Содержание

Фаза и ноль. Работа и измерения. Особенности

У хозяев дома появляется вопрос: что же такое фаза и ноль? Раньше они не вникали в то, как устроена электропроводка. А теперь понадобилось отремонтировать розетку, заменить лампочку, и хочется все это сделать самому.

Безопасность

Электросеть разделена на два типа: постоянного и переменного тока. Электрический ток является движением электронов в каком-либо направлении. При постоянном токе электроны двигаются в одну сторону, имеют полярность. При переменном токе электроны меняют свою полярность с определенной частотой.

В первую очередь домашнему умельцу нужно соблюдать электробезопасность, а потом уже думать об устранении неисправности. Некоторые пренебрежительно относятся к опасности попасть под действие тока.

Все части под напряжением должны быть защищены изоляцией, клеммы розеток углублены в корпус таким образом, чтобы не было доступа и нельзя было случайно коснуться рукой. Даже конструкция вилки сделана так, что невозможно попасть под напряжение электрического тока, держась рукой за вилку.

Мы уже привыкли к электричеству, и не замечаем опасности при проведении работ по ремонту электрических устройств. Поэтому, лучше освежить в памяти правила безопасности и быть внимательными.

Принцип действия

Сеть электрического переменного тока разделена на фазу и ноль (рабочую и пустую). Нулевая фаза предназначена для образования постоянной электросети при включении устройств, а также для создания заземления. На фазе находится рабочее напряжение.

Для работы электроустройства не важно, где находится фаза, а где ноль. При установке электрических проводов и включении ее в сеть дома нужно учитывать, где фаза и ноль. Проводка прокладывается кабелем с двумя или тремя жилами. В кабеле с двумя жилами находится фаза и ноль, а в кабеле с 3-мя жилами третий провод отводится для заземления. Перед работой нужно точно определить расположение выводов проводов.

Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт.

Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз.

Узел в нулевой точке подключается к заземляющему контуру подстанции. Ноль расщепляется на рабочий и защитный. Новые строящиеся дома оснащаются проводкой по такой схеме. На входе дома в щите располагается три фазы и два провода расщепленного ноля.

В старых зданиях остается схема проводки старого типа без расщепленного ноля, там вместо пяти проводов идут 4 жилы. Электрический ток от трансформатора проходит по воздуху или под землей к входному щиту, образует систему из трех фаз (питающая сеть 380) на 220. Производится разводка по щитам подъездов. В квартиру поступает кабель с 1-й фазой на 220 В и защитный провод.

Защитный провод не всегда есть в наличии, если старая проводка не переделана. В квартире нулем называется провод, который соединен с заземляющим контуром на подстанции, применяется для образования нагрузки фазы, которая подключена к противоположному выводу на трансформаторе. Защитный ноль из схемы удален, он служит для устранения неисправностей и аварий для отвода тока при повреждениях.

В такой цепи нагрузки распределены равномерно, так как на этажах сделана разводка и выведены щиты к линиям на 220В в распредщите подъезда. Напряжение, подходящее к дому, выполнено звездой. При выключенных в квартире всех устройств и отсутствии нагрузки в розетках, в линии питания тока не будет.

Это является простой рабочей схемой электроснабжения, которая использовалась много лет. Но в любой сети могут возникнуть неисправности, которые связаны с плохими контактами соединений, либо обрывом проводов.

Обрыв провода

Проводник может легко оторваться, или его могут забыть подключить. Это происходит довольно часто, так же, как и могут отгореть провода при некачественном контактном соединении и большой нагрузке. Если в квартире нет соединения потребителя с щитком напряжения, то устройство не будет работать. Какой именно провод разорван, не имеет значения. То же самое получается при обрыве провода одной из фаз, которая питает дом или подъезд. Квартиры, питающиеся от этой линии, не будут иметь возможность получать электричество.

В двух остальных цепях все устройства будут работать в нормальном режиме, а ток ноля будет складываться из оставшихся составляющих. Все вышеописанные обрывы проводников связаны с выключением питания от квартиры, бытовые устройства при этом не ломаются. Опасным случаем может стать момент, когда исчезнет соединение между средней точкой потребителей щита дома и контуром заземления трансформатора подстанции. Это возникает у электриков, не имеющих достаточной квалификации.

Путь прохода тока через ноль к заземлению исчезает. Ток начинает идти по наружным контурам, имеющим напряжение в 380 В. В результате получается что на нагрузках вместо 220В будет 380В. На одном щите окажется небольшое напряжение, а на втором около 380 В. Высокое значение напряжения повредит изоляцию, нарушит работу устройств, приведет к поломкам и выходу из строя приборов.

Чтобы таких ситуаций не было, применяют защитные устройства для блокировки от повышенного напряжения. Они устанавливаются в щиток квартиры, либо внутри дорогостоящих приборов.

Способы определения где фаза и ноль

Любой домашний мастер при электромонтажных работах дома или в другом месте при подключении розетки или люстры сталкивается с вопросом определения фазы и ноля на проводах. Мы расскажем, какие существуют методы и способы правильного определения фазных проводов, нулевых жил, заземляющих защитных проводов. Конечно, для имеющего опыт в таких электромонтажных работах специалиста не доставит большого труда определить фазу и нулевой провод. Но как быть людям, которые не умеют этого делать?

Разберемся, как можно в домашних условиях без специальных инструментов для измерения и электронных приборов своими силами узнать наличие на проводах где фаза и ноль, заземление.

Во время поломок в сети тока часто домашние умельцы применяют недорогую индикаторную отвертку для проверки наличия напряжения китайского изготовления.

Она действует по закону емкостного тока, проходящего по телу человека. Такая отвертка состоит из следующих деталей:
  • Наконечник металлический, заточенный под отвертку, присоединяется к фазе.
  • Резистор для ограничения тока, который уменьшает амплитуду тока до небольшой величины.
  • Лампочка неоновая, начинает светиться при прохождении тока, показывает наличие фазы на проводнике.
  • Площадка для касания пальцем человека, чтобы создавалась цепь тока по телу через землю.

Квалифицированные специалисты применяют для контроля фазы приборы с качественными деталями и имеющими несколько функций, с индикаторами под отвертку, светодиод светится с помощью транзисторной схемы, подключенной от батареек на 3 вольта.

Такие устройства кроме фазы могут решать другие вспомогательные задачи. Они не имеют клеммы для контакта пальцем. Как проверять наличие фазы в розетках индикатором, показано на рисунке.

Днем плохо видно, как светится лампочка, требуется приглядываться. Там, где лампочка светится, есть фаза. На рабочем нуле и защитном заземлении лампочка не будет гореть. Если лампа светится в других случаях, то это говорит о том, что имеются неисправности в схеме.

Во время работы с такой отверткой нужно проверить исправность ее изоляции, не касаться вывода индикатора без изоляции под напряжением. Также с помощью тестера можно в розетке определить наличие напряжения.

Показания на тестере:
  • 220 В между фазой и нолем.
  • Нет напряжения между защитным нолем и рабочим.
  • Нет напряжения между защитным нолем и фазой.

Последний вариант – это исключение. При нормальной схеме стрелка будет показывать разность потенциалов 220 В. Но в наших розетках его нет, так как здание дома старое, электропроводка не изменялась. После реконструкции электропроводки вольтметр покажет напряжение 220 В.

Особенности нахождения неисправности

Состояние схемы электропроводки не всегда определяется путем обычной проверки напряжения. На выключателях имеется различное положение, которое иногда вводит в заблуждение электрика. На рисунке изображен случай, при выключенном выключателе на проводе фазы светильника нет напряжения при исправной проводке.

Поэтому, при измерениях в поиске поломок нужно проводить тщательный анализ возможных случаев.

Цветовка проводов

Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль.

Одним из методов является определение по цвету изоляции проводов. Каждая жила в кабеле и в электрооборудовании окрашена цветом изоляции определенной расцветки, определенной стандартом. Зная цвета распределения функциям проводов, можно легко произвести установку электропроводки.

Рабочие фазы подключают проводами с черным цветом изоляции, либо может быть коричневый или серый цвет. Нулевой провод монтируют в светло-синей изоляции. При установке вспомогательного дополнительного заземления применяют проводники с зеленым или желтым цветом изоляции.

Такой способ определения по цвету проводов, фаза и ноль, не является надежным, так как при монтаже электропроводки специалисты не всегда добросовестно соблюдают маркировку проводов по цвету жил.

Похожие темы:

Что такое фаза ноль земля в электрике и зачем они нужны фото

Все знают, что электроэнергия производится на разнообразных электростанциях, благодаря генераторам переменного тока. После она, используя линии электропередач, идет к трансформаторным подстанциям, оттуда поступает к потребителю, то есть нам.

Так вот чтобы понять, что собой представляет фаза, ноль, а также заземление, необходимо на элементарном уровне понимать, каким образом электроэнергия поступает в подъезд или частный дом. Все мы за нее платим, измеряя киловаттами, но ведь это не вода, у которой можно перекрыть кран. Потому давайте рассмотрим ситуацию подробнее.

Ликбез

Давайте разберемся, чем являются ноль и фаза, а затем перейдем к заземлению.

Фаза – это линия непосредственной подачи тока. Следовательно, используя ноль, ток возвращается в обратном направлении, а именно к нулевому контуру. Кроме того он выравнивает фазное напряжения, выполняя стабилизационную роль в фазной проводке.

Земля (заземляющий провод) – не под напряжением в принципе. У него есть одна функция – защита потребителя. Если сказать грубо, то «земля» в случае утечки отведет остаточный ток, не дав ему поразить человека.

Хотелось бы думать, что столь простое объяснение несколько прояснило ситуацию, и теперь вы понимаете какая роль у каждого проводника из комплекта: фаза, ноль, земля. Если вы планируете работать с проводами самостоятельно, то дополнительно, рекомендуем изучить цветовую палитру, которой производители отмечают предназначение полупроводников внутри кабеля.

Детальное рассмотрение

Трансформаторная подстанция выполняет важнейшую работу, а именно делает возможным питание потребителей благодаря обмотке низкого напряжения, которая понижает напряжение от «электросетевого» до «потребительского».

От подстанции к потребителю ведет общий проводник от нейтрали (точка соединение обмоток), и еще 3 проводника, которые являются остальными выводами обмотки. Таким образом каждый из трех проводников – это фаза, а нейтраль – ноль.

Трехфазная энергетическая схема подразумевает возникновение линейного напряжения, с номинальным напряжением в 380 В. Между фазой и нулем возникает фазное напряжение, его то значение и равняется, привычным нам, 220 В.

Как упоминалось выше под названием «земля» скрывается заземление, так и будем его называть. Так вот большинство электрических систем глухозаземленные, это значит, что ноль прямо соединен с землей. Физическая суть такого подключения в том, что в трансформаторе обмотки соединены по принципу «звезды», а нейтраль заземлена.

В данном случае ноль является совмещенным нейтрально-защитным проводником (PEN). Подобное повсеместно встречается в постройках советского времени. Неизвестно с чем это было связано, то ли с экономией, то ли с введением сомнительных инноваций, но в жилых домах того периода повсеместно занулены щитки, а отдельных заземлительных кабелей не предусмотрено.

Главная проблема такой конструкции в невозможности ее преобразования. Народные умельцы пытаются подключить дополнительный защитный кабель прямо к щитку, но это, по крайней мере, небезопасно.

Подобная самодельная «инновация» может привести к тому, что земля начнет простреливать и как душ, так и туалет начнут сопровождаться периодическими разрядами у всех жильцов дома.

Дома построенные в более позднее время, имеют электросеть отличающуюся следующими аспектами:

  1. Вместо общего проводника к щитку идет два проводника, один из которых исполняет роль нейтрали, а второй земли.
  2. Щиток в подъезде имеет отдельную шину-разделитель, которую с корпусом соединяют посредствам металлической связи, она предназначена для подключения нуля, земли и фазы.

Преимуществом подключения с заземлением является то, что заранее неизвестно, сколько тока будет потреблять каждая квартира, а предыдущая схема предполагает близкое к равномерному распределение. В незаземленной схеме возможно возникновение ситуации, когда одна квартира потребляет много, а вторая ничего.

Разность нагрузок начинает смещать нейтраль. Создается ситуация, когда в фазе ток стремится к нулю, а на проводнике-нейтрали напротив растет до 380 В. Кроме того что оборудование при возникновении подобной аварии будет испорчено, его корпус будет находится под напряжением, создавая реальную опасность для людей.

Полезное видео

Дополнительную информацию по данному вопросу вы можете почерпнуть из видео ниже:

Заключение

Будем надеяться, теперь вы знаете значение каждого, из озвученных в названии статьи терминов и как важен проводник «земля». Берегите себя, устанавливая электросеть у себя дома, побеспокойтесь о ней.

Фаза и ноль в электрике

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Фаза и ноль в электрике: определения понятным, простым языком

Владельцы домов или квартир, так или иначе, столкнутся с моментами, когда перестает функционировать какой-либо прибор, электрическая розетка или гореть лампа в люстре. Звать на помощь в таких ситуациях электрика не особо хочется — имеется большое желание исправить неполадки самостоятельно. Или может быть, например, есть какие-то познания в электросистемах, а потому работа по прокладке новых кабелей не кажется чем-то немыслимым. Как бы то ни было, в любом случае, предварительно стоит все же ознакомиться с основами электрики, с видами проводников, выяснить, как все это взаимосвязано и работает. Ведь очень важно понять, где располагается тот или иной провод — от этого будет зависеть правильность соединений и безопасность людей.

Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.

Разбираемся в основных терминах

С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.

Начинаем с основ

Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.

Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Основная характеристика переменного тока

Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.

«Фаза», «ноль» и «земля»

Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».

Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.

Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.

Чтобы не перепутать провода и не допустить короткого замыкания,  каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!

«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Случаи обрывов в токопроводящей цепи

Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.

Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.

Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.

Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.

В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.

Возникает «перекос фаз». В фазах с большей нагрузкой напряжение будет меньше, а с меньшей нагрузкой — больше и может достигнуть значительных величин, близким к 380 В. Это вызовет повреждение изоляционных материалов, нагрев и выход из строя оборудования. Предотвратить подобные случаи и защитить дорогое оборудование позволяет система защиты от перегрузок и высоких напряжений, монтируемая в квартирных щитках.

Варианты определения проводников «фаза»/«ноль»

Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.

Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.

Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

Элементы отвертки:

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.

Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.

Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.

Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник

Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:

Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.

Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

В заключении

Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.

Видео по теме

Фаза и ноль. работа и измерения. особенности

Виды повреждений

На стояке подъезда

Для начала в общих чертах рассмотрим, что собой представляет электросеть городского многоэтажного дома. Источником питания в данном случае является трансформаторная подстанция, от которой протянуты провода к главному распределительному щиту постройки. Напряжение в главном щитке трехфазное, то есть сеть 380 Вольт. Отсюда уже выводятся группы проводов на каждую квартиру. В самих квартирах сеть уже однофазная – 220 В. Если произойдет обрыв общего нуля на стояке подъезда, это может стать причиной выхода бытовой техники из строя. Приводит это к неравенству — в трехфазной схеме питания произойдет перекос фаз и вместо симметричной нагрузки образуется несимметричная, проходящая в четырехпроводной цепи.

Простыми словами можно это объяснить так: от главного щитка в подъезде к каждой отдельной квартире подается одинаковое напряжение – 220 В. Если произойдет обрыв нулевого провода, может получиться так, что к одной квартире поступит 300 Вольт, а к другой 170 (как пример). Результат – перенапряжение и «недонапряжение» станет причиной выхода электроприборов из строя. Обычно если происходит повреждение нуля, ломается техника, имеющая двигатель: стиральная машина, холодильник, кондиционер и т.д. Помимо этого может произойти пожар, что еще хуже.

Что собой представляет перекос фаз

Внутри жилого помещения

Совсем противоположная ситуация может произойти при обрыве нуля в однофазной сети 220 Вольт, то есть внутри Вашей квартиры, частного дома либо на даче. В этом случае последствием может стать поражение человека электрическим током. Происходит это потому, что в розетке у Вас появиться одноименная фаза на обоих зажимах. Сейчас мы расскажем, чем вызвано появление так называемой второй фазы.

От Вашего вводного щитка ток проходит по фазному проводу, а так как большинство потребителей электроэнергии постоянно подключены к сети (та же люстра), при обрыве напряжение перейдет от фазы к нулю. Результат – в двух отверстиях розетки будет присутствовать электрический ток. Но это еще не самое страшное, т.к. главная опасность заключается в том, что удар током может произойти от любой техники. Причина этому – неправильная система заземления сети в квартире либо доме. Если Вы подключите «землю» в распределительном щитке к нулевой шине (чего делать нельзя), при прикосновении к заземленному корпусу бытовой техники Вас сразу же ударит током. Последствия, как Вы понимаете, могут быть плачевными. Сразу же предоставляем к Вашему вниманию правильный вариант защиты от обрыва нуля в доме — сеть с системой заземления TN-S:

Подведя итог по поводу последствий обрыва нуля в трехфазной и однофазной сети, следует отметить следующее: при повреждении нулевого провода на стояке подъезда опасность распространиться на бытовую технику, а при повреждении рабочего нуля в самой квартире угроза распространится на Вас.

Увидеть, что может произойти, если оборвется нулевая жила, Вы можете на данном видео:

Наглядный обзор неисправности

Чем грозит обрыв фазного или нулевого провода

С течением времени в розетках, переходных коробках, выключателях можно наблюдать обрыв провода. Это может произойти вследствие некачественного соединения, когда нагрузка была больше допустимой. Когда пропадает ноль или фаза в квартире, электротехнические устройства и приборы прекращают работу.


Определение фазы на участке квартиры

Эта же ситуация будет ставить в известность потребителя, если произойдет обрыв провода на одном из участков питания до вводного или распределительного щита, тогда не только одна, но и все квартиры, питающиеся от оборванной фазы, останутся без электричества, но другие потребители, питающиеся от других фаз, будут его получать. Когда обрывается ноль, обесточиваются все квартиры в доме.

Определение фазы и нуля в помещении

Домашним инструментом для определения фазы служит отвертка-индикатор, которая в своем устройстве имеет:

  • токопроводящий наконечник по форме отвертки, который вставляют в одно из отверстий розетки для нахождения фазы;
  • резистор ограничения тока;
  • светодиод или неоновую лампочку, назначение которых — показать, что при их горении это и есть фаза;
  • с другой стороны пробника металлический контакт для пальца руки, которым создается цепь для протекания безопасного тока.


Определение фазы тока

Когда в проверяемом контакте есть свечение светодиода, то это и есть фаза. Значит, второй контакт — ноль. Можно также для определения использовать тестер или другой измерительный прибор напряжения, когда выполнено подключение защитного провода. В этом случае между фазой и рабочим нулем будет показываться 220 В, а между защитой и нулем стрелка не будет отклоняться.

Поиск неисправностей

Работоспособность схемы питания квартиры изображена простым определением. Наличие фазы или рабочего нуля — не совсем правильный подход, так как кроме этого надо соблюсти еще ряд мероприятий — учесть положение включающих устройств, наличие в розетках потребителей с нагревательными элементами, но выключенных кнопкой на приборе.


Нахождение электричества

По этой причине поиск обрыва сети надо проводить при пустых розетках и выключенных устройствах включения (выключателях), кроме тех случаев, когда обрыв может находиться на линии от выключателя до светильника. Типовая схема разводки электропитания в квартире — это когда на розетки приходит фаза и рабочий ноль, а на осветительный прибор через выключатель — фаза. Ноль на светильник обычно подается напрямую от распределительной коробки, что представлено на фото ниже:

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Про электричество. Что такое Фаза и Ноль

В электроэнергетике не так-то и много разновидностей подключённых проводов. Различают провода питания и защитные провода.

В этой небольшой статье мы не будем углубляться в дебри, трёхфазные и пятифазные сети. Всё рассмотрим буквально на пальцах, на том, что нас окружает и что есть в наличии во всех магазинах и в каждом электрифицированном жилище. Проще говоря, возьмём и вскроем обычную розетку.

Начнём с времён минувших и отдадим предпочтение той электрической розетке, которая была изготовлена и установлена лет так 10, а то и 15 назад. Мы видим, что розетка подключена всего к двум проводам.

Один из этих проводов обязательно должен иметь голубоватую или синюю окраску. Именно так определяется рабочий нулевой проводник. По нему не идёт ток от источника — он направляется от Вас к источнику. Он вполне безобидный, и если схватиться за него, не прикасаясь ко второму, то ничего страшного и ужасного не случится.

А вот второй провод, окраска которого может быть любой, за исключением синей, голубой, жёлто-зелёной в полоску и чёрной, более коварный и злостный. А что вы хотите, ведь он всегда под напряжением, так как именно к нему поступают свеженькие электроны и заряженные частицы от трансформаторов и генераторов электростанций и подстанций. Называется он фазный проводник.

Дотронувшись до этого провода, вы можете получить хорошенький разряд, вплоть до смертельного исхода. И это не шутки, так как любой ток, напряжение которого свыше 50 Вольт убивает человека за несколько секунд, а у нас в бытовых розетках не менее 220 Вольт переменного тока.

Наличие напряжения на фазных проводниках можно определить специальными индикаторами. Они выполнены в виде обыкновенных отвёрток с крестовиной или лопаткой.

Рукоятка такой отвёртки состоит из полупрозрачного пластика, внутри которой встроена лампочка — диод. Верхняя часть рукоятки — металлическая.

Дотроньтесь рабочей частью индикатора до проводника, а большим пальцем руки — до металлической части на рукоятке. Если встроенный диод загорелся, значит трогать этот провод не стоит — он сейчас под напряжением.

Заметьте, что нулевой проводник никогда не вызовет горение диода, так как на нём по определению нет напряжения при условии, что он не соприкасается с проводником, по которому протекает ток.

А что же мы увидим, если вскроем розетку современного производства, приобщённую к евро стандартам. В такой розетке три провода. Два нам уже знакомы. Фазный проводник, который всегда под напряжением и может иметь любую окраску. Рабочий нулевой проводник, как правило имеет синюю или голубоватую окраску. И третий проводник, состоящий из жёлтой и зелёной окраски вдоль всего провода, который принято называть защитным нулевым проводником. Причём обычно фазный проводник расположен справа в розетках или сверху в выключателях. А нулевой защитный проводник располагается слева в розетках или снизу в выключателях.

Если по фазному проводу поступает напряжение к розетки, а по нулевому уходит от розетки к источнику, то зачем же нужен защитный?

Если подключаемое в розетку оборудование полностью исправно и проводка в надлежащем состоянии, то защитный нулевой проводник не принимает никакого участия и попросту бездействует.

Но представим, что произошло короткое замыкание, перенапряжение или замыкание на части оборудования, нормально не находящиеся под напряжением. То есть ток попал на те части, которые обычно не находятся под его действием, и поэтому изначально не соединены с проводниками Фаза и Рабочий ноль. Вы попросту ощутите удар электрического того на себе, и в худшем случае — можете погибнуть в следствии остановки сердечной мышцы.

Тут и нужен тот самый защитный нулевой проводник. Он заберёт этот ток и перенаправит его к источнику или в землю, в зависимости от того, как выполнена проводка в конкретном помещении. И даже Если Вы случайно прикоснётесь к оборудованию, не нормально находящемуся под напряжением, вы не ощутите сильного удара, ведь ток тоже не дурак — он ищет лёгкие пути, то есть выбирает ту дорогу, где наименьшее сопротивление. Сопротивление человеческого тела составляет приблизительно 1000 Ом, в то время как сопротивление защитного нулевого проводника всего около 0,1-0,2 Ом.

Пользуйтесь современными технологиями и стандартами, чтобы быть в безопасности в любой момент при любых обстоятельствах. Помните, что Ваша безопасность зависит от принимаемых Вами действий и мероприятий по её обеспечению!

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

Период действия ПУЭПервая фазаL1Вторая фазаL2Третья фазаL3Нулевойпровод, NЗаземляющийпровод, РЕ
До 1 января 2011 г.желтыйзеленыйкрасныйголубой желто — зеленый (черный)
После 1 января 2011 г.коричневыйчерныйсерыйсветло-синий желто — зеленый

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током

Что представляет собой фаза и ноль в трехфазной сети

Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:

  • – Фаза – проводник, по которому к потребителю приходит ток;
  • – Ноль – проводник, по которому ток уходит от потребителя.

Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении

Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается

Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.

Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.

Теперь рассмотрим еще два термина и сразу дадим им определения:

  1. 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
  2. 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.

Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.

Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).

Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.

В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома – ток возвращается к заземлению на подстанции.

При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления

Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка

На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.

Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.

Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.

А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:

  1. 1. Если фазы нагружены до предела, то напряжение падает до нуля;
  2. 2. Если фазы наоборот не нагружены, то напряжение растет до 380.

Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.

Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.

Зануление в квартире

Электричество в современной жизни — источник создания комфортной жизни для человека. Вокруг нас постоянно работают электрические помощники бытового предназначения, это может быть кухонный комбайн или моющий пылесос, телевизор или ПК, по этой причине понимать, как получают питание эти приборы и устройства просто необходимо.

Важным аспектом безопасной эксплуатации бытовой техники является наличие в квартире рабочего нуля (N) и защитного провода (РЕ). Ноль нужен для создания нагрузки с использованием фазы, а защитный провод — зануления. В качестве защиты может применяться провод, имеющий соединение с ТП по изолированной схеме или глухо заземленной нейтралью — эффективный заземленный ноль.

Значение защитного провода можно рассмотреть на таком примере, как работа нагревательного устройства (бойлера). Вариант, который можно часто встретить, — это когда вследствие нагрузки и длительной работы элемент нагревания ТЭН делает пробой, иными словами, корпус лопается, и нить спирали касается воды. В этом случае вода — токопроводящая жидкость — касается корпуса обогревателя, но когда произойдет включение бойлера от терморегулятора, автомат защиты сработает от КЗ между корпусом и фазой, так как он был занулен защитным проводом, и человек не попадет под воздействие электротока. Не существует выражения «нулевая фаза», это противоположные понятия.

Нулевой проводник (нейтраль)

Для нулевого проводника или нейтрали традиционно используется синий цвет. Подключение в распределительном щитке осуществляется через специальную нулевую шину, обозначаемую символом N. К этой шине подключаются все провода, имеющие синий цвет.

Сама шина соединяется с вводом через счетчик электроэнергии. В некоторых случаях соединение может осуществляться напрямую, без каких-либо дополнительных автоматических устройств.

В распределительной коробке все нейтральные провода синего цвета соединяются вместе и не принимают участия в коммутации. Исключение составляет провод, идущий от выключателя. Подключение синих проводов к розеткам выполняется с помощью специального нулевого контакта, обозначаемого буквой N. Данная маркировка проставляется на оборотной стороне каждой розетки.

Принцип работы сети переменного тока

Сеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать

Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль. В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода. Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток. а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

В описанной выше ситуации защиту от поражения электрическим током может также обеспечить устройство защитного отключения.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, поскольку существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

Выводы Правила заземления

Радикальные методы решения проблем заземления:

  1. Используйте модули ввода.вывода только с гальванической развязкой
  2. Не применяйте длинных проводов от аналоговых датчиков
  3. Располагайте модули ввода в непосредственной близости к датчику, а сигнал передавайте в цифровой форме
  4. Используйте датчики с цифровым интерфейсом
  5. На открытой местности и при больших дистанциях используйте оптический кабель вместо медного
  6. Используйте только дифференциальные (не одиночные) входы модулей аналогового ввода

Еще советы:

  1. Используйте в пределах вашей системы автоматизации отдельную землю из медной шины, соединив её с шиной защитного заземления здания только в одной точке
  2. Аналоговую, цифровую и силовую землю системы соединяйте только в одной точке. Если этого сделать невозможно, используйте медную шину с большой площадью поперечного сечения для уменьшения сопротивления между разными точками подключения земель
  3. Следите, чтобы при монтаже системы заземления случайно не образовался замкнутый контур
  4. Не используйте по возможности землю как уровень отсчёта напряжения при передаче сигнала
  5. Если провод заземления не может быть коротким или если по конструктивным соображениям необходимо заземлить две части гальванически связанной системы в разных точках, то эти системы нужно разделить с помощью гальванической развязки
  6. Цепи, изолированные гальванически, нужно заземлять, чтобы избежать накопления статических зарядов
  7. Экспериментируйте и пользуйтесь приборами для оценки качества заземления. Допущенные ошибки не видны сразу
  8. Пытайтесь идентифицировать источник и приёмник помех, затем нарисуйте эквивалентную схему цепи передачи помехи с учётом паразитных ёмкостей и индуктивностей
  9. Пытайтесь выделить самую мощную помеху и в первую очередь защищайтесь от неё
  10. Цепи с существенно различающейся мощностью следует заземлять группами, в каждой группе – блоки с примерно равной мощностью
  11. Заземляющие проводники с большим током должны проходить отдельно от чувствительных проводников с малым измерительным сигналом
  12. Провод заземления должен быть по возможности прямым и коротким
  13. Не делайте полосу пропускания приёмника сигнала шире, чем это надо из соображений точности измерений
  14. Используйте экранированные кабели, экран заземляйте в одной точке со стороны источника сигнала на частотах ниже 1 МГц и в нескольких точках – на более высоких частотах
  15. Для особо чувствительных измерений используйте «плавающий» батарейный источник питания
  16. Самая «грязная» земля – от сетевого блока питания. Не совмещайте её с аналоговой землёй.
  17. Экраны должны быть изолированными, чтобы не появилось случайных замкнутых контуров, а также электрического контакта между экраном и землёй

Разница фазы и ноля в электрических цепях

Невозможно дать определение фазе, рассматривая ее как отдельный элемент. Физические процессы, протекающие в сети, тесно взаимосвязаны с другими составляющими: фаза, ноль, земля невозможны без совокупности всех элементов. Поэтому рассматривать надо назначение всех составляющих и процессы, происходящие в них, понимая, что такое фаза и ноль, нагрузка и заземление.

Фаза в однофазной сети жилого помещения

Структура электросети, основные элементы

Из школьного курса физики известно, что если вращать постоянный магнит вокруг обмотки на катушке в проводах, возникает ЭДС (электро-движущая сила), которая перемещает заряженные частицы по проводам. Этот пример хорошо объясняет, что такое фаза и ноль в электричестве.

Пример получения ЭДС и тока в рамке металлического проводника

На основе этого принципа в промышленных масштабах создаются генераторы электрической энергии: это может быть атомная, гидро,- или тепловая электростанция. Иногда для обеспечения временного электроснабжения в аварийных случаях используют дизельные, газовые или бензиновые генераторы на объектах, которые потребляют незначительные мощности. В истории были случаи, когда атомные подлодки и ледоколы снабжали электроэнергией целые населенные пункты.

Схема магистрали передачи и преобразования электроэнергии

С генераторов электростанций электроэнергия по токопроводящим жилам кабелей или ЛЭП (воздушные линии электропередачи) с большим напряжением 6-10 кВ передается на понижающие до 04 кВ трансформаторные подстанции. С низкой стороны трансформатора энергия подается на распределительные щиты промышленных объектов, жилых домов и квартир в многоэтажных домах. Можно сказать, что фаза в электротехнике является транспортной системой для передачи электроэнергии. По этим токопроводящим жилам кабеля или ЛЭП происходит перемещение заряженных частиц со скоростью света к нагрузке.

Именно в кабеле жилы разделяют как фаза, ноль, земля. Промышленные электростанции передают к потребителям энергию по четырехжильным или пятижильным кабелям.

Подключение обмоток генератора к трехфазной сети

С трех отдельных обмоток генератора токи снимаются и протекают по разным жилам к нагрузке. Эти жилы в электрике называют фазами. Четвертая жила – нейтральный провод, который в конечном итоге в распределительных щитах, трансформаторных подстанциях и генераторах подключается к шине заземления. Такие схемы называются цепи с заземленной нейтралью. Фаза в электричестве – это токопроводящая часть, по которой заряженные частицы передвигаются от генератора к нагрузке. Чтобы понять, что такое ноль, или зачем нейтральная жила, можно сравнить электрический ток с потоком воды.

Протекающий поток с верхней точки вращает колесо своей кинетической энергией, совершая определенную работу, потом стекает в реку или озеро, которая находится ниже по уровню. В случае с электричеством поток заряженных частиц с высоким по отношению к земле потенциалом стремится по фазному проводу к нагрузке. Как пример можно взять лампу накаливания. Совершается работа на разогрев спирали лампы. После прохождения нагрузки по нейтральному проводу ток уходит в землю, фактически нулевой провод нужен для отвода тока в землю после совершения им определенной работы.

Пятая жила заземления обеспечивает безопасность эксплуатации электроустановок. Она, как и жила нуля, подключается к шинам заземления, которые замыкаются на общий заземляющий контур. Каждый корпус оборудования на производстве или бытового прибора заземляется, при замыкании фазного провода на корпус срабатывают устройства защиты, сеть обесточивается. Таким образом, исключается вариант поражения человека электрическим током. Отличие заземления и нулевого провода в том, что нулевую жилу подключают к контактам нагрузки, а заземляющий провод – к корпусу оборудования.

Определение фазы в электрических сетях

При монтаже, обслуживании и ремонтных работах иногда возникают проблемы, как отличить фазу от нулевого и заземляющего провода. На разных участках сети делается соответствующая маркировка.

На электростанциях, трансформаторных подстанциях и распределительных устройствах токопроводящие шины, к которым подключаются кабельные жилы, маркируются цветом и буквенными обозначениями:

  1. Фазы обозначают А – желтым цветом;
  2. В – зеленым цветом;
  3. С – красным цветом.

Маркировка фаз по цвету

При такой маркировке фаза в электричестве легче определяется, нейтральная шина обозначается буквой «N» и красится в синий/голубой цвет. На шину заземления ставят соответствующий знак и желто-зеленый полосатый окрас.

Трансформаторная подстанция с маркированными шинами

По требованиям ПУЭ (Правила устройства электроустановок) кабельные токопроводящие жилы тоже имеют маркировку по цвету изоляционного слоя. Синяя жила подключается к нейтральной шине, желто-зеленая – на контур заземления, красная, черная, белая и другие цвета могут использоваться в качестве фаз. Такую же маркировку используют при прокладке проводов с меньшим сечением в РЩ для розеточных и осветительных групп.

Маркировка проводов

К сожалению, данные требования не всегда выполняются при проведении монтажных работ, особенно на участках от РУ до приборов освещения, розеток и отдельных бытовых приборов.

Схема подключения многоквартирного дома к трехфазной сети

В условиях скрытой проводки визуально по концам на выходе кабеля у розетки невозможно определить назначение проводника, когда все или несколько жил имеют одинаковый цвет изоляции.

В этих случаях используются индикаторные и измерительные приборы, наиболее востребованными из них считаются индикаторная отвертка и мультиметр. Для определения фазного провода среди выходящих концов из подрозетника достаточно использовать индикаторную отвертку. Нужно прикоснуться пером отвертки к оголенному концу, а большим пальцем – к контакту на верхней части ручки отвертки. При наличии напряжения на проводе индикаторная лампочка в прозрачной рукоятке засветится.

Определение фазы индикаторной отверткой

Это классический вариант, когда отверткой определяется фаза тока в проводе. Производители делают много современных конструкций, где достаточно прикоснуться пером отвертки к изолированному проводу на любом участке, и световая и звуковая индикация укажет наличие напряжения. Но почему-то потребители предпочитают классические старые модели, они отличаются высокой надежностью, не требуют питания и замены батареек. Виды и конструкции индикаторных отверток – эта тема, которая требует более детального рассмотрения в отдельной статье. Между нейтральным и заземляющим проводом разница потенциалов равна нулю, напряжения нет, соответственно, индикатор не светится. Такой метод годится, когда надо выделить фазы среди проводов, выходящих из подрозетника или распределительной коробки, особенно, когда сеть однофазная для обычной розетки разность потенциалов между фазой и заземлением 220В.

В распределительных коробках на промышленных объектах, когда используется оборудование с трехфазным питанием на 380В, проводов может быть много и различного назначения. Жгуты с проводами различных цветов разводятся для питания электромоторов, управления магнитными пускателями и другими элементами оборудования на производстве. Чтобы среди множества проводов выделить разные фазы, недостаточно индикаторной отвертки, для этой цели потребуется мультиметр. В этом случае он используется в режиме измерений переменного напряжения на пределе 750V.

В трехфазной сети между разными фазами напряжение составляет 380В, между фазами и нулевым или заземляющим проводом – 220В. Прикладывая щупы к оголенным концам, отделяются провода, между которыми 380В, это отдельные фазы сети. Третья фаза вычисляется аналогично: если между уже выделенными концами и искомым проводом 380В, значит это она.

Напряжение между фазами и нейтральным проводом в сети частного дома

К сведению. Если в процессе измерения между двумя проводами, показывающими наличие фазы, напряжение 0В, эти концы исходят от одной фазы.

В результате изложенной информации можно сделать вывод, что такое фаза в однофазной сети. Это участок провода, идущий от РЩ до выключателя нагрузки, при исправной сети он находится постоянно под напряжением относительно нейтрального и заземляющего провода, после нагрузки идет нулевой провод. В трехфазной сети обмотки электродвигателей, нагревательные ТЭНы и другие приборы включаются между фазами. Провода до выключателя нагрузки постоянно находятся под напряжением, нулевой провод в схеме соединения обмоток звездой подключен в точке соединения трех обмоток на генераторе и после нагрузки. Для выключения и включения используются многополюсные автоматические выключатели или магнитные пускатели, которые разрывают цепь одновременно по трем фазам.

Видео

Оцените статью:

Фаза, ноль и земля – что это такое?

Электрическая энергия, которой мы пользуемся, вырабатывается генераторами переменного тока на электростанциях. Их вращает энергия сжигаемого топлива (угля, газа) на ТЭС, падающей воды на ГЭС или ядерного распада на АЭС. До нас электричество добирается через сотни километров линий электропередач, претерпевая по дороге преобразования с одной величины напряжения в другую. От трансформаторной подстанции оно приходит в распределительные щитки подъездов и далее – в квартиру. Или по линии распределяется между частными домами поселка или деревни.

Разберемся, откуда берутся понятия «фаза», «ноль» и «земля». Выходной элемент подстанции — понижающий трансформатор, с его обмоток низкого напряжения идет питание потребителю. Обмотки соединяются в звезду внутри трансформатора, общая точка которой (нейтраль) заземляется на трансформаторной подстанции. Отдельным проводником она идет к потребителю. Идут к нему и проводники трех выводов других концов обмоток. Эти три проводника называются «фазами» (L1, L2, L3), а общий проводник – нулем (PEN).

Система с глухозаземленной нейтралью

Поскольку нулевой проводник заземлен, то такая система называется «системой с глухозаземленной нейтралью». Проводник PEN называется совмещенным нулевым проводником. До выхода в свет 7-го издания ПУЭ ноль в таком виде доходил до потребителя, что создавало неудобства при заземлении корпусов электрооборудования. Для этого их соединяли с нулем, и это называлось занулением. Но через ноль шел и рабочий ток, и его потенциал не всегда равнялся нулю, что создавало риск поражения электрическим током.

Теперь из вновь вводимых трансформаторных подстанций выходят два нулевых проводника: нулевой рабочий (N) и нулевой защитный (РЕ). Функции их разделены: по рабочему протекает ток нагрузки, а защитный соединяет подлежащие заземлению токопроводящие части с контуром заземления подстанции. На отходящих от нее линиях электропередачи нулевой защитный проводник дополнительно соединяют с контуром повторного заземления опор, содержащих элементы защиты от перенапряжений. При вводе в дом его соединяют с контуром заземления.

Напряжения и токи нагрузки в системе с глухозаземленной нейтралью

Напряжение между фазами трехфазной системы называют линейным, а между фазой и рабочим нулем – фазным. Номинальные фазные напряжения равны 220 В, а линейные – 380 В. Провода или кабели, содержащие в себе все три фазы, рабочий и защитный ноль, проходят по этажным щиткам многоквартирного дома. В сельской местности они расходятся по поселку при помощи самонесущего изолированного провода (СИП). Если линия содержит четыре алюминиевых провода на изоляторах, значит, используются три фазы и PEN. Разделение на N и РЕ в таком случае выполняется для каждого дома индивидуально во вводном щитке.

К каждому потребителю в квартиру приходит одна фаза, рабочий и защитный ноль. Потребители дома распределяются по фазам равномерно, чтобы нагрузка была одинаковой. Но на практике этого не получается: невозможно предугадать, какую мощность будет потреблять каждый абонент. Так как токи нагрузки в разных фазах трансформатора не одинаковы, то происходит явление, называемое «смещением нейтрали». Между «землей» и нулевым проводником у потребителя появляется разность потенциалов. Она увеличивается, если сечения проводника недостаточно или его контакт с выводом нейтрали трансформатора ухудшается. При прекращении связи с нейтралью происходит авария: в максимально нагруженных фазах напряжение стремится к нулю. В ненагруженных фазах напряжение становится близким к 380 В, и все оборудование выходит из строя.

В случае, когда в такую ситуацию попадает проводник PEN, под напряжением оказываются все зануленные корпуса щитов и электроприборов. Прикосновение к ним опасно для жизни. Разделение функции защитного и рабочего проводника позволяет избежать поражения электрическим током в такой ситуации.

Как распознать фазные и защитные проводники

Фазные проводники несут в себе потенциал относительно земли, равный 220 В (фазному напряжению). Прикосновение к ним опасно для жизни. Но на этом основан способ их распознавания. Для этого применяется прибор, называемый однополюсным указателем напряжения или индикатором. Внутри него расположены последовательно соединенные лампочка и резистор. При прикосновении к «фазе» индикатором ток протекает через него и тело человека в землю. Лампочка светится. Сопротивление резистора и порог зажигания лампочки подобраны так, чтобы ток был за гранью чувствительности человеческого организма и им не ощущался.

Конструкция однополюсного указателя напряжения
Конструкция однополюсного указателя напряжения
1корпус
2разъемное соединение
3пружина
4индикаторная неоновая лампа
5контакт для прикосновения
6изолированная часть
7резистор

Распознать фазные проводники можно по их расцветке, для них используются черный, серый, коричневый, белый или красный цвет. Сложнее всего со старыми электрощитами: в них проводники одного цвета. Но «фазу» с помощью индикатора определить можно всегда и без ошибок.

Нулевой рабочий проводник – синего (голубого) цвета, защитный маркируется желто-зелеными полосами. Напряжение на них отсутствует, но лучше без нужды их не касаться. Есть у электриков такой закон: если сейчас напряжения нет, то оно может появиться в любой момент.

Оцените качество статьи:

границ | Фаза 0 Клиническая разработка радиофармацевтического препарата

Введение

Переход от неспецифических цитотоксических препаратов или лучевой терапии расширенного поля к использованию целевых лекарств или радиофармпрепаратов требует переоценки стратегии клинических разработок Национального института рака США (NCI). К числу проблем, которые подрывают традиционный подход к клинической разработке, относятся: (а) высокие затраты на пациента, финансовые или профессиональные ресурсы; (б) возрастающая сложность исследовательских задач в клинических испытаниях; и (c) естественное убеждение, что переносимая токсичность исследуемого агента порождает эффективность (1, 2).Таким образом, ранняя фаза I исследования ставит в качестве основной цели определение максимальной дозы исследуемого агента, которая ассоциируется с переносимой токсичностью [то есть максимальной переносимой дозой (MTD)], которая затем переносится в исследования эффективности фазы II (3). В исследовании эффективности фазы II объективное уменьшение опухоли (то есть скорость ответа) в исследованиях с одной группой (4) или длительная выживаемость без прогрессирования (PFS) или общая выживаемость (OS) в рандомизированных исследованиях (5) определяет пригодность для окончательного рандомизированные исследования III фазы.Рандомизированные исследования фазы III являются золотым стандартом для выделения преимуществ новых лечебных эффектов по сравнению с эффектами традиционной терапии.

Для комбинаций радиофармпрепаратов и онкологических препаратов, нацеленных на антитела или пептиды, определение биологически эффективной дозы вместо МПД может быть наиболее актуальной целью раннего испытания, даже если оба подхода разумны (таблица 1). Разработка и внедрение сложных фармакокинетических и фармакодинамических инструментов в клинических испытаниях радиофармпрепаратов использовались недостаточно в течение последних четырех десятилетий (6).Из-за постоянно растущего числа новых молекулярных объектов (NME), нацеленных на антитела или пептиды, ресурсы, необходимые для фармакокинетических и фармакодинамических исследований для каждого идентифицированного NME, не всегда доступны для многих исследователей лечения рака. Но NCI находится в благоприятном положении для создания и развития таких ресурсов в краткосрочной и долгосрочной перспективе (7). Например, NCI Small Business Innovation Research Program (SBIR) предоставляет проекты на стадии открытия, направленные на коммерческую разработку инструментов на основе радиофармацевтической дозиметрии для индивидуального планирования лечения пациентов (8).Регулярная доступность прогнозирующих фармакодинамических биомаркеров для ранней фазы испытаний приведет к появлению более сложной стратегии разработки комбинаций радиофармпрепаратов и агентов.

Таблица 1 . Различия между испытаниями фазы I и фазы 0.

В текущей стратегии развития NCI после соответствующих доклинических экспериментов, связанных с раком, испытания безопасности фазы I предшествуют исследованиям эффективности фазы II, а затем, если это оправдано, проводятся рандомизированные испытания фазы III для сравнения новой комбинации агентов со стандартной терапией (Рисунок 1) .Мы предлагаем сократить сроки разработки комбинации радиофармпрепарата и агента за счет проведения испытаний фазы 0, которые объединяют фармакокинетические и фармакодинамические оценки для информирования и ускорения разработки на следующей фазе (рис. 1). В настоящее время испытания фазы 0 Программы оценки терапии рака NCI (CTEP) проводятся в рамках заявки на исследовательский исследуемый новый лекарственный препарат (xIND), как указано в руководстве Управления по контролю за продуктами и лекарствами (FDA) 2006 г. (9). Мы утверждаем, что интеграция фармакокинетических и фармакодинамических анализов помогает оценить биологические эффекты радиофармацевтического препарата (а), (б) начальные дозы и (в) графики (таблица 1).Испытания фазы 0 могут также предоставить информацию для отбора пациентов или оценки ответа в последующих испытаниях фазы II, как это делают типичные испытания фазы I (таблица 1). Эту точку зрения лучше всего иллюстрируют наши мысли о дотатате лютеция-177 ( 177 Lu) (Lutathera), одобренном FDA для рецепторов соматостатина (10, 11). Проблемы и возможности в рамках стратегии разработки терапевтических радиофармацевтических препаратов обсуждаются далее в контексте клинического использования 177 Lu-дотатата.

Рисунок 1 . Этапы разработки радиофармпрепарата – лекарственного средства. (A) Изображены этапы оценки молекулярных целевых эффектов или цитотоксичности новой комбинации радиофармпрепарата и агента. N - приблизительный размер выборки пациентов, необходимый для завершения фазы исследования. Подтвержденные концепции экспериментов in vitro, и in vivo, обеспечивают конечные точки токсичности и эффективности, чаще всего на двух или более моделях представляющих интерес заболеваний, которые оправдывают обычные испытания фаз I и II. (B) Проиллюстрированы этапы оценки молекулярных целевых эффектов или цитотоксичности новой комбинации радиофармацевтического препарата и агента с использованием подхода сжатой фазы 0. X - предполагаемое количество субъектов, необходимое для завершения исследования фазы 0 (~ 8–10). Доказательство концепции in silico или впервые на людях Микродозиметрические исследования (т.е. исследования концентрации времени) предоставляют данные, которые определяют планирование и выполнение in vitro, и in vivo, , при двух или более заболеваниях: интересуют модели.Далее следует исследование фазы 0 (предварительное испытание фазы II) с участием небольшого числа субъектов, которые используют либо однократные, либо сокращенные курсы лечения радиофармацевтическими препаратами. Этот тип исследования «целевой оценки» собирает не только данные о безопасности, но также окончательные фармакокинетические параметры, фармакодинамические конечные точки и реакции опухоли у субъектов с различными типами рака. Исследование фазы 0 может предоставить предварительную оценку того, связаны ли облучение или поражение мишени с клиническими конечными точками (т.е., опухолевый ответ). Данные фазы 0 информируют о статистическом дизайне испытаний эффективности фазы II с «целевой проверкой» за счет сокращения числа пациентов.

Вызовы и возможности

Баланс между продуцированием, перемещением и последующей деградацией пептидов in vivo in vivo определяет количественные уровни этих пептидов, используемых в качестве биомаркеров для действия лекарственного средства. Антипролиферативное действие суперсемейства рецепторов соматостатина, состоящих из пяти частей и семи трансмембранных доменов, связанных с G белком, иллюстрирует это (12-15).Существуют две биологические формы соматостатина (т.е. -14 и -18), которые имеют различное сродство к рецепторам соматостатина (SSTR) - соматостатин-14 имеет самое высокое сродство к SSTR1 через SSTR4, в то время как соматостатин-18 селективно связывается с SSTR5 (12) . Четыре рецептора (SSTR1, 2, 4 и 5) вызывают остановку клеточного цикла либо посредством SHP-1/2-опосредованного, либо опосредованного чувствительным к коклюшному токсину K + канала ингибирования Ras-Raf-Src-митоген-активированного каскад пептидов протеинкиназы киназы (MEK) (16–19). Кроме того, также было показано, что SSTR2 активирует SHP-1, чтобы активировать регулятор клеточного цикла p27 / Kip1, который секвестрирует Cdk2 и блокирует комплексообразование циклина E / Cdk2 в контрольной точке рестрикции G1 / S (20, 21).Ось SSTR2-SHP-1-p27 / kip1 особенно важна для терапевтических противоопухолевых стратегий. SSTR3 однозначно запускает как SHP-2, чтобы инактивировать Raf (22), так и SHP-1 для регуляции сигнала апоптоза p53 / Bcl-2 (23). Кроме того, опосредованное SSTR3 закисление клеток вызывает апоптоз, опосредованный каспазой-8 (24). Структурные аналоги, подобные соматостатину, используемому в медицинской клинике, октреотид и ланреотид, связываются с самым высоким сродством с SSTR4 и умеренным сродством с SSTR3 и SSTR5 (25).

Терапевтическая проблема, возникающая в связи с циклом производства, доставки и деградации пептидных рецепторов, заключается в том, что готовые к испытаниям фармакодинамические исследования могут потребовать разработки и валидации до трех анализов, чтобы сделать выводы о терапевтической активности.Чтобы лучше объяснить этот момент, предположим, что если у одного пациента была сверхэкспрессия (высокая продукция) целевых пептидных рецепторов, но низкая деградация, фармакодинамический анализ микродоз для пептидно-целевого радиофармацевтического препарата мог бы предсказать, что пациент является респондентом. Учтите, что у другого пациента может быть как высокая сверхэкспрессия, так и высокая деградация целевых пептидных рецепторов. Фармакодинамический анализ микродоз у этого последнего пациента может предсказать ответ, хотя на самом деле его может и не быть из-за высокой деградации целевых пептидных рецепторов.Для обоих сценариев лечения пациента оценка ответа на лечение может относиться к смешанной, стабильной категории или категории отсутствия ответа. Подобная проблема интерпретации влияет на расчет персонализированной дозы радиофармпрепарата, например, для 177 Lu-дотатата. Необходимы дальнейшие исследования.

Хелатор DOTA (тетраазациклододекантетрауксусная кислота) -Tyr 3 -октреотат (дотатат), целевой пептид для радиоактивной нагрузки 177 Lu, связывается с большим сродством к SSTR2, чем октреотид, и, таким образом, имеет более высокую поверхностную связь с опухолью (26, 27 ).Маркировка дотатата галлием-68 ( 68 Ga) позволяет проводить диагностику и микродозирование на основе позитронно-эмиссионной томографии с повышенной чувствительностью и специфичностью (28). Он сам по себе не может предсказать ответ на лечение 177 Lu-дотататом; это требует дальнейших исследований. Позитронно-эмиссионная томография 68 Ga позволяет рассчитать индивидуальную дозу радиофармпрепарата (29). Мечение дотатата с терапевтическим назначением с помощью 177 Lu может, таким образом, включать (а) часть, связанную с целевым поверхностным рецептором (здесь SSTR2), (б) часть, интернализованную рецептор-опосредованным эндоцитозом, которая несет радиоактивную нагрузку 177 Lu. в клетку (30), и (c) пропорция, которая приводит к высокой концентрации радиоизотопа в раковой клетке после деградации рецептора.В клинических исследованиях сложно определить, влияет ли поверхностная, интернализованная или внутриклеточная локализация на частоту объективного ответа. Три клинических исследования использовали это обоснование для клинической разработки агента.

Первое клиническое исследование было проведено в Роттердаме, Нидерланды, между 2000 и 2006 годами, в нем приняли участие 504 пациента с 111 In-DTPA octreotide сцинтиграфически-положительными опухолями карциноидной, панкреатической нейроэндокринной и нейроэндокринной систем неизвестного происхождения (ERASMUS) (31).Пациенты получали кумулятивную дозу до 177 Lu-дотатата 750-800 мКи (27,8-29,6 ГБк) внутривенно, разделенную на четыре 8-недельных цикла по ~ 200 мКи, что соответствовало дозе облучения костного мозга в 2 Гр. , если дозиметрия почек не показала, что доза облучения превысит 23 Гр, и в этих случаях кумулятивная доза была снижена до 500–700 мКи. Перед началом приема радиофармпрепарата внутривенно вводили противорвотные средства. Настой аминокислот (лизин 2,5%, аргинин 2.5% в 1 л 0,9% NaCl; 250 мл / ч) начинали за 30 мин до введения радиофармпрепарата и длились 4 ч. Частота объективных ответов составила 46% (31). Медиана выживаемости без прогрессирования заболевания и общая выживаемость составляли соответственно 33 и 46 месяцев (31).

В первом американском многоцентровом одноранговом исследовании 177 Lu-дотатата было набрано 37 пациентов с рецидивом или рефрактерной терапией с 111 In-DTPA octreotide сцинтиграфически положительными гастроэнтеропанкреатическими нейроэндокринными опухолями в период с 2010 по 2013 год (32).Пациенты получали до четырех инфузий 200 мКи (7,4 ГБк) 177 Lu-дотатата каждые 8 ​​недель [кумулятивная доза 800 мКи (29,6 ГБк)]. 15% раствор аминокислоты клинизола (1 л) для защиты почек начинали за 30 мин до введения радиофармпрепарата и продолжали 4 часа. Разрешены противорвотные средства. Пациенты были освобождены от места лечения, когда облучение, измеренное на расстоянии 1 м при выписке, составляло от трех до шести миллибэр в час (32). Восемьдесят процентов пациентов, которым вводили хотя бы одну дозу, отметили обратимую тошноту или рвоту; токсичности 4 степени и выше не обнаружено.Тридцать один процент (10 из 32) ответили (32).

В период с 2012 по 2016 год третье клиническое исследование было проведено у 229 пациентов с неоперабельными высокодифференцированными (индекс Ki67 20% или менее) нейроэндокринными опухолями средней кишки с положительным результатом сцинтиграфии по рецепторам соматостатина, у которых отмечалось заметное прогрессирование заболевания во время лечения октреотидом длительного действия (LAR) в течение максимум 3 лет до зачисления (33). Сто десять (98%) из 113 получали октреотид LAR в высоких дозах в дозе 60 мг, повторяемой каждые 4 недели (контрольная группа).111 (96%) из 116 получили четыре инфузии 200 мКи (7,4 ГБк) 177 Lu-дотатата (экспериментальная группа) каждые 8 ​​недель [совокупная доза 800 мКи (29,6 ГБк)]. Для защиты почек вводили внутривенные аминокислоты [Aminosyn II 10% (21,0 г лизина и 20,4 г аргинина в 2 л раствора) или ВАМИН-18 (18 г лизина и 22,6 г аргинина в 2 л раствора)]. началось за 30 мин до введения радиофармпрепарата и длилось 4 ч. Инъекции октреотида были разрешены в обеих группах лечения гормональных симптомов (например,g., диарея или приливы). Частота объективного ответа составила 18% после применения 177 Lu-дотатата и 3% после приема высоких доз октреотида LAR (33). Медиана выживаемости без прогрессирования еще не была достигнута после приема 177 лютеция дотатата и составила 8 месяцев после приема высоких доз октреотида LAR (33). Для 20-месячной оценки выживаемости без прогрессирования, 177 Lu-дотатат ​​показал отсутствие прогрессирования на 65% по сравнению с 11% после приема высоких доз октреотида LAR (33). Через 20 месяцев оценка общей выживаемости составила 82% после применения 177 Lu-дотатата и 50% после приема высоких доз октреотида LAR, достигнув значимого отношения рисков, равного 0.40 ( P = 0,004; 33).

Перспективы клинической разработки радиофармпрепаратов фазы 0

Ключевым вопросом при разработке традиционных агентов является вопрос о том, влияют ли доза и график комбинации агентов на эффективность. Один из таких подходов среди множества альтернатив заключается в использовании исследования фазы 0 однократной оптимальной дозы или ограниченного числа повторных доз в различных схемах с фармакокинетическими и фармакодинамическими оценками (рисунки 1–3). В фармакодинамических оценках могут использоваться анализы на основе крови, которые проверяют уровень повреждения ДНК, отмеченного фокусами γh3AX в лимфоцитах, продуцируемых транзитной комбинацией радиофармпрепарата и агента (34–36).Оптимальный график и последовательность для использования в исследованиях комбинации агентов можно оценить как такую, при которой оптимальные уровни повреждения ДНК в лимфоцитах при добавлении пары радиофармпрепарат-агент соответствуют заранее определенному порогу терапевтического ответа опухоли или «успеха». Другими источниками изменения очагов γh3AX могут быть волосяные фолликулы кожи. Для таких комбинаций комбинаторное воздействие одного радиофармпрепарата на другой онкологическое средство может происходить при дозах облучения, значительно меньших максимальной переносимой дозы традиционного онкологического агента.Мы утверждаем, что без адекватного фармакодинамического тестирования шанс оптимизировать дизайн исследования фазы II упущен. Любые данные о фармакокинетическом удерживании или удалении органов для различных введенных дозировок будут информировать исследователей о том, следует ли отслеживать нежелательные явления, представляющие особый интерес, в будущих исследованиях. Фармакокинетические данные также позволят оценить дозиметрию облучения (или дозу облучения, направленную на опухоль и нормальные органы риска, такие как почки и костный мозг).Подход к испытаниям фазы 0, оценивающий небольшое количество доз и графиков с участием ограниченного числа субъектов, может теоретически рекомендовать следующие испытания (рисунки 1–3).

Рисунок 2 . Этапы разработки диагностико-терапевтических или «тераностических» радиофармпрепаратов. (A) Проиллюстрированы стандартные стадии ранней фазы разработки диагностических и терапевтических радиофармацевтических пар [например, 68 Ga (диагностический) и 177 Lu (терапевтический) для нейроэндокринного рака].N - предполагаемый размер выборки пациентов, необходимый для завершения каждой фазы исследования. Доказательство концепции - первые на людях микродозиметрические исследования (т.е. исследования концентрации во времени) характеризуют начальную взаимосвязь между лигандами антитело-рецептор или пептид-рецептор с использованием диагностического радионуклида (в данном примере 68 Ga). Затем пациентам фазы I, зарегистрированным с опухолями, у которых обнаружен положительный диагностический лиганд (удерживание 68 Ga на визуализации ядерной медицины), вводят терапевтические дозы ( 177 Lu, в этом примере) с онкологическими препаратами или без них для оценки безопасности лечения. .Испытания фазы II эффективности проводятся для изучения клинических конечных точек (т. Е. Ответа опухоли, продолжительности ответа и выживаемости без прогрессирования или общей выживаемости). Если это оправдано, окончательные испытания фазы III проводятся на поздней стадии разработки, чтобы сравнить новое лечение со стандартным лечением. (B) Изображены этапы разработки пары диагностических и терапевтических радиофармпрепаратов с использованием подхода фазы 0 с сжатой временной шкалой. N - количество пациентов, необходимое для завершения фазы исследования.X - количество субъектов фазы 0, необходимое для конечных точек безопасности, фармакокинетики и фармакодинамики (~ 8–10). В ходе исследования фазы 0 могут быть собраны данные о (а) диагностическом радионуклиде (т. Е. О поглощающем радиоактивном индикаторе, 68 Ga-дотатате), чтобы продемонстрировать интеграл целевой положительности для соответствия критериям исследования, прежде чем вводить терапевтическую дозу исследуемого радиофармацевтического препарата, (b) a обычный индикатор ответа [например, позитронно-эмиссионная томография (ПЭТ) 18 F-FDG] как интегральная оценка конечной точки клинического ответа, и (c) дозиметрический радионуклид (i.e., локализационный радиоактивный индикатор) для измерения действительной дозы облучения в целевых опухолях. Затем проводятся испытания фазы II эффективности с целевым диагностическим и терапевтическим ответом на радиофармпрепараты с дозиметрическими подисследованиями. Если есть многообещающие результаты, следует провести окончательное исследование III фазы, чтобы сопоставить клинические конечные точки после нового или стандартного лечения.

Рисунок 3 . Конечные точки фармакодинамической эффективности исследования фазы 0. Здесь проиллюстрированы два важных аспекта дизайна исследования фазы 0 с конечными точками фармакодинамической эффективности.Для фармакодинамического ответа получают оценки биомаркеров на исходном уровне и после лечения. Ответ определяется двумя параметрами - фармакодинамическим ответом и заранее заданным когортным ответом. (A) Фармакодинамический ответ считается положительным, когда сигнал биомаркера [например, область иммунофлуоресценции фокусов γh3AX (зеленые точки)] проходит заранее заданный порог действия биомаркера. (B) Заранее определенный ответ когорты считается положительным, когда количество субъектов, показывающих положительный фармакодинамический ответ, превышает заранее определенный порог для «положительной» пропорции.Этот двухэтапный процесс определяет, что устанавливает благоприятный наблюдаемый фармакодинамический ответ в исследовании фазы 0 - другими словами, сколько субъектов должны продемонстрировать фармакодинамический ответ, чтобы исследование фазы 0 было объявлено биологически эффективным. Это параллельно с определением порога наблюдаемой скорости ответа в испытании фазы II, чтобы комбинация радиофармпрепарата и агента считалась достаточно благоприятной для дальнейшего тестирования в испытаниях.

Терапевтические радиофармацевтические препараты высокоспецифичны, имеют желаемое время пребывания в мишени и обладают благоприятными характеристиками элиминации, которые обеспечивают оптимальную дифференциацию опухоли от фона.Диагностико-терапевтические радиофармацевтические пары, так называемые «тераностики», могут быть оценены с помощью исследований микродоз, в которых набирается небольшое количество субъектов фазы 0 для изучения биораспределения, времени пребывания, дозиметрии излучения и соответствующего биологического эффекта. Таким образом, испытание фазы 0 радиофармацевтического препарата может отсортировать популяции пациентов для будущих исследований следующей фазы. Возьмем, к примеру, пару радиофармпрепаратов и визуализирующих агентов: 177 Lu-дотатат ​​и 68 Ga-дотатат ​​(37–39).На рисунке 4 показаны концепции, окружающие параметры исследования фазы II, основанные на результатах начального исследования фазы 0. В некоторых случаях агент или лекарственное средство могут модифицировать антигенную мишень, от которой зависит нацеленный на антитела или пептидный радиофармпрепарат. Окно воздействия одного агента или лекарства может быть важным для определения эффективности пары радиофармпрепарат-агент. Конечно, длина этого окна зависит от фармакокинетических факторов и биологических реакций. Повторная визуализация для обеспечения «положительности» опухоли после окна только агента или лекарства является разумным для обеспечения нацеливания радиофармпрепаратов.Сканирование на основе дозиметрии выполняется для определения доставленной дозы облучения (и может варьироваться в зависимости от испускаемой частицы [например, альфа-частицы, бета-частицы или конверсионного электрона] и проницаемости распавшейся частицы в ткани (например, 223 диапазон испускаемых радием альфа-частиц = 40 мкм или 10 диаметров клеток; 177 диапазон испускаемых лютецием бета-частиц = 350 мкм или 27 диаметров клеток) (40). В этом примере, 68 интенсивность участков дотатата галлия относительно фона нормальной ткани может быть использована для определить опухолевую нагрузку у отдельного пациента, целевое время пребывания и неоднородность опухоли, чтобы последующий расчет терапевтической дозы радиофармпрепарата можно было оптимизировать для максимальной переносимой дозы облучения для опухолевой нагрузки без чрезмерного вреда для нормальных органов, подверженных риску (40).При открытии традиционных комбинаций радиофармпрепаратов и агентов решения о выборе ведущего терапевтического агента для дальнейшей разработки принимаются на основе данных модели животных in vitro, и in vivo, , что трудно сделать для онкологических радиофармацевтических агентов из-за обращения с радиоизотопами. Из-за ограниченных финансовых, терпеливых и профессиональных ресурсов исследования безопасности и эффективности радиофармпрепаратов на ранних этапах недостаточно эффективны и могут привести к тому, что многообещающие комбинации не будут полностью разработаны.Мы утверждаем, что ранние фазы испытаний радиофармпрепаратов, которые включают элементы испытания фазы 0, предоставят важные фармакокинетические и фармакодинамические данные человека, которые будут информативными для принятия решения заинтересованными сторонами в испытании. Последовательная интеграция элементов исследования фазы 0 в долгосрочной перспективе также установит руководящие принципы для элементов анализа национального охвата, которые в настоящее время могут быть препятствиями для открытия и разработки.

Рисунок 4 . Испытание фазы 0 – II комбинации многократных доз радиофармпрепарата и препарата с конечными точками визуализации.Здесь схематически показаны элементы для одного примера исследования по определению дозы или расписания фазы 0, переходящего к исследованию эффективности фазы II с использованием визуализирующих биомаркеров. На рисунке 2 показан экспериментальный подход к фазе 0. В фазе II для справки используется базовая диагностическая визуализация (например, радиоактивный индикатор поглощения, 68 Ga-дотатат) и обычный индикатор ответа [например, позитронно-эмиссионная томография (ПЭТ) с F-FDG 18 ]. Дается модифицирующий мишень агент (или лекарство), а затем проводится повторная диагностическая визуализация с использованием радиоактивных индикаторов для сортировки пациентов с «положительными» опухолями для последующего терапевтического радиофармацевтического лечения.В день доставки радиофармпрепарата проводится дозиметрическое подисследование [например, сканирование компьютерной томографии с излучением одиночных фотонов (ОФЭКТ) для 177 Lu-дотатата] с целью расчета фактической дозы облучения в опухолях-мишенях. Далее следует несколько приемов комбинированного лечения радиофармпрепаратами и препаратами в заранее определенных дозах и по заранее установленным графикам. Определенное окно наблюдения ограничивающей дозу токсичности (до двух циклов для регистрации «поздних» нежелательных явлений) используется для конечных точек безопасности.Стандартный индикатор ответа, выполняемый на исходном уровне, повторяется (как после двух циклов) для оценки ответа. Убедительные результаты исследования фазы 0 – II могут привести к окончательному исследованию фазы III. Важно отметить, что ссылки или обсуждение этого дизайна испытания радиофармацевтического препарата фазы 0 – II не означают одобрения и не обязывают федеральное правительство США придерживаться этого подхода.

Заключение

Таким образом, в этой перспективной статье обсуждается возможное использование элементов испытания фазы 0, поскольку они связаны с клинической разработкой радиофармацевтического препарата.Он предлагает стратегическое понимание интерпретации ответа биомаркера испытания фазы 0 и прогнозов терапевтического успеха. Обучение как субъектов исследования, так и их онкологов-радиологов или врачей ядерной медицины использованию радиофармпрепаратов остается важным для полезного клинического развития этих типов противоопухолевого лечения.

Заявление о доступности данных

Оригинальные материалы, представленные в исследовании, включены в статью / дополнительные материалы, дальнейшие запросы можно направлять соответствующим авторам.

Авторские взносы

CK, LR, JC и MM участвовали в сборе и обзоре любых перспективных данных, анализе и аутентификации, написании и утверждении этой рукописи. Все авторы внесли свой вклад в статью и одобрили представленную версию.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

CK, LR, JC и MM хотели бы поблагодарить Программу оценки терапии рака и Программу радиационных исследований Отделения лечения и диагностики рака Национального института рака за поддержку этой работы. Выраженные взгляды принадлежат авторам, а не федеральному правительству США. Ссылки или обсуждение конкретных радиофармацевтических лекарственных препаратов не означает одобрения.

Список литературы

1. Куммар С., Киндерс Р., Рубинштейн Л., Пергамент Р. Э., Мурго А. Дж., Коллинз Дж. И др.Сокращение сроков разработки лекарств в онкологии с использованием исследований фазы «0». Nat Rev Cancer. (2007) 7: 131–9. DOI: 10.1038 / nrc2066

PubMed Аннотация | CrossRef Полный текст | Google Scholar

3. Айви С.П., Сиу Л.Л., Гарретт-Майер Э., Рубинштейн Л. Подходы к дизайну клинических испытаний фазы 1, сфокусированные на безопасности, эффективности и избранных группах пациентов: отчет целевой группы по разработке клинических испытаний Национального исследовательского института рака. комитет по контролю за наркотиками. Clin Cancer Res. (2010) 16: 1726–36. DOI: 10.1158 / 1078-0432.CCR-09-1961

PubMed Аннотация | CrossRef Полный текст | Google Scholar

7. Kunos CA, Capala J. Программное сотрудничество Национального института рака в области исследовательских радиофармпрепаратов. Am Soc Clin Oncol Обучающая книга. (2018) 38: 488–94. DOI: 10.1200 / EDBK_200199

PubMed Аннотация | CrossRef Полный текст | Google Scholar

8. Закери К., Нараянан Д., Эванс Г., Прасанна П., Буксбаум Дж. К., Викрам Б. и др.Продвижение направленной радионуклидной терапии через инновационные исследования малого бизнеса национального института рака. J Nucl Med. (2019) 60: 41–9. DOI: 10.2967 / jnumed.118.214684

PubMed Аннотация | CrossRef Полный текст | Google Scholar

9. Управление по санитарному надзору за качеством пищевых продуктов и медикаментов. Руководство для промышленности, исследователей, рецензентов: поисковые исследования IND. Министерство здравоохранения и социальных служб США, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов, Центр оценки и исследований лекарственных средств (CDER) .(2006) Доступно в Интернете по адресу: https://www.fda.gov/media/72325/download (по состоянию на 18 сентября 2019 г.).

Google Scholar

11. Хеннрих У., Копка К. Lutathera ® : первый одобренный FDA и EMA радиофармацевтический препарат для радионуклидной терапии пептидных рецепторов. Фармацевтические препараты . (2019) 12: 114. DOI: 10.3390 / ph22030114

PubMed Аннотация | CrossRef Полный текст | Google Scholar

14. Теодоропулу М. Сталла Г.К. Рецепторы соматостатина: от передачи сигналов к клинической практике. Фронт нейроэндокринол. (2013) 34: 228–52. DOI: 10.1016 / j.yfrne.2013.07.005

CrossRef Полный текст | Google Scholar

15. Бодей Л., Квеккебум Д. Д., Кидд М., Модлин И. М., Креннинг Е. П.. Радиоактивно меченый аналог соматостатина для лечения рака желудочно-кишечного тракта. Semin Nucl Med. (2016) 46: 225–38. DOI: 10.1053 / j.semnuclmed.2015.12.003

CrossRef Полный текст | Google Scholar

16. Hershberger RE, Newman BL, Florio T, Bunzow J, Civelli O, Li XJ, et al.Рецепторы соматостатина SSTR1 и SSTR2 связаны с ингибированием аденилатциклазы в клетках яичников китайского хомячка через пути, чувствительные к коклюшному токсину. Эндокринология. (1994) 134: 1277–85. DOI: 10.1210 / endo.134.3.7907016

PubMed Аннотация | CrossRef Полный текст | Google Scholar

17. Лахлу Х., Сен-Лоран Н., Эстев Дж. П., Эйчен А., Прадайрол Л., Пироннет С. и др. SST2 Рецептор соматостатина подавляет пролиферацию клеток за счет Ras-, Rap1- и B-Raf-зависимой активации ERK2. J. Biol Chem. (2003) 278: 39356–71. DOI: 10.1074 / jbc.M304524200

PubMed Аннотация | CrossRef Полный текст | Google Scholar

18. Селлерс Л.А., Фенюк В., Хамфри П.П., Лаудер Х. Активированный рецептор, связанный с G-белком, индуцирует фосфорилирование тирозина STAT3 и селективное к агонистам фосфорилирование серина посредством длительной стимуляции митоген-активированной протеинкиназы. результирующие эффекты на пролиферацию клеток. J. Biol Chem. (1999) 274: 16423–30. DOI: 10.1074 / JBC.274.23.16423

PubMed Аннотация | CrossRef Полный текст | Google Scholar

19. Корделер П., Эстев Дж. П., Буске С., Делеск Н., О'Кэрролл А. М., Шалли А. В. и др. Характеристика антипролиферативного сигнала, опосредованного рецептором соматостатина подтипа SST5. Proc Natl Acad Sci USA. (1997) 94: 9343–8. DOI: 10.1073 / pnas.94.17.9343

PubMed Аннотация | CrossRef Полный текст | Google Scholar

20. Лопес Ф., Фержу Дж., Кордельер П., Сен-Лоран Н., Эстев Дж. П., Вайсе Н. и др.Нейрональная синтаза оксида азота: субстрат для SHP-1, участвующий в передаче сигналов, подавляющих рост рецептора соматостатина sst2. FASEB J. (2001) 15: 2300–2. DOI: 10.1096 / fj.00-0867fje

PubMed Аннотация | CrossRef Полный текст | Google Scholar

21. Pages P, Benali N, Saint-Laurent N, Esteve JP, Schally AV, Tkaczuk J, et al. Рецептор соматостатина sst2 опосредует остановку клеточного цикла и индукцию p27 (Kip1). Доказательства роли SHP-1. J. Biol Chem. (1999) 274: 15186–93.DOI: 10.1074 / jbc.274.21.15186

PubMed Аннотация | CrossRef Полный текст | Google Scholar

22. Рирдон Д. Б., Вуд С. Л., Браутиган Д. Л., Белл Г. И., Дент П., Стерджилл Т.В. Активация протеинтирозинфосфатазы и инактивация Raf-1 соматостатином. Biochem J. (1996) 314: 401–4. DOI: 10.1042 / bj3140401

PubMed Аннотация | CrossRef Полный текст | Google Scholar

23. Тангараджу М., Шарма К., Лебер Б., Эндрюс Д.В., Шен С.Х., Срикант CB. Регулирование закисления и апоптоза с помощью SHP-1 и Bcl-2. J. Biol Chem. (1999) 274: 29549–57. DOI: 10.1074 / jbc.274.41.29549

PubMed Аннотация | CrossRef Полный текст | Google Scholar

24. Лю Д., Мартино Дж., Тангараджу М., Шарма М., Халвани Ф., Шен Ш. и др. Внутриклеточное закисление, опосредованное каспазой-8, предшествует митохондриальной дисфункции при апоптозе, индуцированном соматостатином. J. Biol Chem. (2000) 275: 9244–50. DOI: 10.1074 / jbc.275.13.9244

PubMed Аннотация | CrossRef Полный текст | Google Scholar

25.Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Возможности исследования соматостатина: биологические, химические и терапевтические аспекты. Nat Rev Drug Discov. (2003) 2: 999–1017. DOI: 10.1038 / nrd1255

PubMed Аннотация | CrossRef Полный текст | Google Scholar

26. de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, et al. Мечение иттрием-90 и индием-111, связывание рецепторов и биораспределение [DOTA0, d-Phe1, Tyr3] октреотида, многообещающего аналога соматостатина для радионуклидной терапии. Eur J Nucl Med. (1997) 24: 368–71. DOI: 10.1007 / BF00881807

PubMed Аннотация | CrossRef Полный текст | Google Scholar

27. de Jong M, Breeman WA, Bakker WH, Kooij PP, Bernard BF, Hofland LJ, et al. Сравнение меченных (111) In аналогов соматостатина для сцинтиграфии опухолей и радионуклидной терапии. Cancer Res. (1998) 58: 437–41.

PubMed Аннотация | Google Scholar

28. Антунес П., Гиндж М., Чжан Х., Васер Б., Баум Р.П., Реуби Дж.С. и др.Являются ли меченные радиогалием DOTA-конъюгированные аналоги соматостатина лучше, чем меченые другими радиометаллами? евро J Nucl Med Mol Imaging. (2007) 34: 982–93. DOI: 10.1007 / s00259-006-0317-x

PubMed Аннотация | CrossRef Полный текст | Google Scholar

29. Габриэль М., Оберауэр А., Доброземский Г., Декристофоро С., Путцер Д., Кендлер Д. и др. 68Ga-DOTA-Tyr3-октреотид ПЭТ для оценки ответа на радионуклидную терапию, опосредованную рецептором соматостатина. J Nucl Med. (2009) 50: 1427–34. DOI: 10.2967 / jnumed.108.053421

PubMed Аннотация | CrossRef Полный текст | Google Scholar

30. Ческато Р., Васер Б., Фани М., Ройби Дж. К.. Оценка связывания антагониста 177Lu-DOTA-sst2 и агониста 177Lu-DOTA-sst2 при раке человека in vitro . J Nucl Med. (2011) 52: 1886–90. DOI: 10.2967 / jnumed.111.095778

PubMed Аннотация | CrossRef Полный текст | Google Scholar

31. Kwekkeboom DJ, де Гердер WW, Кам Б.Л., ван Эйк С.Х., ван Эссен М., Коой П.П. и др.Лечение радиоактивно меченным аналогом соматостатина [177 Lu-DOTA 0, Tyr3] октреотатом: токсичность, эффективность и выживаемость. J Clin Oncol. (2008) 26: 2124–30. DOI: 10.1200 / JCO.2007.15.2553

PubMed Аннотация | CrossRef Полный текст | Google Scholar

32. Delpassand ES, Samarghandi A, Zamanian S, Wolin EM, Hamiditabar M, Espenan GD, et al. Радионуклидная терапия пептидных рецепторов с использованием 177Lu-DOTATATE для пациентов с нейроэндокринными опухолями, экспрессирующими рецептор соматостатина: первый опыт фазы 2 в США. Поджелудочная железа. (2014) 43: 518–25. DOI: 10.1097 / MPA.0000000000000113

PubMed Аннотация | CrossRef Полный текст | Google Scholar

33. Стросберг Дж., Эль-Хаддад Дж., Волин Е., Хендифар А., Яо Дж., Часен Б. и др. Фаза 3 Испытание (177) Lu-дотатата для нейроэндокринных опухолей средней кишки. N Engl J Med. (2017) 376: 125–35. DOI: 10.1056 / NEJMoa1607427

PubMed Аннотация | CrossRef Полный текст | Google Scholar

34. Андриевский А., Уилкинс Р.С. Ответ гамма-h3AX в лимфоцитах и ​​субпопуляциях лимфоцитов человека, измеренный в культурах цельной крови. Int J Radiat Biol. (2009) 85: 369–76. DOI: 10.1080 / 095530001147

PubMed Аннотация | CrossRef Полный текст | Google Scholar

35. Лассманн М., Ханшайд Х., Гассен Д., Бико Дж., Мейнеке В., Райнерс С. и др. In vivo образование очагов репарации ДНК гамма-h3AX и 53BP1 в клетках крови после радиойодтерапии дифференцированного рака щитовидной железы. J Nucl Med. (2010) 51: 1318–25. DOI: 10.2967 / jnumed.109.071357

PubMed Аннотация | CrossRef Полный текст | Google Scholar

36.Eberlein U, Nowak C, Bluemel C, Buck AK, Werner RA, Scherthan H, et al. Повреждение ДНК в лимфоцитах крови у пациентов после радионуклидной терапии пептидным рецептором (177) Lu. евро J Nucl Med Mol Imaging. (2015) 42: 1739–49. DOI: 10.1007 / s00259-015-3083-9

PubMed Аннотация | CrossRef Полный текст | Google Scholar

37. Krausz Y, Freedman N, Rubinstein R, Lavie E, Orevi M, Tshori S, et al. 68Ga-DOTA-NOC ПЭТ / КТ-изображение нейроэндокринных опухолей: сравнение с (1) (1) (1) In-DTPA-octreotide [OctreoScan (R)]. Mol Imaging Biol. (2011) 13: 583–93. DOI: 10.1007 / s11307-010-0374-1

PubMed Аннотация | CrossRef Полный текст | Google Scholar

38. Глейснер К.С., Бролин Г., Сундлов А., Мжекики Э., Остлунд К., Теннвалл Дж. И др. Долгосрочное удержание 177Lu / 177mLu-DOTATATE у пациентов, обследованных с помощью гамма-спектрометрии и получения изображений с помощью гамма-камеры. J Nucl Med. (2015) 56: 976–84. DOI: 10.2967 / jnumed.115.155390

PubMed Аннотация | CrossRef Полный текст | Google Scholar

39.Хофман М.С., Лау В.Ф., Хикс Р.Дж. Визуализация рецепторов соматостатина с помощью ПЭТ / КТ 68Ga DOTATATE: клиническая польза, нормальные паттерны, жемчужины и подводные камни в интерпретации. Радиография. (2015) 35: 500–16. DOI: 10.1148 / rg.352140164

PubMed Аннотация | CrossRef Полный текст | Google Scholar

40. Kunos CA, Capala J, Kohn EC, Ivy SP. Радиофармацевтические препараты для лечения стойкого или рецидивирующего рака шейки матки. Передний Онкол. (2019) 9: 560. DOI: 10.3389 / fonc.2019.00560

CrossRef Полный текст | Google Scholar

Phase Zero: последняя большая идея Пентагона

Новый термин вошел в лексикон национальной безопасности благодаря любезности Пентагона.Это «Фаза Ноль». И это имеет некоторые потенциально тревожные последствия для внешней политики США и политики развития, особенно в Африке. К сожалению, концепция не получает того внимания, которого заслуживает. Министерство обороны (DoD) тратит бесчисленные часы на разработку планов потенциальных войн. В каждом плане излагаются конкретные задачи и военные требования для отдельных этапов войны, от подготовки к боевым действиям (этап 1), до начала военных действий (этап 2), крупных боевых действий (этап 3) и «постконфликтного периода». «стабилизация (фаза 4), а затем переход к гражданскому контролю (фаза 5).Совсем недавно у Пентагона появилась идея, что повышенное внимание военных к предконфликтным ситуациям - превентивные действия - может принести огромные дивиденды, поскольку отпадет необходимость в использовании американских войск по всему миру. Вот тут-то и вступает в дело фаза ноль. Она подразумевает, что перед разветвленными региональными боевыми командованиями Америки стоит новая военная задача - устранение корней нестабильности и терроризма в самых неблагополучных странах мира. Обоснование этой новой миссии было изложено в Четырехгодичном обзоре обороны 2006 года.QDR утверждает, что победа в «долгой войне» с терроризмом требует поддержки слабых и несостоятельных государств, чтобы они могли лучше защищать свои границы и территории и устранять «неуправляемые пространства», гостеприимные для врагов Америки. Соответственно, американские вооруженные силы должны расширять подготовку иностранных сил безопасности и сотрудничать с гражданскими агентствами США в работе с развивающимися странами. Центральным элементом этой стратегии является недавно объявленное Африканское командование (AFRICOM), которое должно начать операции в конце 2008 года.По мнению Пентагона, основная задача командования будет заключаться в «формировании» действий, направленных на смягчение тревожных тенденций до того, как они дойдут до кризиса, а не в традиционных операциях с применением силы. С этой целью AFRICOM будет межучрежденческой операцией. Хотя командующий будет четырехзвездным генералом, один из двух его заместителей будет старшим офицером дипломатической службы США, а в командование будет входить много сотрудников гражданских агентств США. Так в чем проблема? Разве мы не должны приветствовать У.S. Военная заинтересованность в предотвращении конфликтов и устранении нестабильности в слабых и несостоятельных государствах? Опасность этой схемы заключается в том, что она ставит Пентагон на место водителя и угрожает милитаризацией взаимодействия США с Африкой. Межведомственная координация - это одно, но возложить руководство этой интеграцией на Пентагон - рискованное предложение, как ясно показывает недавняя статья в Washington Post. То, что Пентагон называет «нулевой фазой», подозрительно похоже на то, что некоторые из нас до сих пор причудливо называют «дипломатией» и «помощью в целях развития».«Учитывая огромные ресурсы Пентагона по сравнению с гражданскими агентствами, любые« формирующие »действия, которые исходят от AFRICOM, скорее всего, будут отражать военные приоритеты США и не учитывать более широкие политические соображения и соображения развития. В конце концов, главной заботой Министерства обороны в слабых и несостоятельных государствах является укрепить потенциал местных сил безопасности. Находятся ли эти силы под эффективным и подотчетным гражданским контролем, является второстепенным вопросом. В более общем плане вооруженные силы США совершенно не оснащены для того, чтобы квалифицированно устранять структурные источники отсталости, отчуждения и нестабильности в странах-мишенях.Устранение таких слабых мест потребует многолетнего подхода к управлению и развитию под руководством Государственного департамента и при поддержке Агентства США по международному развитию и других гражданских агентств, при этом военные будут играть второстепенную роль. Центральным элементом этой стратегии является недавно объявленное Африканское командование. Импульс к объединению всех действий Фазы Ноль в боевых командах понятен. В отличие от Государственного департамента, который опирается на посольства на уровне страны, несколько командований обеспечивают привлекательную платформу для региональных подходов.Но, как я указал в недавней книге с Кейси Браун, эффективные подходы «всего правительства» к хрупким государствам работают лучше всего, когда каждому из «трехмерных элементов» - развитию, дипломатии и обороне - уделяется равное внимание. Возлагая на Пентагон ответственность за интеграцию политики в масштабах всего правительства, AFRICOM рискует подорвать публичную дипломатию США, подчеркнув при этом наш имидж как милитаристской нации. Это также усиливает одно из самых тревожных наследий Буша. администрирование: аутсорсинг У.С. внешней политики в министерство обороны. После 11 сентября Пентагон превратился в огромного поставщика экономической, гуманитарной помощи, помощи в области безопасности и борьбы с терроризмом не только в Ираке и Афганистане, но и в десятках африканских стран. По сути, эта нездоровая динамика отражает вопиющее несоответствие между полномочиями, предоставленными государственному секретарю для руководства глобальным участием страны, и скудными ресурсами, фактически выделенными Государственному департаменту и USAID для выполнения этого мандата.Огромные возможности Пентагона создают постоянную гравитационную силу, утаскивая гражданское руководство внешней политикой США. Но окончательный ответ заключается не в том, чтобы подчиниться этому притяжению, а в борьбе с ним. Администрация Буша и Конгресс должны гарантировать, что гражданская ветвь власти имеет мандат, персонал и ресурсы, необходимые для формирования глобального участия США - в «нулевой фазе» и далее.

Что такое проект этапа 0 для разработки встроенных систем?

Проекты фазы 0 снижают риски и повышают доверие

Инженеры умеют решать проблемы - нам нравится искать творческие решения сложных проблем.Определение проблемы и оценка способов ее решения так же важны, как и фактическая реализация решения.

Этап 0 Проекты предоставляют структуру и бюджет для определения проблемы и оценки потенциальных решений перед тем, как погрузиться в детальную реализацию проекта.

Типичный проект Фазы 0 включает следующие шаги:

  1. Понять и охарактеризовать проблему
  2. Захватить и уточнить требования
  3. Создание концепций архитектуры системы
  4. Анализ компромиссов и окончательный выбор
  5. Оценить объем работ на этапе рабочего проектирования (график и бюджет)

Понять проблему

Очень важно, чтобы ключевые заинтересованные стороны имели общее понимание точного характера и характеристик решаемой проблемы.Обычно для этого требуется ~ 1-3 совместных собрания, на которых подробно обсуждаются следующие темы:

  • Ключевые функциональные характеристики с выявленными областями повышенного риска
  • Раскадровка для конечных пользователей и вариантов использования
  • Необходимые сертификаты (например, UL, FCC, CE)
  • Ожидаемый годовой объем производства
  • Цели графика разработки продукта

Сбор требований

Установите набор требований, определяющих, что должен делать новый встроенный продукт или программное обеспечение.На этом критическом этапе важно «мыслить масштабно» и фиксировать даже те особенности и функции, которые считаются менее важными. В противном случае, скорее всего, будет реализован дизайн, который может не иметь достаточных возможностей для роста и развития вместе с вашим пониманием и позиционированием ваших продуктов на динамичном рынке.

Определение архитектуры

По сути, этот шаг направлен на определение соответствующих экспертов в предметной области (разработчиков программного обеспечения, программистов ПЛИС, проектировщиков печатных плат, инженеров-механиков) и предоставление им возможности провести мозговой штурм и набросать архитектурные варианты.

Для каждого варианта определят:

  1. ключевые функциональные компоненты системы,
  2. интерфейсы между этими компонентами.

Анализ компромиссов

Торговые исследования выполняются для оценки и выбора ключевых архитектурных и дизайнерских подходов. Нередко окончательный выбор представляет собой гибрид первоначальных вариантов. Общие компромиссы включают:

  • Варианты упаковки электроники - форм-факторы PCBA и интерфейсы
  • Выбор ОС
  • - Чистый металл vs.RTOS против встроенного Linux
  • Для встроенных устройств альтернативы MCU / DSP / FPGA / SOC / SOM для разных семейств или поставщиков
  • Для подключенных устройств параметры беспроводной связи и их компромисс между стоимостью / скоростью / мощностью: Wi-Fi, Bluetooth, BLE, 802.15.4, LoRa и т. Д.
  • Для высокопроизводительных приложений рассмотрите подходы к вычислениям CPU и GPU, аппаратному ускорению и передаче данных

Смета проекта

Системные требования и спецификации архитектуры служат прочной основой для разработки точных оценок стоимости и графика для последующих фаз проекта разработки, например.g., детальный проект, проверка и уточнение проекта, подготовка к производству и т. д. Подробная смета этапа проектирования часто включает:

  • Проектирование электроники на уровне платы, включая схематический захват и моделирование цепей
  • Разработка и проверка ПЛИС
  • Макет печатной платы
  • Электромеханическое проектирование и интеграция
  • Разработка микропрограмм и программного обеспечения
  • Координация быстрого прототипирования
  • Тестирование и проверка прототипа полностью интегрированной встроенной системы

Этап 0 Стоимость проекта

Если вы изучаете новую встроенную конструкцию, но не знаете, с чего начать, проект фазы 0 может быть недорогим вариантом, имеющим большую ценность: определение и документация, которые могут стать ключевым фактором успеха проекта.

Хотите приблизительно узнать, сколько обычно стоит проект фазы 0?

Ознакомьтесь с нашей страницей с ценами.

Оценка данных этапа 0: лучший способ начать.

Процесс, обеспечивающий подходящее решение

Перед тем, как будет предоставлено какое-либо решение, Triple Helix проводит краткий обзор Фазы 0. Этот обзор позволяет нам точно и взаимно определить, что нужно клиенту, прежде чем начнется работа над решением. Это значительно снижает риск пойти по неверному пути и позволяет клиентам легче контролировать бюджеты и оценивать результаты.

Мы смотрим на то, что вы делаете и как вы это делаете, какие данные вы собираете, как вы их используете и как они влияют на ваш бизнес. Мы оцениваем, где существуют возможности для улучшения, мы фокусируемся на трех основных областях: исполнительная, операционная и административная.

Большинство компаний имеют приблизительное представление о том, где существуют их проблемы, но подход этапа 0 позволяет выявить ключевые «пробелы» в бизнесе и гарантирует, что рекомендуемые улучшения позволят избежать необходимости дорогостоящей замены существующих систем.Результатом этапа 0 является план выполнения этих улучшений.

Согласование необходимости и решения

Анализ фазы 0 - это ограниченное взаимодействие, при котором в течение нескольких встреч мы проводим интервью с ключевыми заинтересованными сторонами, оцениваем технические детали и скрываем основных пользователей существующего процесса или процессов, чтобы понять недостатки с их точки зрения. На этапе 0 мы задаем следующие вопросы:

Осуществимость: Действительно ли разработанное решение выполняет то, что нужно клиенту? Допускает ли это имеющаяся технология? Возможно ли желаемое сочетание функциональности, доступности и дизайна?

Требования: Достаточно ли описаны требования всеми ключевыми заинтересованными сторонами, включая конечных пользователей? Улавливаются ли они четко определенным образом?

Архитектура: Как будет развиваться решение? Какие есть варианты технологии? Доступно ли готовое программное обеспечение и является ли его рентабельным или индивидуальная разработка лучше соответствует требованиям?

Планирование программы: В каком порядке будут организованы мероприятия? Сколько работы можно делать параллельно? Кто и что будет делать (Triple Helix, другие сторонние компании, сам клиент)?

Proof of Concept: Есть ли необходимость в создании прототипа, чтобы доказать, что функциональность будет работать должным образом? Что нам нужно увидеть в работе «в реальной жизни», чтобы правильно оценить ее эффективность?

Окончательный результат - это сводка наших выводов и рекомендаций по переходу к фазе 1 разработки (и далее).Сюда входит подробный график и смета расходов. Намерение - это четко определенный план, который клиент может использовать независимо от того, заключен ли Triple Helix контракт на разработку после Фазы 0.

Как «Фаза 0» сокращает количество ошибок проекта программного обеспечения

При реализации специального программного проекта перед началом процесса разработки необходимо предпринять определенные шаги. Самым первым шагом является обсуждение приоритетов организации и потребностей заинтересованных сторон, что может помочь снизить риски и избежать неудач проекта.В то же время вам нужно будет создать четко определенный набор требований и заняться техническим планированием. Вместе все эти задачи могут составлять «Фазу 0» проекта, также известную как стадия «Представление и планирование».

Согласно исследованию 2015 года, средний крупный ИТ-проект превышает бюджет на 45% и дает на 56% меньшую ценность, чем ожидалось. Самое зловещее то, что 75% руководителей ИТ-проектов считают, что их проекты обречены на провал.

Таким образом, включение «фазы 0» в ваш заказной программный проект может стать ключом к его успеху.На этом этапе вы определите свои цели и дадите клиентам более глубокое представление о преимуществах их инвестиций. Как говорится в старой поговорке: «Планы - это ничто, а планирование - это все». Этап 0 помогает преодолеть разрыв между формулированием стратегии и достижением цели.

По сути, этап 0 представляет собой визуальную карту, подчеркивающую кросс-функциональное видение, охватывающее потребности всех заинтересованных сторон.

Ниже мы подробно описываем важные шаги, которые необходимо предпринять на этом этапе.

1.Ведение всей важной документации

Для начала важно убедиться в наличии всей документации. При модернизации программного обеспечения это может включать документацию по существующему набору функций.

Методология разработки может также включать любые желаемые дополнительные функции или, если программное обеспечение новое, подробные сведения о функциях, которые будет иметь решение. Правильная документация может помочь устранить любые недоразумения или двусмысленности вокруг вашего проекта.

2. Определение наилучшего технического подхода к работе

Следующий шаг - сосредоточиться на выяснении того, как лучше всего подойти к основным компонентам системы.Чем раньше вы подготовитесь к возникновению проблем в процессе, тем лучше вы сможете снизить риски и улучшить результаты. Например, можете ли вы использовать гибкий подход для достижения успеха?

В конечном итоге вы сможете уменьшить количество неудач проекта, управляя рисками, такими как бюджетные ограничения, неожиданные задержки и меняющиеся требования рынка.

3. Разработайте подробный бэклог продукта

Вы также получите выгоду от разработки бэклога продукта из пользовательских историй. Он будет состоять из иерархического набора задач, написанных на языке пользователя.По сути, список невыполненных работ по продукту описывает всю работу, необходимую для создания нового программного обеспечения или приложения.

Команды разработчиков могут использовать это отставание для разработки работающего программного обеспечения. Впоследствии эти пользовательские истории позволяют разработчикам отслеживать требования для добавления функций в будущем.

4. Разработайте техническое задание

Чтобы подготовиться к этапу «Сборка, стабилизация и развертывание», рассмотрите возможность разработки технического задания (SoW). Это даст вашим клиентам более четкое представление о том, чего ожидать, когда дело доходит до общего объема проекта.Опять же, как и другие типы документации, это поможет предотвратить любые неправильные представления о конечном продукте. В результате ваши клиенты будут точно знать, что они получают, вкладывая средства в ваше программное обеспечение или приложение. SoW предотвращает возникновение конфликтов из-за разрыва в ожиданиях.

5. Делайте прогнозы относительно окупаемости инвестиций

Хотя это делается редко, возможно, стоит сделать некоторые прогнозы относительно окупаемости инвестиций, ожидаемых от проекта. Если вы потратите время на то, чтобы подумать, какой, вероятно, будет реальный ROI проекта, вы сможете принять более обоснованные решения о том, как действовать дальше.

По сути, определение рентабельности инвестиций проекта может способствовать лучшему согласованию с требованиями бюджета и помочь количественно оценить результаты успеха.

Вход может помочь вам создать требования этапа O

План-подход к управлению проектами может снизить риски сбоев проекта. Реализуя этап 0, вы перейдете к следующему этапу с лучшим пониманием того, что повлечет за собой проект, и ваши клиенты также смогут принимать более обоснованные решения о покупке.

Если вы хотите, чтобы ваш собственный проект программного обеспечения шел гладко от концепции до выпуска, подумайте о сотрудничестве с нашей опытной командой экспертов в Entrance. Для получения дополнительной информации свяжитесь с нами, чтобы узнать, как мы можем способствовать успеху вашего проекта.

Мастер-протокол фазы 0 для внутриопухолевого микродозирования противоопухолевых препаратов CIVO - Полный текст

CIVO - это исследовательский инструмент, состоящий из ручного одноразового стерильного инжектора в сочетании с флуоресцентными микросферами слежения, называемыми CIVO GLO, которые маркируют места заражения. инъекции микродоз лекарств, позволяющие быстро оценить действие нескольких онкологических препаратов или комбинаций лекарств одновременно в опухоли пациента.Ответы опухоли на лечение рака сильно зависят от контекста и часто включают сложные взаимодействия между противораковой терапией, генетически разнообразными опухолевыми клетками и гетерогенным TME. Эта сложность редко моделируется точно в доклинических трансляционных моделях рака. Используя внутриопухолевые микродозовые инъекции CIVO перед запланированным хирургическим вмешательством, это исследование будет оценивать противораковую терапию непосредственно у пациентов, каждый со своим уникальным геномным профилем опухоли, интактным TME и функциональным статусом иммунной системы.Поскольку платформа доставляет микродозовые количества каждого тестируемого агента или комбинации непосредственно в опухолевую ткань пациента, гипотезы могут быть проверены на более раннем этапе процесса разработки лекарств, что соответствует целям Руководства FDA Exploratory IND для промышленности от 2006 года.

Устройство CIVO проникает в солидные опухоли и одновременно доставляет субтерапевтические микродозы до восьми противораковых агентов или комбинаций противораковых агентов, вводимых совместно с CIVO GLO в отдельные области опухоли в виде колонок с лекарствами.Во время запланированного хирургического вмешательства (от четырех часов до семи дней после инъекции микродозы CIVO) введенная опухолевая ткань затем иссекается, и реакции опухоли оцениваются путем гистологического окрашивания поперечных срезов опухоли, взятых перпендикулярно каждой инъекции. столбец. Совместная инъекция с CIVO GLO позволяет идентифицировать каждое место инъекции во время резекции, а также в тканях, окрашенных для анализа. Этот мастер-протокол фазы 0 направлен на выявление многообещающих кандидатов на ранних этапах процесса разработки лекарств, а также на избежание системной токсичности, связанной с типичным клиническим воздействием этих методов лечения.

Центр опухолей мозга плюща начинает клиническое испытание фазы 0

Феникс, Аризона, 16 декабря 2020 г. (ГЛОБУС НОВОСТЕЙ) - Центр опухолей мозга Плюща при Неврологическом институте Барроу сегодня объявил об открытии фазы 0 клинического исследования для пациентов с недавно диагностированной и рецидивирующей глиобластомой (ГБМ) для оценки памипариба, исследуемый низкомолекулярный ингибитор PARP от BeiGene. Новый подход Центра плюща к исследованиям позволит оценить способность памипариба проникать через гематоэнцефалический барьер, что является одной из самых важных задач в миссии по лечению рака мозга.

Это испытание дополняет и без того обширный портфель клинических испытаний фазы 0 для пациентов с глиобластомой и другими агрессивными опухолями головного мозга в Центре плюща, но является первым в истории набором пациентов с недавно диагностированной ГБМ в дополнение к пациентам с рецидивирующей ГБМ.

Текущий стандарт лечения пациентов с впервые диагностированной глиобластомой состоит из максимальной хирургической резекции с последующей лучевой терапией и химиотерапевтическим препаратом темозоломидом (TMZ) для замедления роста микроскопических опухолевых клеток, оставшихся после операции.

«Само испытание, знаменующее собой первый раз, когда пациенты с впервые диагностированной глиобластомой будут включены в клиническое испытание фазы 0, является важной вехой для сообщества опухолей головного мозга и Центра опухолей мозга Айви», - прокомментировала Кэтрин Айви, основатель и президент правления. Фонда Бена и Кэтрин Айви. «То, что мы узнали из этого испытания, представляет собой еще один важный шаг вперед в работе по поиску лекарства для пациентов с глиобластомой».

Во всем мире прошло 20 лет с тех пор, как одобрение нового лекарственного препарата повысило выживаемость пациентов с глиобластомой.

«Хотя темозоломид может продлить выживаемость пациента с ГБМ до 15-18 месяцев, он не является лечебным и не приносит пользы пациентам с неметилированным промотором MGMT. Однако радиация - единственный метод, который, как было доказано, работает у всех пациентов. Если мы обнаружим, что памипариб способен достигать опухоли на достаточном уровне и впоследствии будет разработан и одобрен в этом показании, он пополнит наш арсенал радиосенсибилизирующих препаратов, чтобы сделать лучевую терапию для пациентов с глиобластомой еще более эффективной », - сказал Шветал Мехта. Ph.D., главный операционный директор и заместитель директора Центра опухолей мозга Плюща.

Пациенты, включенные в это клиническое испытание, будут принимать исследуемый препарат в течение пяти дней до запланированной операции по удалению опухоли. В течение нескольких дней после операции команда Центра плюща определит влияние исследуемого лечения на опухоль. Пациенты с положительными результатами могут перейти к расширенной фазе исследования, в которой терапевтическое дозирование памипариба сочетается с фракционированной лучевой терапией.Если памипариб не показывает доказательств достаточного проникновения в опухоль, пациенты могут перейти к другой терапии или клиническому испытанию, не теряя времени или получая неэффективное лечение.

«Существуют две основные проблемы, связанные с определением новых эффективных вариантов лечения рака мозга. Во-первых, гематоэнцефалический барьер не позволяет большинству новых лекарств когда-либо достигать опухоли. Во-вторых, молекулярные эффекты новых лекарств трудно предсказать с помощью лабораторных животных. Клинические испытания Ivy фазы 0 направлены на устранение обоих этих препятствий и ускоряют наше понимание лечения каждого отдельного пациента », - сказал Надер Санаи, M.D., директор Центра опухолей мозга Плюща.

«Приверженность Центру опухолей мозга плюща своим пациентам в сочетании со скоростью и точностью проведения клинических испытаний делает их идеальным партнером для этого новаторского клинического испытания», - сказал Йонг (Бен) Бен, доктор медицины, главный врач. Медицинский сотрудник, иммуноонкология в BeiGene. «Это испытание призвано помочь нам лучше понять, в какой степени памипариб может преодолевать гематоэнцефалический барьер, и мы надеемся, что оно может привести к дальнейшим разработкам и, в случае одобрения, принести столь необходимое новое лечение в больницу. Сообщество опухолей головного мозга.”

Чтобы узнать больше об этом клиническом исследовании фазы 0, включая критерии отбора, посетите: https://clinicaltrials.gov/ct2/show/NCT04614909.

Click to Tweet: @IvyBrainTumorCenter запускает первое в истории клиническое испытание # Phase0 для недавно диагностированной # глиобластомы в дополнение к рецидивирующей глиобластоме, чтобы оценить памипариб @ BeiGene в сочетании с фракционированной лучевой терапией.

###

О Центре опухолей мозга Плюща
Центр опухолей мозга Плюща при Неврологическом институте Барроу в Фениксе, штат Аризона, - это некоммерческая программа трансляционных исследований, в которой используется смелая стратегия ранней фазы клинических испытаний для выявления новых лечение агрессивных опухолей головного мозга, в том числе глиобластомы.Программа клинических испытаний фазы 0 Центра плюща является крупнейшей в мире и обеспечивает индивидуальный уход за небольшую часть времени и затрат, связанных с разработкой традиционных лекарств. В отличие от обычных клинических испытаний, посвященных отдельным препаратам, в программе ускоренных испытаний проверяются терапевтические комбинации, подходящие для отдельных пациентов. Узнайте больше на IvyBrainTumorCenter.org. Следите за Центром опухолей мозга плюща в Facebook, Instagram, Twitter и LinkedIn.

О памипарибе
Памипариб (BGB-290) является исследуемым ингибитором PARP1 и PARP2, который продемонстрировал фармакологические свойства, такие как проникновение в мозг и захват комплекса PARP-ДНК, на доклинических моделях.Обнаруженный учеными BeiGene, памипариб в настоящее время проходит глобальную клиническую разработку в качестве монотерапии или в комбинации с другими агентами для лечения различных злокачественных опухолей солидных опухолей. Клинические испытания памипариба также включают исследование фазы 1b / 2 (NCT03150862) в сочетании с лучевой терапией и / или темозоломидом у пациентов с глиобластомой первой линии или рецидивирующей / рефрактерной глиобластомой. На сегодняшний день более 1200 пациентов приняли участие в клинических испытаниях памипариба.

Новая заявка на лекарство (NDA) на памипариб для пациентов с раком яичников была принята и получила приоритетное рассмотрение Центром оценки лекарственных средств (CDE) Китайского национального управления по медицинским изделиям (NMPA) для лечения пациентов с опасными или подозреваемыми заболеваниями. вредоносная зародышевая линия с мутацией BRCA, распространенный рак яичников, маточной трубы или первичный рак брюшины, который лечился двумя или более линиями химиотерапии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *