс-спектрометрии с ускорителем UPLC. Chem. Res. Toxicol. 29 , 1641–1650 (2016).

    CAS PubMed PubMed Central Google ученый

  • 70.

    Burt, T. et al. Внутрицелевое микродозирование – новый подход к разработке лекарств: доказательство концепции, безопасность и технико-экономическое обоснование на людях. Clin. Пер. Sci. https://doi.org/10.1111/cts.12477 (2017).

    Артикул PubMed PubMed Central Google ученый

  • 71.

    Park, G.J. et al. Лекарственное взаимодействие микродоз и обычных доз омепразола с ингибитором и индуктором CYP2C19. Drug Des. Devel. Ther. 11 , 1043–1053 (2017).

    CAS PubMed PubMed Central Google ученый

  • 72.

    van Nuland, M. et al. Сверхчувствительный метод LC-MS / MS для количественного определения гемцитабина и его метаболита 2 ’, 2’-дифтордезоксиуридина в плазме крови человека для клинического испытания микродоз. J. Pharm. Биомед. Анальный. 151 , 25–31 (2017).

    PubMed Google ученый

  • 73.

    Wang, S. S. et al. Подход к диагностическому микродозированию для исследования чувствительности к платине при немелкоклеточном раке легкого. Внутр. J. Cancer 141 , 604–613 (2017).

    CAS PubMed PubMed Central Google ученый

  • 74.

    Циммерманн, М.и другие. Индуцированные микродозами аддукты лекарственного средства и ДНК как биомаркеры устойчивости к химиотерапии у людей и мышей. Мол. Рак Тер. 16 , 376–387 (2017).

    CAS PubMed Google ученый

  • 75.

    Hohmann, N. et al. Одновременное фенотипирование CYP2E1 и CYP3A с помощью пероральных микродоз хлорзоксазона и мидазолама. руб. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.14040 (2019).

    Артикул PubMed PubMed Central Google ученый

  • 76.

    van Groen, B.D. et al. Дозозависимость фармакокинетики внутривенной микродозы [ 14 C] мидазолама у детей. руб. J. Clin. Pharmacol. https://doi.org/10.1111/bcp.14047 (2019).

    Артикул PubMed PubMed Central Google ученый

  • 77.

    Takashima, T. et al. Оценка гепатобилиарного транспорта у людей с (15R) -11C-TIC-Me на основе ПЭТ. J. Nucl. Med. 53 , 741–748 (2012).

    PubMed Google ученый

  • 78.

    Hohmann, N., Halama, B., Siller, N., Mikus, G. & Haefeli, WE Ответ на вопрос «Можно ли оценить активность CYP3A для взаимодействия с лекарствами с использованием нанограммовой дозы исследуемого лекарственного средства?»: оценка активности CYP3A с помощью микродоз мидазолама. Clin. Pharmacol. Ther. 95 , 490–491 (2014).

    CAS PubMed Google ученый

  • 79.

    Halama, B. et al. Нанограммовая доза мидазолама, субстрата зонда CYP3A, для оценки лекарственного взаимодействия. Clin. Pharmacol. Ther. 93 , 564–571 (2013).

    CAS PubMed Google ученый

  • 80.

    Burhenne, J. et al. Количественная оценка фемтомолярных концентраций мидазолама, субстрата CYP3A и его основного метаболита, 1’-гидроксимидазолама, в плазме крови человека с использованием сверхэффективной жидкостной хроматографии в сочетании с тандемной масс-спектрометрией. Анал. Биоанал. Chem. 402 , 2439–2450 (2012).

    CAS PubMed Google ученый

  • 81.

    Hohmann, N. et al. Микродозы мидазолама для определения системной и пресистемной метаболической активности CYP3A у человека. руб. J. Clin. Pharmacol. 79 , 278–285 (2015).

    CAS PubMed PubMed Central Google ученый

  • 82.

    Schou, M. et al. Значительные различия в воздействии на мозг эталонных препаратов для ЦНС: исследование ПЭТ на нечеловеческих приматах. Внутр. J. Neuropsychopharmacol . 18 , https://doi.org/10.1093/ijnp/pyv036 (2015).

  • 83.

    Madeen, E. et al. Фармакокинетика человеческого in vivo [ 14 C] дибензо [def, p] хризена с помощью ускорительной масс-спектрометрии после перорального микродозирования. Chem. Res. Toxicol. https://doi.org/10.1021/tx5003996 (2014).

    Артикул PubMed PubMed Central Google ученый

  • 84.

    Saleem, A. et al. Доступ лапатиниба к нормальному мозгу и метастазам в головном мозге у пациентов со сверхэкспрессией рака молочной железы Her-2. EJNMMI Res. 5 , 30 (2015).

    PubMed PubMed Central Google ученый

  • 85.

    Салим, А., Абоагье, Э. О., Мэтьюз, Дж. К. и Прайс, П. М. Фармакокинетическая оценка плазмы цитотоксических агентов, меченных радиоизотопами, испускающими позитроны. Рак химиотерапия.Pharmacol. 61 , 865–873 (2008).

    CAS PubMed Google ученый

  • 86.

    Saleem, A. et al. Фармакокинетическая оценка N- [2- (диметиламино) этил] акридин-4-карбоксамида у пациентов с помощью позитронно-эмиссионной томографии. J. Clin. Онкол. 19 , 1421–1429 (2001).

    CAS PubMed Google ученый

  • 87.

    Иейри, И.и другие. Механизмы фармакокинетического усиления ритонавира и саквинавира; тесты на микро / малую дозировку с использованием мидазолама (CYP3A4), фексофенадина (p-гликопротеин) и правастатина (OATP1B1) в качестве зондирующих препаратов. J. Clin. Pharmacol. 53 , 654–661 (2013).

    CAS PubMed Google ученый

  • 88.

    van der Veldt, A. A., Smit, E. F. & Lammertsma, A. A. Позитронно-эмиссионная томография как метод измерения доставки лекарств в опухоли in vivo: пример [ 11 C] доцетаксела. Фронт. Онкол. 3 , 208 (2013).

    PubMed PubMed Central Google ученый

  • 89.

    Shin, K. H. et al. Исследование микродозирования сертралина с помощью позитронно-эмиссионной томографии у здоровых добровольцев. Внутр. J. Clin. Pharmacol. Ther. 50 , 224–232 (2012).

    CAS PubMed Google ученый

  • 90.

    Вуонг, Л. Т.и другие. Использование ускорительной масс-спектрометрии для измерения фармакокинетики и концентрации зидовудина в мононуклеарных клетках периферической крови. J. Pharm. Sci. 97 , 2833–2843 (2008).

    CAS Google ученый

  • 91.

    Cunningham, V.J. et al. Метод изучения фармакокинетики у человека при пикомолярных концентрациях препарата. руб. J. Clin. Pharmacol. 32 , 167–172 (1991).

    CAS PubMed PubMed Central Google ученый

  • 92.

    Liu, L. et al. Модуляция Р-гликопротеина на гематоэнцефалическом барьере человека с помощью лечения хинидином или рифампицином: исследование с использованием позитронно-эмиссионной томографии. Drug Metab. Dispos. 43 , 1795–1804 (2015).

    CAS PubMed PubMed Central Google ученый

  • 93.

    Van Nuland, M. et al. Пилотное исследование для прогнозирования фармакокинетики терапевтической дозы гемцитабина на основе микродозы. Clin. Pharmacol.Drug Dev. https://doi.org/10.1002/cpdd.774 (2020).

    Артикул PubMed Google ученый

  • 94.

    Ordonez, A. A. et al. Динамическая визуализация у больных туберкулезом выявляет неоднородное воздействие лекарств в легочные поражения. Нац. Med. 26 , 529–534 (2020).

    CAS PubMed Google ученый

  • 95.

    Zimmermann, M. et al.Аддукты оксалиплатин-ДНК как прогностические биомаркеры FOLFOX-ответа при колоректальном раке: потенциальная стратегия оптимизации лечения. Мол. Рак Тер. 19 , 1070–1079 (2020).

    CAS PubMed PubMed Central Google ученый

  • 96.

    Mikus, G. et al. Применение микродозового коктейля из 3 пероральных ингибиторов фактора Ха для изучения лекарственного взаимодействия с различными лекарственными средствами-преступниками. руб.J. Clin. Pharmacol. https://doi.org/10.1111/bcp.14277 (2020).

    Артикул PubMed PubMed Central Google ученый

  • 97.

    Madan, A. et al. Фармакокинетическая оценка пяти антагонистов H2 после перорального и внутривенного введения микродозам людям. руб. J. Clin. Pharmacol. 67 , 288–298 (2008).

    Google ученый

  • 98.

    Heuveling, D. A. et al. Исследование ПЭТ с микродозированием фазы 0 с использованием человеческого мини-антитела F16SIP у пациентов с раком головы и шеи. J. Nucl. Med. 54 , 397–401 (2013).

    CAS PubMed Google ученый

  • 99.

    Kummar, S. et al. Первое испытание фазы 0 на людях перорального применения 5-йод-2-пиримидинон-2’-дезоксирибозы у пациентов с запущенными злокачественными новообразованиями. Clin. Cancer Res. 19 , 1852–1857 (2013).

    CAS PubMed PubMed Central Google ученый

  • 100.

    Карпентер, А.П. мл., Понтекорво, М.Дж., Хефти, Ф.Ф. и Сковронски, Д.М. Использование исследовательского IND в оценке и разработке радиофармпрепаратов 18F-ПЭТ для визуализации амилоида в головном мозге: обзор одного опыт компании. Q. J. Nucl. Med. Мол. Imaging 53 , 387–393 (2009).

    PubMed Google ученый

  • 101.

    Zhou, X. J., Garner, R.C, Nicholson, S., Kissling, C.J. & Mayers, D. Фармакокинетика микродоз IDX899 и IDX989, ненуклеозидных ингибиторов обратной транскриптазы ВИЧ-1, после перорального и внутривенного введения здоровым субъектам мужского пола. J. Clin. Pharmacol. 49 , 1408–1416 (2009).

    CAS PubMed Google ученый

  • 102.

    Wang, J. L. et al. Новый класс селективных ингибиторов циклооксигеназы-2 бензопиранов.Часть III: три кандидата на микродозы. Bioorg Med. Chem. Lett. 20 , 7164–7168 (2010).

    CAS PubMed Google ученый

  • 103.

    Sun, L. et al. Методики сверхчувствительной жидкостной хроматографии и тандемной масс-спектрометрии для количественного определения пяти ингибиторов интегразы ВИЧ-1 в плазме для клинических испытаний микродоз. Анал. Chem. 84 , 8614–8621 (2012).

    CAS PubMed Google ученый

  • 104.

    Джонс, Х. М. и др. Клинические исследования микродоз для изучения фармакокинетики человека четырех селективных ингибиторов потенциал-зависимых натриевых каналов Nav1.7 человека. Clin. Фармакокинет. 55 , 875–887 (2016).

    CAS PubMed Google ученый

  • 105.

    Ostenfeld, T., Beaumont, C., Bullman, J., Beaumont, M. & Jeffrey, P. Оценка микродоз у человека нового антагониста рецептора EP1 GSK269984A. руб. J. Clin. Pharmacol. 74 , 1033–1044 (2012).

    CAS PubMed PubMed Central Google ученый

  • 106.

    Harrison, A. et al. Тематические исследования, посвященные фармакокинетической неопределенности человека, с использованием комбинации фармакокинетического моделирования и альтернативных подходов в человеческих парадигмах. Xenobiotica 42 , 57–74 (2012).

    CAS PubMed Google ученый

  • 107.

    Парк, W.-S. и другие. Данные микродозирования человека и ксенотрансплантата мышей AGM-130 применялись для оценки эффективных доз у пациентов. Рак химиотерапия. Pharmacol. 80 , 363–369 (2017).

    CAS PubMed Google ученый

  • 108.

    Rajagopalan, R. et al. Доклиническая характеристика и фармакокинетика микродоз для человека ITMN-8187, немакроциклического ингибитора протеазы NS3 вируса гепатита С. Антимикробный.Агенты Chemother . 61 , https://doi.org/10.1128/aac.01569-16 (2017).

  • 109.

    Sanai, N. et al. Фаза 0 исследования AZD1775 у пациентов с первым рецидивом глиобластомы. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-3348 (2018).

    Артикул PubMed PubMed Central Google ученый

  • 110.

    Lappin, G. et al. Исследование микродоз 14 C-AR-709 у здоровых мужчин: фармакокинетика, абсолютная биодоступность и концентрации в ключевых отделах легких. евро. J. Clin. Pharmacol. 69 , 1673–1682, https://doi.org/10.1007/s00228-013-1528-2 (2013).

    CAS Статья PubMed Google ученый

  • 111.

    Bal, C. et al. Фармакокинетическое, дозиметрическое и токсическое исследование 177 Lu-EDTMP у пациентов: исследование фазы 0 / I. Curr. Радиофарм. 9 , 71–84 (2016).

    CAS PubMed Google ученый

  • 112.

    Reid, J. M. et al. Фаза 0 клинических испытаний химиопрофилактики ингибитора Akt SR13668. Рак Пред. Res. 4 , 347–353 (2011).

    CAS Google ученый

  • 113.

    Kummar, S. et al. Фаза 0 клинических испытаний ингибитора поли (АДФ-рибозы) полимеразы ABT-888 у пациентов с запущенными злокачественными новообразованиями. J. Clin. Онкол. 27 , 2705–2711 (2009).

    CAS PubMed PubMed Central Google ученый

  • 114.

    Каплан Н., Гарнер С. и Хафкин Б. Исследования абсорбции и фармакокинетики AFN-1252 in vitro после микродозирования у здоровых субъектов. евро. J. Pharm. Sci. 50 , 440–446 (2013).

    CAS PubMed Google ученый

  • 115.

    Johnstrom, P. et al. Разработка быстрого многоступенчатого радиосинтеза углерода-11 ингибитора миелопероксидазы AZD3241 для оценки воздействия на мозг микродозированием ПЭТ. Nucl.Med. Биол. 42 , 555–560 (2015).

    PubMed Google ученый

  • 116.

    Mooij, M. G. et al. Детское исследование микродоз [ 14 C] парацетамола для изучения метаболизма лекарств с помощью ускоренной масс-спектрометрии: подтверждение концепции. Clin. Фармакокинет. 53 , 1045–1051 (2014).

    CAS PubMed PubMed Central Google ученый

  • 117.

    Barthel, H. et al. Индивидуальная количественная оценка бета-амилоидной нагрузки в головном мозге: результаты исследования механизма ПЭТ флорбетабена фазы 0 у пациентов с болезнью Альцгеймера и здоровых людей из контрольной группы. евро. J. Nucl. Med. Мол. Imaging 38 , 1702–1714 (2011).

    CAS PubMed Google ученый

  • 118.

    Moschos, S.J. et al. Фармакодинамическое (фаза 0) исследование с использованием этарацизумаба при запущенной меланоме. J. Immunother. 33 , 316–325 (2010).

    CAS PubMed Google ученый

  • 119.

    Park, M. H. et al. Валидация метода жидкостной хроматографии-тройной квадрупольной масс-спектрометрии для определения 5-нитро-5’-гидроксииндирубин-3’-оксима (AGM-130) в плазме человека и его применение в клинических испытаниях микродоз. Биомед. Chromatogr. https://doi.org/10.1002/bmc.3551 (2015).

    Артикул PubMed Google ученый

  • 120.

    Elliott, J. T. et al. Микродозовая флуоресцентная визуализация ABY-029 на операционном микроскопе, адаптированном под специальные модули освещения и визуализации. Биомед. Опт. Экспресс 7 , 3280–3288 (2016).

    PubMed PubMed Central Google ученый

  • 121.

    Lamberts, L.E. et al. Опухоль-специфическое поглощение флуоресцентного микродозирования бевацизумаба-IRDye800CW у пациентов с первичным раком молочной железы: технико-экономическое обоснование фазы I. Clin. Cancer Res. 23 , 2730–2741 (2017).

    CAS PubMed Google ученый

  • 122.

    de Souza, A. L. et al. Флуоресцентная молекула аффитела, вводимая in vivo на уровне микродоз, маркирует EGFR, экспрессирующие опухолевые области глиомы. Мол. Imaging Biol. 19 , 41–48 (2017).

    PubMed Google ученый

  • 123.

    Йонас, О.и другие. Параллельная оценка in vivo фенотипов лекарств в различные моменты времени во время системного ингибирования BRAF выявляет адаптацию опухоли и измененную уязвимость к лечению. Clin. Cancer Res. 22 , 6031–6038 (2016).

    CAS PubMed PubMed Central Google ученый

  • 124.

    Garner, C. R. et al. Наблюдательное исследование фармакокинетических микродоз / терапевтических доз [ 14 C] -парацетамола младенцев с использованием ускорительного масс-спектрометрического биоанализа. руб. J. Clin. Pharmacol. 80 , 157–167 (2015).

    CAS PubMed PubMed Central Google ученый

  • 125.

    Mooij, M. G. et al. Успешное использование микродозирования [ 14 C] парацетамола для выяснения изменений метаболизма лекарств в процессе развития. Clin. Фармакокинет. https://doi.org/10.1007/s40262-017-0508-6 (2017).

    Артикул PubMed PubMed Central Google ученый

  • 126.

    Бьюн, Б. Х., К., Б. и Лим, И. Х. Количественная оценка отложения амилоида-b с использованием ПЭТ 18 F-FC119S в мозге человека: исследование фазы 0-1. евро. J. Nucl. Med. Мол. Imaging https://doi.org/10.1007/s00259-015-3198-z (2015).

    Артикул Google ученый

  • 127.

    Keat, N. et al. Исследование безопасности, иммуногенности, биораспределения и дозиметрии излучения с помощью ПЭТ с микродозами 18 F-FB-A20FMDV2 для визуализации интегрина alphavbeta6. J. Nucl. Med. Technol. 46 , 136–143 (2018).

    PubMed Google ученый

  • 128.

    Gordi, T. et al. Фармакокинетический анализ 14 C-урсодиола у новорожденных с использованием ускорительной масс-спектрометрии. J. Clin. Pharmacol. 54 , 1031–1037 (2014).

    CAS PubMed Google ученый

  • 129.

    Леше Р.и другие. Доклиническая оценка BAY 1075553, нового F-меченного ингибитора простатоспецифического мембранного антигена для ПЭТ-визуализации рака простаты. евро. J. Nucl. Med. Мол. Imaging https://doi.org/10.1007/s00259-013-2527-3 (2013).

    Артикул PubMed Google ученый

  • 130.

    Bauer, M. et al. Pgp-опосредованное взаимодействие между (R) – [ 11 C] верапамилом и таривикаром на гематоэнцефалическом барьере человека: сравнение с данными на крысах. Clin. Pharmacol. Ther. 91 , 227–233 (2012).

    CAS PubMed Google ученый

  • 131.

    Вэй, X., Чжан, Z., Xie, Y. & Wang, Y. [Фаза 0 клинических испытаний и постмаркетинговая переоценка клинической безопасности инъекций традиционной китайской медицины]. Чжунго Чжун Яо За Чжи 36 , 2874–2876 (2011).

    PubMed Google ученый

  • 132.

    Kuwano, K. et al. 2- [4 – [(5,6-дифенилпиразин-2-ил) (изопропил) амино] бутокси] -N- (метилсульфонил) ацетамид (NS-304), перорально доступное пролекарство-агонист простациклиновых рецепторов длительного действия. J. Pharmacol. Exp. Ther. 322 , 1181–1188 (2007).

    CAS PubMed Google ученый

  • 133.

    Jacobs, B.A. et al. Фаза 0 клинических испытаний новых кандидатных форм капецитабина с пролонгированным высвобождением. Рак химиотерапия. Pharmacol. 77 , 1201–1207 (2016).

    CAS PubMed Google ученый

  • 134.

    Kurdziel, K. A. et al. Первое исследование фазы 0 на людях 111 In-CHX-A ”-DTPA трастузумаба для визуализации опухоли HER2. J. Transl. Sci . 5 , https://doi.org/10.15761/jts.1000269 (2019).

  • 135.

    Wang, S. J. et al. Исследование фазы 0 фармакокинетики, биораспределения и дозиметрии 188 Re-липосом у пациентов с метастатическими опухолями. EJNMMI Res. 9 , 46 (2019).

    PubMed PubMed Central Google ученый

  • 136.

    Kaneko, K. et al. Клиническая количественная оценка гепатобилиарного транспорта [ 11 C] дегидроправастатина у людей с использованием позитронно-эмиссионной томографии. Drug Metab. Dispos. 46 , 719–728 (2018).

    CAS PubMed Google ученый

  • 137.

    Tien, A.C. et al. Фаза 0 испытания рибоциклиба у пациентов с рецидивирующей глиобластомой, включающая когорту распространения опухоли, управляемую фармакодинамикой и фармакокинетикой. Clin. Cancer Res. 25 , 5777–5786 (2019).

    CAS PubMed PubMed Central Google ученый

  • 138.

    Burt, T. et al. Фаза 0, включая подходы к микродозированию: применение трех принципов и повышение эффективности разработки лекарственных препаратов для человека. Альтерн. Лаборатория. Anim. 46 , 335–346 (2018).

    PubMed Google ученый

  • 139.

    Берт, Т., Джон, С.С., Ракл, Дж. Л. и Вуонг, Л. Т. Исследования фазы 0 / микродозирования с использованием ПЭТ, АМС и ЖХ-МС / МС: ряд методологий исследования и рекомендации по проведению. Ускорение разработки новых фармацевтических препаратов посредством безопасных испытаний на людях – практическое руководство. Мнение эксперта. Препарат Делив . 1–16, https: // doi.org / 10.1080 / 17425247.2016.1227786 (2016).

  • 140.

    Рот-Клайн М. и Нельсон Р. М. Исследования микродозирования у детей: перспективы регулирования в США. Clin. Pharmacol. Ther. 98 , 232–233 (2015).

    CAS PubMed Google ученый

  • 141.

    Burt, T., Combes, RD в The History of Alternative Test Methods in Toxicology (eds Combes, RD, Balls, M. & Worth, A.) 229–240 (Elsevier / Academic Press, 2018).

  • 142.

    Курихара, К. Этические, правовые и социальные последствия (ELSI) клинических испытаний микродоз. Adv. Препарат Делив. Ред. 63 , 503–510 (2011).

    CAS PubMed Google ученый

  • 143.

    Киммельман Дж. Этика на этапе 0: прояснение проблем. J. Law Med. Этика 35 , 514 (2007).

    Google ученый

  • 144.

    Маккарт, А. Д., Огнибене, Т. Дж., Бенч, Г. и Туртелтауб, К. В. Количественное определение углерода-14 для биологии с помощью спектроскопии типа «кольцо вниз». Анал. Chem. 88 , 8714–8719 (2016).

    CAS PubMed PubMed Central Google ученый

  • 145.

    Чжан Ю. и Фокс Г. Б. ПЭТ-визуализация для определения занятости рецепторов: размышления о расчетах и ​​упрощении. J. Biomed. Res. 26 , 69–76 (2012).

    PubMed PubMed Central Google ученый

  • 146.

    Вагнер К. и Лангер О. Подходы с использованием технологии молекулярной визуализации – использование ПЭТ в клинических исследованиях микродоз. Adv. Препарат Делив. Ред. 63 , 539–546 (2011).

    CAS PubMed Google ученый

  • 147.

    Сугияма, Ю. Эффективное использование исследований микродозирования и позитронно-эмиссионной томографии (ПЭТ) при открытии и разработке новых лекарств. Drug Metab. Фармакокинет. 24 , 127–129 (2009).

    CAS PubMed Google ученый

  • 148.

    Pogue, B. W. et al. Видение 20/20: хирургическая онкология под молекулярным контролем, основанная на метаболизме опухоли или иммунологическом фенотипе: технологические пути для визуализации и вмешательства в местах оказания медицинской помощи. Med. Phys. 43 , 3143–3156 (2016).

    PubMed PubMed Central Google ученый

  • 149.

    Dueker, S. R., Vuong le, T., Lohstroh, P. N., Giacomo, J. A. & Vogel, J. S. Количественная оценка исследуемых соединений с низкой дозой у людей с AMS. Adv. Препарат Делив. Ред. 63 , 518–531 (2011).

    CAS PubMed Google ученый

  • 150.

    Dueker, S. R. et al. Ранний человеческий ADME с использованием микродоз и микротрейсеров: биоаналитические соображения. Биоанализ 2 , 441–454 (2010).

    CAS PubMed Google ученый

  • 151.

    Роуленд, М., Бенет, Л. З. и Лид, П. К. Комментарий: прогнозирование фармакокинетики человека. J. Pharm. Sci. 100 , 4047–4049 (2011).

    CAS PubMed Google ученый

  • 152.

    Takano, J., Maeda, K., Bolger, MB & Sugiyama, Y. Прогнозирование относительной важности CYP3A / P-гликопротеина для нелинейной кишечной абсорбции лекарств с помощью расширенной модели компартментальной абсорбции и транзита. . Drug Metab. Dispos. 44 , 1808–1818 (2016).

    CAS PubMed Google ученый

  • 153.

    Ито, К., Ивацубо, Т., Канамицу, С., Накадзима, Ю. и Сугияма, Ю. Количественное прогнозирование клиренса лекарств in vivo и взаимодействия лекарств на основе данных о метаболизме in vitro вместе со связыванием и транспорт. Annu. Rev. Pharmacol. Toxicol. 38 , 461–499 (1998).

    CAS PubMed Google ученый

  • 154.

    Чиба М., Исии Ю. и Сугияма Ю. Прогнозирование печеночного клиренса у человека на основе данных in vitro для успешной разработки лекарств. AAPS J. 11 , 262–276 (2009).

    CAS PubMed PubMed Central Google ученый

  • 155.

    van Waterschoot, R. A. B. et al. Влияние целевых взаимодействий на распределение низкомолекулярных лекарств: упущенная из виду область. Нац. Rev. Drug Discov. 17 , 299 (2018).

    PubMed Google ученый

  • 156.

    Smith, D. A. et al. Важность опосредованного мишенью распределения лекарств для малых молекул. Drug Discov. Сегодня 23 , 2023–2030 (2018).

    CAS PubMed Google ученый

  • 157.

    An, G. Низкомолекулярные соединения, демонстрирующие опосредованное мишенью распределение лекарств (TMDD): мини-обзор. J. Clin. Pharmacol. 57 , 137–150 (2017).

    CAS PubMed Google ученый

  • 158.

    Леви Г. Фармакологическая утилизация лекарств, опосредованная мишенью. Clin. Pharmacol. Ther. 56 , 248–252 (1994).

    CAS PubMed Google ученый

  • 159.

    Магер, Д. Э. и Юско, В. Дж. Общая фармакокинетическая модель для лекарственных средств, демонстрирующих опосредованное мишенью расположение лекарственных средств. J. Pharmacokinet. Pharmacodyn. 28 , 507–532 (2001).

    CAS PubMed Google ученый

  • 160.

    Yamane, N. et al. Анализ экономической эффективности клинических испытаний микродоз при разработке лекарств. Drug Metab. Фармакокинет. 28 , 187–195 (2013).

    CAS PubMed Google ученый

  • 161.

    Sugiyama, Y.& Kurihara, C. Клинические испытания микродозирования (Jiho, 2007).

  • 162.

    Rowland, M. в Microdosing and the 3Rs (Национальный центр по замене, усовершенствованию и сокращению количества животных в исследованиях (NC3Rs), 2006).

  • 163.

    Owens, P. K. et al. Десятилетие инноваций в фармацевтических исследованиях и разработках: модель Chorus. Нац. Rev. Drug Discov. 14 , 17–28 (2015).

    CAS PubMed Google ученый

  • 164.

    Lendrem, D. W. et al. Предвзятое отношение к прогрессу и рациональный оптимизм в исследованиях и разработках. Нац. Rev. Drug Discov. 14 , 219–221 (2015).

    CAS PubMed Google ученый

  • 165.

    Пек, Р. У., Лендрем, Д. У., Грант, И., Лендрем, Б. К. и Айзекс, Дж. Д. Почему так сложно прекратить неудачные проекты в области фармацевтических исследований и разработок? Нац. Rev. Drug Discov. 14 , 663–664 (2015).

    CAS PubMed Google ученый

  • 166.

    Вонг, К. Х., Сиа, К. В. и Ло, А. В. Оценка показателей успешности клинических испытаний и связанных параметров. Биостатистика 20 , 273–286 (2019).

    PubMed Google ученый

  • 167.

    Паммолли Ф., Магаццини Л. и Риккабони М. Кризис производительности в фармацевтических исследованиях и разработках. Нац.Rev. Drug Discov. 10 , 428–438 (2011).

    CAS PubMed Google ученый

  • 168.

    Pammolli, F. et al. Бесконечная граница? Недавнее увеличение производительности НИОКР в фармацевтике. J. Transl. Med. 18 , 162 (2020).

    PubMed PubMed Central Google ученый

  • 169.

    Морган, С., Гроотендорст, П., Lexchin, J., Cunningham, C. & Greyson, D. Стоимость разработки лекарств: систематический обзор. Политика здравоохранения 100 , 4–17 (2011).

    PubMed Google ученый

  • 170.

    Чжоу, Х., Тонг, З. и Маклеод, Дж. Ф. «коктейльные» подходы и стратегии в разработке лекарств: ценный инструмент или ошибочная наука? J. Clin. Pharmacol. 44 , 120–134 (2004).

    CAS PubMed Google ученый

  • 171.

    Манитписиткул, П. и Уайт, Р. Э. Что случилось с фармакокинетикой кассетного дозирования? Drug Discov. Сегодня 9 , 652–658 (2004).

    CAS PubMed Google ученый

  • 172.

    Микус, Г. Зонды и коктейли для оценки лекарственного взаимодействия: будущее за микродозированием? Clin. Pharmacol. Ther . (2019).

  • 173.

    Чавес-Энг, К. М., Лутц, Р. В., Гойхман, Д. и Бейтман, К.P. Разработка микродозирующего коктейля для исследований лекарственного взаимодействия. J. Pharm. Sci. 107 , 1973–1986 (2018).

    CAS PubMed Google ученый

  • 174.

    Zhang, L. & Sparreboom, A. Прогнозирование лекарственных взаимодействий, опосредованных переносчиками: Комментарий к: «Фармакокинетическая оценка коктейля переносчиков лекарственных средств, состоящего из дигоксина, фуросемида, метформина и розувастатина» и «Валидация микродозового зонда. лекарственный коктейль для клинической оценки лекарственного взаимодействия для переносчиков наркотиков и CYP3A ». Clin. Pharmacol. Ther. 101 , 447–449 (2017).

    CAS PubMed Google ученый

  • 175.

    Роуленд, М., Бенет, Л. З. и Грэм, Г. Г. Концепции разрешения в фармакокинетике. J. Pharmacokinet. Биофарм. 1 , 123–136 (1973).

    CAS PubMed Google ученый

  • 176.

    Вальдман, С. А., Терзич, А.Улучшение процесса для достижения максимального терапевтического результата инноваций. Clin. Pharmacol. Ther. 103 , 8–12 (2018).

    CAS PubMed PubMed Central Google ученый

  • 177.

    Gunn, R. N. et al. Сочетание анализов биораспределения ПЭТ и равновесного диализа для оценки свободной концентрации в головном мозге и транспорта ГЭБ препаратов для ЦНС. J. Cereb. Кровоток. Метаб. 32 , 874–883 (2012).

    CAS PubMed PubMed Central Google ученый

  • 178.

    Рот-Клайн М. и Нельсон Р. М. Этические соображения при проведении педиатрических и неонатальных исследований в клинической фармакологии. Curr. Pharm. Des. 21 , 5619–5635 (2015).

    CAS PubMed Google ученый

  • 179.

    Turner, M. A. et al. Педиатрические исследования микродоз и микротрейсеров с использованием 14 C в Европе. Clin. Pharmacol. Ther. 98 , 234–237 (2015).

    CAS PubMed Google ученый

  • 180.

    Bellis, J. R. et al. Побочные реакции на лекарственные препараты, а также лекарственные средства, не указанные в инструкции и нелицензированные, у детей: вложенное исследование «случай – контроль» у стационарных пациентов в педиатрической больнице. BMC Med. 11 , 238 (2013).

    PubMed PubMed Central Google ученый

  • 181.

    Dunne, J. et al. Экстраполяция данных о взрослых и других данных в программах разработки лекарственных препаратов для детей. Педиатрия 128 , e1242 – e1249 (2011).

    PubMed Google ученый

  • 182.

    Yackey, K. & Stanley, R. Количество выписываемых детям лекарств не по назначению остается высоким: необходимость в приоритетных исследованиях. Педиатрия https://doi.org/10.1542/peds.2019-1571 (2019).

    Артикул PubMed Google ученый

  • 183.

    ЕС. Исследование использования лекарственных средств не по назначению в Европейском Союзе https://doi.org/10.2875/464022 (ЕС, 2017).

  • 184.

    Вуонг, Л. Т., Блад, А. Б., Фогель, Дж. С., Андерсон, М. Э. и Гольдштейн, Б. Применение ускорителя МС в педиатрической оценке лекарств. Биоанализ 4 , 1871–1882 (2012).

    CAS PubMed Google ученый

  • 185.

    FDA. Общие рекомендации по клинической фармакологии для неонатальных исследований лекарственных и биологических продуктов Руководство для промышленности (FDA, 2019).

  • 186.

    Tozuka, Z. et al. Исследование микродоз 14 C-ацетаминофена с помощью масс-спектрометрии с ускорителем для изучения фармакокинетики исходного лекарственного средства и метаболитов у здоровых субъектов. Clin. Pharmacol. Ther. 88 , 824–830 (2010).

    CAS PubMed Google ученый

  • 187.

    Лаппин, Г. и Гарнер, Р. К. в Справочник по аналитическим разделениям ,. Vol. 4. Биоаналитические разделения 331–349 (Elsevier, 2003).

  • 188.

    FDA. Тестирование безопасности метаболитов лекарственных средств (FDA, 016).

  • 189.

    Morgan, P. et al. Можно ли улучшить поток лекарств? Основные фармакокинетические и фармакологические принципы повышения выживаемости в фазе II. Drug Discov. Сегодня 17 , 419–424 (2012).

    CAS PubMed Google ученый

  • 190.

    Ли, К. М. и Фарде, Л. Использование позитронно-эмиссионной томографии для облегчения разработки лекарств для ЦНС. Trends Pharmacol. Sci. 27 , 310–316 (2006).

    CAS PubMed Google ученый

  • 191.

    ДиМази, Дж. А., Грабовски, Х. Г. и Хансен, Р. В. Инновации в фармацевтической промышленности: новые оценки затрат на исследования и разработки. J. Health Econ. 47 , 20–33 (2016).

    PubMed Google ученый

  • 192.

    DiMasi, J. A., Грабовски, Х. Г. и Хансен, Р. В. Стоимость разработки лекарств. N. Engl. J. Med. 372 , 1972 (2015).

    PubMed Google ученый

  • 193.

    ДиМази, Дж. А., Хансен, Р. В. и Грабовски, Х. Г. Цена инноваций: новые оценки затрат на разработку лекарств. J. Health Econ. 22 , 151–185 (2003).

    PubMed Google ученый

  • 194.

    Munos, B. Уроки 60 лет фармацевтических инноваций. Нац. Rev. Drug Discov. 8 , 959–968 (2009).

    CAS PubMed Google ученый

  • 195.

    Коллер Б. С. и Калифф Р. М. Путешествие по долине смерти: руководство по оценке перспектив успеха перевода. Sci. Пер. Med. 1 , 10см19 (2009 г.).

    Google ученый

  • 196.

    Даль К., Халлдин К. и Скоу М. Новые методики приготовления радиофармпрепаратов, меченных углеродом-11. Clin. Пер. Imaging 5 , 275–289 (2017).

    PubMed PubMed Central Google ученый

  • 197.

    Ли З. и Конти П. С. Радиофармацевтическая химия для позитронно-эмиссионной томографии. Adv. Препарат Делив. Ред. 62 , 1031–1051 (2010).

    CAS PubMed Google ученый

  • 198.

    Cook, D. et al. Уроки, извлеченные из судьбы фармацевтического конвейера AstraZeneca: пятимерная структура. Нац. Rev. Drug Discov. 13 , 419–431 (2014).

    CAS PubMed Google ученый

  • 199.

    Samkoe, K. S. et al. Токсичность и фармакокинетический профиль однократной инъекции ABY-029: флуоресцентной синтетической аффитной молекулы против EGFR для использования человеком. Мол. Imaging Biol. 19 , 512–521 (2017).

    CAS PubMed PubMed Central Google ученый

  • 200.

    Du, B. et al. Оценка физических и химических изменений в фармацевтических препаратах, используемых в космических полетах. AAPS J. 13 , 299–308 (2011).

    CAS PubMed PubMed Central Google ученый

  • 201.

    Stenstrom, K., Sydoff, M. & Mattsson, S. Микродозирование для ранних биокинетических исследований на людях. Radiat. Prot. Дозиметрия 139 , 348–352 (2010).

    CAS PubMed Google ученый

  • 202.

    Эял, С. Как изменяется фармакокинетика лекарств у космонавтов в космосе? Мнение эксперта. Drug Metab. Toxicol. https://doi.org/10.1080/17425255.2020.1746763 (2020).

    Артикул PubMed Google ученый

  • 203.

    Эяль, С.И Дерендорф, Х. Лекарства в космосе: в поисках путеводителя по галактике для фармаколога. Pharm. Res. 36 , 148 (2019).

    PubMed Google ученый

  • 204.

    Ивацубо Т., Сузуки Х. и Сугияма Ю. Прогнозирование видовых различий (крысы, собаки, люди) в метаболическом клиренсе YM796 in vivo печенью на основе данных in vitro. J. Pharmacol. Exp. Ther. 283 , 462–469 (1997).

    CAS PubMed Google ученый

  • 205.

    Ивацубо, Т., Хирота, Н., Оои, Т., Судзуки, Х. и Сугияма, Ю. Прогнозирование распределения лекарств in vivo на основе данных in vitro на основе физиологической фармакокинетики. Биофарм. Утилизация лекарств. 17 , 273–310 (1996).

    CAS PubMed Google ученый

  • 206.

    Chen, M. et al. Сверхчувствительный метод LC-MS / MS для определения уровней мидазолама в плазме крови человека: разработка, проверка и применение в клинических исследованиях. Биоанализ 9 , 297–312 (2017).

    CAS PubMed Google ученый

  • 207.

    Гарнер, Р. К. Практический опыт использования микродозирования человека с анализом AMS для получения данных о раннем метаболизме лекарственных средств и PK. Биоанализ 2 , 429–440 (2010).

    CAS PubMed Google ученый

  • 208.

    Янг, Г., Эллис, В., Айртон, Дж., Хасси, Э. и Адамкевич, Б. Ускорительная масс-спектрометрия (AMS): недавний опыт ее использования в клинических исследованиях и потенциальное будущее метода. Xenobiotica 31 , 619–632 (2001).

    CAS PubMed Google ученый

  • 209.

    Turteltaub, K. W. & Dingley, K. H. Применение ускоренной масс-спектрометрии (AMS) для количественной оценки и идентификации аддуктов ДНК. Toxicol.Lett. 102–103 , 435–439 (1998).

    PubMed Google ученый

  • 210.

    Бергстром, М. Использование микродозирования в разработке небольших органических и белковых терапевтических средств. J. Nucl. Med. 58 , 1188–1195 (2017).

    CAS PubMed Google ученый

  • 211.

    Wagner, C.C., Muller, M., Lappin, G. & Langer, O. Позитронно-эмиссионная томография для использования в исследованиях микродозирования. Curr. Opin. Drug Discov. Devel. 11 , 104–110 (2008).

    CAS PubMed Google ученый

  • 212.

    Бауэр М., Вагнер К. и Лангер О. Исследования микродозирования у людей: роль позитронно-эмиссионной томографии. Лекарственные средства РД 9 , 73–81 (2008).

    CAS Google ученый

  • 213.

    Shebley, M. et al. Квалификация физиологически обоснованной фармакокинетической модели и процедуры отчетности для нормативных документов: перспектива консорциума. Clin. Pharmacol. Ther. 104 , 88–110 (2018).

    PubMed PubMed Central Google ученый

  • 214.

    Thorneloe, K. S. et al. Биораспределение и клиренс AlbudAb, новой платформы биофармацевтической медицины, оценивали с помощью ПЭТ-изображений на людях. EJNMMI Res. 9 , 45 (2019).

    PubMed PubMed Central Google ученый

  • Что вы получите от нулевой фазы GCMI? – GCMI Atlanta

    Быстрые ответы на важные вопросы, которые снижают риск инноваций в сфере медицинских технологий

    Когда новатор выявил медицинскую проблему, ключевую роль играет эффективный подход для минимизации риска и определения жизнеспособности потенциальных решений.Наша нулевая фаза направлена ​​на раннюю оценку критически важных элементов продукта, минимизируя риски, затраты и усилия.

    Ключевые вопросы:

    • Какую клиническую необходимость или проблему необходимо решить?
    • Как основные характеристики продукта будут соответствовать клиническим потребностям?
    • Каковы пути регулирования продукта?
    • Можно ли защитить интеллектуальную собственность новатора?
    • Есть ли рынок для продукта?
    • Кто конкуренты?

    Ответы на эти вопросы подтверждают направление проекта и предвидят ваши потребности в ресурсах, сроки и потребности команды.Что же тогда новаторам в области медицинских технологий с «эскизом салфетки» или исследовательской идеей ожидать от предложения услуг GCMI Phase Zero?

    Короче говоря, по завершении нулевой фазы у новатора будут индивидуальные возможности для разработки продукта. Этот процесс представляет собой совместный подход с новатором и опытной командой инженеров и менеджеров проектов GCMI. Он устраняет эмоциональную сторону уравнения и предоставляет данные, которые направляют новаторов к принятию решения «идти / нет» и запускают путь к коммерциализации.Конечные результаты и результаты Phase Zero основаны на фактах и ​​данных, подтверждающих ценность запуска полной программы разработки продукта.

    Минимизация риска фокусируется на ресурсах, технических препятствиях, времени и стоимости по каждому из ключевых вопросов:

    Клиническая потребность / рынок / возмещение: Phase Zero помогает новаторам ответить на самые важные вопросы, например: «Каковы текущие потребности и как они решаются? Зачем кому-то переходить с устройства, уже представленного на рынке, на мой продукт? Мой продукт «я тоже» на рынке, или я предлагаю что-то другое? » Этот процесс дает первоначальную оценку того, кто будет покупать ваш продукт и по какой цене, а также стратегическую оценку потенциальных конкурентов и их доли на рынке, средней цены продаж и целевых объемов продаж.Это основанные на фактах утверждения, которые помогут вам понять свои рыночные риски.

    Технология: результаты Phase Zero сводят к минимуму риски, разъясняя важные исходные данные для проектирования и гарантируя, что все основные характеристики продукта были идентифицированы и включены. Этот процесс направлен на устранение основных рисков и неизвестных факторов, связанных с продуктом, посредством тестирования производительности и удобства использования. Определение основных характеристик продукта на этом этапе позволяет нам быстро итерировать дизайн, экономя время и деньги на более поздних этапах разработки продукта.

    Интеллектуальная собственность (IP): Результаты Phase Zero учитывают, рискует ли ваша конструкция нарушать чей-то патент, и есть ли у вашего продукта особенности, которые могут быть запатентованы. Это исследование не только определяет риск интеллектуальной собственности, но также способствует проектированию и созданию прототипов.

    Нормативно-правовая база: Отчеты Phase Zero содержат информацию о нормативно-правовой базе аналогичных продуктов и нормативную стратегию, в которой вы можете быть уверены.Изучение других способов регулирования может дать информацию о путях регулирования вашего продукта. Он также выявляет недостатки существующих продуктов, которые могут привести к появлению полезных функций и возможностей для новых идей. Этот процесс снижает риск неопределенности для пути регулирования.

    В конце нулевой фазы вы будете знать свой целевой продукт и рынок, на который следует ориентироваться. Phase Zero сужает объем вашего проекта и фокус, сокращая сроки разработки продукта и помогая устранить возможность смещения промежуточного звена.

    Связанные – «Шесть вещей, которые нужно знать на нулевой фазе»

    Старт с фазой 0/00 | Вайоминг Инициатива SBIR / STTR

    WSSI

    Что такое фаза 0/00

    Этап 0/00 – это награда Вайоминга за микро-семена, которую можно использовать для связи и поездок в целевые федеральные агентства, консультантов и наставников для подготовки предложения фазы I / II, подготовки и рассмотрения предложения, общения с потенциальными клиентами. , анализы для поддержки подготовки тестовых данных, сбор тестовых данных для включения в предложение фазы I / II и другие мероприятия, связанные с подготовкой отмеченных наградами предложений фазы I / II.

    Программа этапа 0

    Малые предприятия штата Вайоминг или частные лица, планирующие подать Фазу I в любое из одиннадцати участвующих федеральных агентств, имеют право подать заявку на Фазу 0.

    Предложения принимаются до 17:00 первого числа каждого месяца . Как правило, награды объявляются через две недели после даты подачи заявки.

    Клиенты, получившие Фазу 0, выбирают опытного наставника Фазы 0 Вайоминга, успешного главного исследователя (PI) SBIR или STTR, чтобы помочь им с процессом подачи заявки и предоставить два полных обзора своего предложения Фазы I.

    Ссылки на шаблон этапа 0 и запрос на этап 0.

    Руководство победителя фазы 0

    Руководство, подготовленное признанным на национальном уровне экспертом SBIR Марком Генри для победителей этапа 0 штата Вайоминг, первоначально было предоставлено только участникам этапа 0. WSSI поняла, что информация в руководстве поможет всем компаниям Вайоминга до того, как они начнут процесс фазы 0, касающийся их инноваций, оценки процесса, принятия решения о том, подходит ли программа, и подготовиться к написанию .Малые предприятия и PI, серьезно относящиеся к борьбе за федеральные деньги на НИОКР, должны начать с Руководства для победителей этапа 0.

    Фаза 00 Программа

    Подобно программе Фазы 0, Фаза 00 представляет собой конкурентный контракт, доступный для малых предприятий или частных лиц Вайоминга. Клиенты, выигравшие федеральный контракт или грант Фазы I, имеют право подать заявку на Фазу 00, чтобы помочь им с подготовкой предложения Фазы II. Предложения этапа 00 подлежат оплате до 17:00 первого числа каждого месяца. Награды обычно объявляются через две недели после крайнего срока подачи заявок. Свяжитесь с Келли Хейглер Корниш, менеджером программы WSSI, чтобы получить копию заявки этапа 00, [email protected]

    PhaseZero начинает интеграцию с Karmak

    PhaseZero запускает интеграцию с Karmak, предоставляя унифицированные решения цифровой коммерции для индустрии коммерческого транспорта.

    PhaseZero, ведущий поставщик программного обеспечения для электронной коммерции B2B и B2C, объявила сегодня о стратегическом партнерстве с Karmak, ведущим поставщиком бизнес-решений для индустрии коммерческого транспорта.Клиенты Karmak DMS теперь могут запускать и управлять своими онлайн-отделами запчастей и обслуживания с помощью решения PhaseZero CxCommerce ™.

    «Благодаря этому партнерству PhaseZero и Karmak обеспечивают безупречный цифровой опыт работы с клиентами», – сказал Рам Чандра Секар, основатель и генеральный директор PhaseZero. «Клиенты Karmak могут запускать интернет-магазины за несколько недель, чтобы ускорить продажи, быстро реагировать на изменения рынка и улучшить качество обслуживания клиентов».

    Решение

    PhaseZero CxCommerce разработано и построено с использованием передового опыта Кремниевой долины для помощи в тяжелой и автомобильной промышленности.Дистрибьюторы и дилерские центры могут развивать свой бизнес в сфере электронной коммерции и обеспечивать оптимизированный и привлекательный клиентский опыт, снижая при этом операционные расходы.

    «Сфера коммерческих перевозок быстро меняется. Наше решение предоставляет дистрибьюторам и дилерам гибкие возможности для обслуживания клиентов – в магазине, в Интернете и даже с помощью гибридных подходов », – сказал Чандра Секар. «CxCommerce предоставляет традиционным обычным предприятиям доступ к лучшим цифровым технологиям, которые дополняют их отраслевой опыт, отношения с клиентами и услуги доставки« последней мили ».”

    «Мы рады сотрудничать с PhaseZero, чтобы предоставлять нашим клиентам передовые инновации в области электронной коммерции», – сказал Крейг Грейд, директор по развитию бизнеса Karmak. «Мы рады помочь нашим клиентам увеличить доход от электронной торговли».

    Чтобы узнать больше о решении PhaseZero CxCommerce, посетите сайт phasezeroventures.com.

    О PhaseZero
    PhaseZero – компания, занимающаяся разработкой программного обеспечения для электронной коммерции B2B и B2C в облаке 2.0, а также надежный партнер по цифровому бизнесу для автомобильных и промышленных компаний.Мощная платформа цифровой коммерции PhaseZero, CxCommerce, ускоряет цифровые продажи за счет улучшения качества обслуживания клиентов, основанного на опыте Кремниевой долины и передовых технологиях. PhaseZero CxCommerce может быстро запустить новый цифровой бизнес со средним «временем до первого заказа» от четырех до шести недель. Узнайте больше на www.phasezeroventures.com.

    О компании Karmak
    Karmak, Inc. – ведущий поставщик решений для управления бизнесом в сфере коммерческого транспорта.Кармак предлагает уникальный подход, сочетающий инновационные технологии, стратегические советы и лучшие практики.

    Phase Zero [Jaguar – Отменено]

    Для тех, кто не скачал выпуск 404 Atari Explorer Online… это интервью, которое остается собственностью…

    Может быть интересно:

    Шумиха вокруг Hyper Image
    || | Интервью: Кристиан Свенссон
    / | \ GEnie: EXPLORER.5 Интернет: [электронная почта защищена]
    ————————————————————-

    [] AEO: Кто и что является членами Hyper Image они
    там отвечают?

    Джереми: Есть много людей, которые помогают запустить Hyper Image,
    основных участников включают следующие люди:

    Пол отвечает за разработку наших проектов, Джереми
    отвечает за внешние связи и руководит техническими вопросами
    аспекты наших проектов.Отавио занимается прототипами двигателей и реализацией
    , Матиас отвечает как за дизайн, так и за искусство,
    Стерлинг отвечает за перевод всего этого на английский для нас.
    Энди Карлсон отвечает за саундтрек к Hover Hunter. Билл
    – правая рука Hyper;)

    [] AEO: Как каждый из вас попал в компьютеры и, в конечном итоге, в игровую индустрию
    ? Что-то вроде небольшого исторического раздела. Например,
    образование, игровые интересы и т. Д.

    Джереми: Я начал программировать около семи лет на Commodore PET,
    Apple II и Timex Sinclair 1000.Мои последние игровые достижения
    включают Breakout and Race для графического калькулятора TI-85;) Моей первой настоящей работой по программированию
    было программирование SGI для Министерства обороны США. Ни один из
    моих навыков программирования не может быть отнесен к моему формальному образованию
    в Университете Мэриленда.

    Пол: Он лжет. Класс ОС Джереми? Мы с Отавио – братья, и наша мама
    сильно увлекалась компьютерами примерно с того времени, когда вышел Apple II
    . С тех пор мы оба были увлечены компьютерами: Отавио за
    программирование, я за графику / спецэффекты, а мы оба за
    за игры.

    [] AEO: Является ли разработка Jaguar Hyper Image первым набегом на разработку игр
    ?

    Джереми: Да, это наша первая командная работа.

    [] AEO: Что побудило вас начать разработку Jag? Есть ли у вас
    лицензированных разработчиков для каких-либо других платформ в настоящее время?

    Джереми: На момент подписания контракта с Jaguar это была и остается
    одной из самых технически впечатляющих платформ. В настоящее время у нас есть
    лицензий на разработку для Jaguar, Sony Playstation и 3DO.Мы,
    , в настоящее время изучаем и другие платформы.

    [] AEO: Каково ваше восприятие (честно говоря) об Atari и их
    усилиях по:

    1. Помощь сторонним разработчикам в их проектах?

    Джереми: Atari очень нас поддерживает; техническая поддержка
    была отличной, а среда разработки по-прежнему очень разнообразна,
    они поддерживают разные ОС и довольно здорово смотрят
    в будущее со своими инструментами. Они прислушиваются к отзывам
    разработчиков, что очень здорово.

    2. Успешно продвигать и продавать Jaguar?

    Джереми: Я был относительно впечатлен их проникновением на рынок,
    просмотр рекламы Jag на MTV в прайм-тайм, а системы в Toys’R’Us – это
    довольно круто. Согласитесь, рекламный ролик Doom слишком крут
    😉 Плакаты – тоже приятный штрих;)

    3. Требовать дополнительных сторонних разработчиков и лицензиатов?

    Джереми: Эээ… типа спросить Пола или что-то в этом роде… Я не знаю.

    Пол: Как я знаю… мы пошли за ними.

    4. Разработать впечатляющее (с точки зрения маркетинга) и
    мощных (с точки зрения разработчика) аппаратных средств и
    периферийных устройств?

    Джереми: Причина, по которой мы изначально выбрали Jaguar, заключалась в том, что
    это была единственная доступная система, которая могла справиться с тем, что мы хотели, чтобы
    делал. С тех пор, как мы зарегистрировались, на рынке появилось множество других мощных систем
    . Мы определенно заинтересованы в рассмотрении новых систем
    , однако мы продолжим поддерживать Jaguar,
    , потому что мы думаем, что это очень мощная система с огромным неиспользованным потенциалом
    .

    Пол: Я хочу сказать, что в целом об Atari, все знают, что они
    не там, где сейчас большие деньги, и у них есть свои проблемы,
    , но они абсолютно лучшая компания, с которой можно работать, насколько свободна
    делать то, что мы хотим с нашим проектом. Они поддерживают инновации и
    свежих идей, а не только игры, написанные по книге. Если бы не открытое
    подразделений Atari, мы не были бы там, где находимся сегодня.

    [] AEO: Hover Hunter – ваш текущий проект. Вы можете дать нам описание игры
    ?

    Джереми: Угу, Пол?

    Пол: Вы сидите в кабине высокотехнологичного ховертанка
    и летаете над разнообразными ландшафтами в серии миссий.
    Там будут большие громкие взрывы, высокая скорость, много оружия, много
    других судов на воздушной подушке, красивые пейзажи, блестящие хедз-ап дисплеи,
    и возможность сетевых сражений. Что еще можно желать от
    экшена / симулятора? =] Я действительно не очень хорош в описании игры,
    , потому что те части игры, которые важны для меня, должны быть просмотрены
    или сыграны. Я рекомендую всем зайти на сайт http://www.hyperimage.com,
    и всем купить Hover Hunter, когда он выйдет.=] (Снимки экрана
    также доступны через анонимный ftp, и, надеюсь, мы скоро разместим больше
    на http://ftp.hyperimage.com.)

    [] AEO: Как проходило преодоление «обучения кривая »оборудования Ягуара?
    Как вы думаете, это может вызвать задержку Hover Hunter?

    Джереми: Я не думаю, что кривая обучения Jaguar была
    слишком большим фактором для времени, необходимого для разработки Hover Hunter. Технические аспекты
    Hover Hunter намного проще, а
    не занимают большую часть времени разработки.

    [] AEO: Будет ли Hover Hunter использовать JagModem вообще или только Jagnet?

    Джереми: Hover Hunter определенно будет поддерживать соединение двух автомобилей Jaguar с серийным номером
    . У нас есть несколько CatBox, и у меня есть планы на
    для поддержки многопользовательских сетей. Поддержка JagModem
    все еще возможна, однако в настоящее время у нас нет конкретных планов по поддержке
    . В настоящее время у нас запланирован летний выпуск
    , однако его окончательная дата зависит от нашего издателя.

    [] AEO: Были ли какие-нибудь интересные истории / анекдоты, которые вы могли бы рассказать нам о
    , произошедших в ходе разработки Hover Hunter
    ?

    Джереми: Что ж, мы сделали симпатичную сетевую версию «64-битной
    Cyber ​​Deluxe Pong Kombat» для Jaguar. И я полагаю, что большинство людей
    сочли бы наше ежедневное потребление Mountain Dew довольно отвратительным. (У
    есть как минимум две буквальные «стены» из пустых банок, которые мы строили
    , не забудьте позвонить Pepsi и попросить спонсора;)

    Пол: Это «Deluxe X-tra Cyber ​​Super 64-bit Pong Kombat. ».
    к сожалению, то, что мы считаем действительно забавным, мы не хотели бы объявлять миру
    по разным причинам. Мы начали с квартиры с двумя спальнями
    и четырьмя людьми в ней, а теперь переехали в дом с четырьмя спальнями
    и восемь человек в нем…. Эммм… ГОРНАЯ РОСА !!!

    Джереми: Когда-нибудь моя кровать будет больше чем в четырех футах от моей работы. 😉

    [] AEO: Учитывая исключительные сетевые возможности Jaguar,
    возможно ли, что Hover Hunter будет отображаться на любых других консолях
    в несетеевом формате?

    Jeremy: Hover Hunter будет действительно крутой игрой с чрезвычайно разнообразным геймплеем.Сетевая игра определенно улучшит игру,
    , однако я считаю, что игра сможет работать сама по себе с
    без проблем.

    Пол: Хорошая увертка, Джер… Я говорю: все возможно, но у нас сейчас нет планов на
    .

    [] AEO: На WCES ходили слухи, что и Novalogic, и Nintendo
    предложили непристойные суммы денег за Hyper Image, чтобы
    прекратил разработку Jag и начал разработку с одной или с
    обеими этими компаниями…. Это верно? (Я слышал, что
    парней из Novalogic пускали слюни, когда они увидели
    вашу демо … не могло быть приятным зрелищем видеть, как выросшие
    мужчин и женщин пускают слюни 🙂

    Джереми: Хорошо! Мельница слухов – странная вещь.Я полагаю, что кто-то
    из Novalogic действительно проверял нашу демонстрацию (в районе Jaguar было много трафика
    !), Но от них не было абсолютно никаких предложений такого рода.
    Между прочим, хотя я считаю, что их техника поля высоты
    отличается от нашей (наша использует шину Jag и блиттер
    ), я все еще пытаюсь понять, как они справляются с этим на
    SNES! Если серьезно, слухи о Nintendo абсолютно ложны. Hover
    Hunter действительно вызвал интерес у многих людей, но Nintendo не предложила
    «непристойных сумм» 🙁

    [] AEO: После Hover Hunter, что будет дальше с Hyper Image? Больше разработки Jag
    (надеюсь)? Какие-нибудь игровые концепции ждут своего часа?

    Джереми: Умм, пока конфиденциально 🙁 Но этот диск выглядит довольно
    круто…

    [] AEO: Какие из ваших любимых игр (настоящие, классические,
    какие угодно) «Это то, о чем я спрашиваю всех собеседников
    , в основном из-за собственного любопытства….

    Джереми: Riiiiidge Racer, Toshinden, DOOM, Moria (вроде как Nethack),
    Battle Tetris Gaiden (хотя меня всегда пинают по заднице),
    Karateka и любую версию Breakout.

    Пол: в настоящее время: Ridge Racer (PSX), бомбардировщик, Virtua Fighter 2,
    Aliens-TC (an = incredible = преобразование DOOM). Общие: Tempest 2000 !!!Личные фавориты
    повлияли на дизайн Hover Hunter: DOOM !, Wing Commander / X-wing,
    Cybersled, Syndicate, Red Planet / Battletech.

    [] AEO: Есть ли что-нибудь еще, что вы хотели бы сказать в заключение нашим
    читателям? Hyping Hover Hunter или другие грядущие игры, предсказание
    будущего для вас и / или Atari?

    Джереми: Хороший CD, красивый CD. Более 700 мегабайт 64-битного сетевого адаптера
    Pong Instinct, но вам придется сложить четыре телевизора в куб
    , чтобы получить больше, чем жизнь, комбинированное игровое поле…

    Пол: Hover Hunter надерет задницу.Если нам не нравится играть в нее, мы ее не выпускаем.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *