Прибор для проверки оксидных конденсаторов на ЭПС (ESR)
Проблема быстрого контроля исправности оксидных конденсаторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируемой аппаратуры. Предлагается еще один вариант простого прибора, аналогичного уже описанному в «Радио», но с использованием стрелочного индикатора.
Многих радиолюбителей, да и профессиональных мастеров по ремонту радио- и телеаппаратуры, наверняка заинтересовала статья Р. Хафизова «Пробник оксидных конденсаторов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позволяя приблизительно оценить емкость и измерить утечку оксидных конденсаторов, далеко не всегда дает полную информацию об их качестве. Оперативная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства. Особенно это касается наиболее часто используемых конденсаторов емкостью от единиц до нескольких десятков микрофарад.
После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем. Поэтому вместо микросхемы К561ТЛ1 применил, как мне кажется, более распространенную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использовал стрелочный индикатор уровня М68501 от магнитофона.
Применение стрелочного индикатора позволило сделать прибор более точным, достаточно компактным и более экономичным. Ток потребления не зависит от режима работы и составляет около 1 мА, что дает возможность использовать малогабаритный источник питания — батарею из трех миниатюрных дисковых элементов для лазерной указки.
Несколько измененная схема приведена на рис. 1. Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конденсатора в пределах от 2 до 50 Ом и емкость от 5 до 50 мкФ.
Конструктивно прибор может быть выполнен в виде мини-тестера с выносными щупами и выключателем питания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением питания, что существенно увеличит срок службы батареи.
В данном варианте размеры корпуса составляют 90 x 45 x 20 мм. Индикатор расположен с левой стороны поперек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней стороны. Монтаж элементов прибора выполнен на печатной плате, чертеж которой приведен на рис. 2
Детали и замена
Для выбора вида измерений использован переключатель SA1 с фиксацией из серии ПКН. Выключатель питания SA2 — миниатюрный движковый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором.
Вместо указанной на схеме микросхемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.
Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815. Конденсаторы — малогабаритные керамические, резисторы — мощностью 0,125 — 0,25 Вт. Оксидный конденсатор — К50-16 или импортный. Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора существенного значения не имеет.
Настройка прибора
Налаживание прибора заключается в установке частоты генератора в пределах 60…80 кГц для измерения ЭПС и 800… 1000 Гц для измерения емкости путем подбора резистора R2 и соответственно С2 и С1, а также в установке стрелки индикатора на конец шкалы в режиме холостого хода подбором резисторов R4, R5, R8. Предварительно резистором R6 выставляют постоянное напряжение на коллекторе транзистора, примерно равное половине напряжения питания.
Градуировка шкалы не составит большого труда, так как пластмассовые индикаторы уровня легко вскрываются: достаточно по периметру крышки «пройтись» лезвием ножа. На место старой шкалы наклеивают полоску бумаги, на которую затем наносят соответствующие риски и надписи. После градуировки шкалы крышку устанавливают на место и фиксируют клеем.
Нелинейность шкалы таких индикаторов играет положительную роль, позволяя несколько расширить диапазон измерений. Градуировка шкалы электрической емкости производилась путем усреднения замеров нескольких новых конденсаторов одного номинала (по возможности с малым допуском), для градуировки шкалы ЭПС были использованы обычные непроволочные резисторы.
После изготовления прибора была проведена проверка всего личного запаса оксидных конденсаторов. В результате более 30 % из них пришлось выбросить. Далее прибор был опробован при поиске неисправности в мониторе, в котором не включалась строчная развертка. Этот монитор побывал уже у двух мастеров и был возвращен назад ввиду «отсутствия электрической схемы и сложности ремонта». В течение нескольких минут оказалось возможным проверить ЭПС и емкость всех имеющихся на плате оксидных конденсаторов, среди которых был обнаружен один с завышенным значением ЭПС и заниженной емкостью. После его замены монитор заработал!
Автор уверен, что подобный прибор займет достойное место в арсенале измерительных приборов как радиолюбителей, так и профессионалов.
Редактор — А. Соколов, графика — Ю. Андреев
Вариант изготовленной печатной платы прибора
Вид со стороны дорожек
Набор для самостоятельной сборки прибора Вы можете купить на нашем сайте «Мастер» (В наборе печатная плата и все детали, кроме измерительной головки)
Вариант внешнего вида прибора
От редакции журнала «Радио». Эквивалентное последовательное сопротивление (ЭПС, а в англоязычной терминологии — ESR) конденсатора зависит от многих факторов: его типа, емкости, номинального напряжения, частоты, на которой проводят измерения, и т. д. Например, ЭПС танталовых конденсаторов для поверхностного монтажа емкостью от 4,7 до 47 мкФ на напряжение от 10 до 35 В, измеренное на частоте 100 кГц, находится в пределах от 0,9 до 5 Ом, причем оно увеличивается с уменьшением емкости и номинального напряжения. У алюминиевых конденсаторов К50-38 емкостью от 4,7 до 47 мкФ на напряжение от 6,3 до 160 В ЭПС, также измеренное на частоте 100 кГц, увеличивается от 0,5 (47 мкФ х 160 В) до 5 Ом (47мкФх6,ЗВ) и от 4,5 (4,7мкФх160В) до 14 Ом (4,7 мкФ х 100 В). Поэтому универсального критерия оценки пригодности конденсатора в зависимости от значения ЭПС не существует решение по отбраковке следует принимать в каждом конкретном случае.
Радио №10, 2005г.
П О П У Л Я Р Н О Е:
- Индикатор напряжения аккумулятора на TAA2765A
- Преобразователь для частотомера.
- ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ ПЕРВОЙ НЕОБХОДИМОСТИ
Не во всех автомобилях, даже современных установлен вольтметр. Обычно индикатором зарядки служит обычная лампочка в щитке приборов. А это далеко не достаточно. По приведенной, ниже схеме можно собрать простой светодиодный указатель напряжения автомобильного аккумулятора.
Подробнее…
Бывают частотомеры с несколькими входами, такие которые могут с частотами сигналов, поданных на эти входы выполнять некоторые арифметические действия. Но все же, большинство самодельных (и не самодельных) частотомеров имеют только один вход. Подробнее…
Без измерительных приборов, хотя бы простейших, трудно, а подчас невозможно проверить деталь, электрическую цепь, добиться высококачественной работы того или иного радиотехнического устройства. И если не понять этой истины и игнорировать измерения, то лучше вообще не начинать заниматься конструированием усилителей, приемников — нет смысла попусту тратить время, заведомо портить транзисторы, диоды, другие детали и материалы. Без измерительных приборов даже от простейшего транзисторного усилителя не удастся добиться нормальной работы. Подробнее…
- н а в и г а т о р -
Популярность: 32 188 просм.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
www.mastervintik.ru
Испытатель конденсаторов.
С помощью такого прибора можно проверить, нет ли внутри конденсаторов обрыва короткого замыкания, или значительной утечки. Рассчитан он на конденсаторы емкостью более 50 пФ. Основа прибора генератор прямоугольных импульсов, собранный на элементах DD1.1- DD1.3, частота следования которых составляет около 75 кГц, а скважность примерно 3. Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2. Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 ... 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности. Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента. Полярный конденсатор выводом положительной обкладки подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.
Испытатель можно питать и от любого другого источника с напряжением 5V и током не менее 50 мА.
Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом.
Устройство питается от 4-х батареек 1,5V. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.
Источник: http://radio-hobby.org/
Прибор предназначен для измерения емкости оксидных конденсаторов в составе узла, в котором они применены
(т. е. без выпаивания).
Параметры входных цепей прибора рассчитаны таким образом, что на точность измерения практически не влияют ни сопротивление подключенных к проверяемому конденсатору цепей аппарата, ни полярность этих элементов, ни полярность подключения самого прибора.
Пределы измерения
емкости — 1... 1000 мкФ,
Относительная погрешность измерения в
интервале значений 20...500 мкФ — не более —20 и +40 %.
Принципиальная схема.
Принцип
его действия основан на измерении падения переменного (50 Гц)
напряжения на делителе, состоящем из резисторов R1, R2 и проверяемого
конденсатора Сх. Снимаемый с делителя сигнал усиливается микросхемой
DA1 и поступает на выпрямитель, выполненный по схеме удвоения
напряжения на диодах VD1, VD2. Постоянная составляющая выпрямленного
напряжения через логарифмирующую цепь R7,VD3,R8
(она расширяет пределы измерения емкости) поступает на микроамперметр
РА1, и его стрелка отклоняется на угол, обратно пропорциональный
емкости конденсатора Сх.
конденсаторы КМ-6, МБМ(С1), КТ-1(СЗ). К50-6. К50-16, К53-1 (остальные). Трансформатор Т1—любой, мощностью более 1 Вт с напряжением на вторичной обмотке 2X22V.
Для подключения прибора к проверяемому конденсатору и прокалывания защитного лака, которым обычно покрыты печатные платы радиоаппаратуры, рекомендуется изготовить специальный щуп. По сути, это — два склеенных корпусами цанговых карандаша, в которые вместо грифелей вставлены стальные иглы. К утолщенным концам игл припаивают гибкий экранированный провод, который подключают к гнездам XS1, XS2.
Налаживание прибора сводится к подгонке (попеременным изменением сопротивлений резисторов R3, R7 и R8) шкалы путем измерения емкости заведомо исправных конденсаторов с возможно меньшим допускаемым отклонением емкости от номинала (конденсаторы с допуском 10%).
Шкалу микроамперметра градуируют непосредственно в микрофарадах или пользуются при работе градировочной таблицей. Если применен микроамперметр с током полного отклонения стрелки 100 мкА, то отметка 5 мкА соответствует емкости 1000 мкФ, отметки 10, 20, 40, 60, 80 и 90 мкА — соответственно 500, 200, 100, 50, 20 и 10 мкФ, отметка 100 мкА — 0.
Перед измерением прибор калибруют переменным резистором R8, ось которого выведена на лицевую панель, устанавливают стрелку микроамперметра РА1 на отметку 0 (100 мкА).
Пределы измерения емкости можно сместить в сторону больших или меньших значений, для чего достаточно заменить резисторы R1 и R2 резисторами соответственно меньших или больших сопротивлений, сохранив неизменным их отношение.
Микросхему К548УН1А в испытателе можно заменить на К140УД7, К554УД2 и т. п., обеспечив им напряжения питания +15V и - 15V.
Необходимые для питания ОУ DА1 напряжения получены выпрямлением переменного напряжения обмотки II трансформатора Т1 и последующей стабилизацией его параметрическими стабилизаторами R9,VD4 и R10,VD5.
Для
расширения пределов измерения емкости в сторону меньших значений в
прибор необходимо ввести еще один делитель входного напряжения,
подключив его как показано на рис.1 (нумерация новых деталей
продолжает начатую на схеме в начале статьи, пропуск в нумерации
означает, что элемент исключен). Делитель R11, R12 подключают
к прибору, переключателем SA1.
Замена подстроечного резистора R7 постоянным, и введение резистора R14 облегчают налаживание испытателя.
Чертеж
печатной платы модернизированного прибора показан на рис. 2,
смонтированную плату закрепляют непосредственно на шпильках зажимов
микроамперметра РА1.
Простой прибор, за основу которого взяты предыдущие варианты схем.
Конструкция размещена в корпусе милливольтметра SUNWA YX1000A:
Для
установки "нуля" использован переменный резистор R8, определяющий
коэффициент усиления ОУ DA1. Если сопротивление микроамперметра РА1
отличается от 1 кОм, то номинал переменного резистора должен быть
соответственно изменен. Для уменьшения чувствительности усилителя к
"наводкам" от сетевого напряжения номинал разделительного конденсатора
С1 увеличен в 10 раз (1 мкФ).
Для градуировки шкалы индикатора
рассчитывают отклонения стрелки (в процентах от всей шкалы) для каждой
емкости из ряда Е12 (от 2,2 мкФ до 220 мкФ) по формуле: (Сх/Roбp)x100%.
Образцовые
резисторы R4—R6 подбирают с максимально возможной точностью.
Желательно, чтобы резисторы R1—R3 отличались друг от друга по
сопротивлению точно в 10 раз, иначе придется устанавливать стрелку
индикатора на "нуль" при каждой смене диапазона.
Операционный
усилитель должен быть с полной внутренней коррекцией и высоким входным
сопротивлением, например: К140УД8, К140УД18, К140УД22. Диоды VD1—VD4 —
германиевые с малым прямым напряжением. VD5.VD6 — любые с обратным
напряжением более 30V. Конденсатор С1 — любой малогабаритный, а С2 —
обязательно с малым током утечки (К52, К53). Переключатель диапазонов
SA1 — штатный, галетный. Для более плавной установки "нуля", резистор
R8 рекомендуется заменить цепочкой из последовательно соединенных
переменного и постоянного резисторов, чтобы переменным можно было
компенсировать любые изменения сетевого напряжения.
Для приборов,
описанных выше, также желателен сетевой трансформатор с увеличенным
числом витков на вольт. Конденсатор C1 нужно использовать
емкостью 1 мкФ, резистор R3 заменить переменным ("установка нуля"), а
переменные и подстроенные — постоянными. Резистором R6 устанавливать
стрелку на нуль нельзя, поскольку будет "растягиваться" или "сжиматься"
шкала из-за нелинейности характеристики диода VD3.
Источник: "РАДИО" №9 1990г, №11 1996г.
Схема питается от двух 3-хвольтовых батареек, соединенных последовательно, потребляя:
6,5мА при разомкнутых щупах и 10мА - при замкнутых.
Схема: В качестве генератора использована МС КР1211ЕУ1 Datasheet (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ - одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей.
Внимание!!! В трансформаторе Т1
используется лишь половинка обмотки.
Шкала прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличимая от 0,5 Ома, в шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.
Источник: http://datagor.ru/
Предлагаемый вариант схемы и конструкции компактного прибора для оценки ЭПС оксидных конденсаторов с питанием от батареи отличается от опубликованных ранее использованием распространенных деталей и стабилизатором напряжения питания, повышающим точность измерения.
Конструкция оформлена в виде малогабаритного переносного прибора со съемным щупом—иглой, вторым щупом на гибком проводе и стрелочным индикатором с градуировкой в Омах.
Диапазон измерения сопротивления — 0,5... 100 Ом. Питание — от батареи напряжением 9V ("Крона" и аналогичные).
Прибор предназначен для использования не в качестве средства измерения ЭПС, а для быстрой проверки исправности оксидных конденсаторов. Как показала практика, "высохшие" оксидные конденсаторы, потерявшие емкость, также имеют и повышенные значения ЭПС. Таким образом, оценивая эквивалентное последовательное сопротивление, можно выявлять неисправные конденсаторы с полной или частичной потерей емкости.
Схема прибора рис. 1.
Он состоит из нескольких узлов: высокочастотного генератора на элементе DD1.1, который вырабатывает колебания с частотой 350...400 кГц, буферного усилителя на DD1.2—DD1.6, делителя напряжения R2—R4 и усилителя переменного тока на транзисторе VT2. Полученное переменное напряжение выпрямляется диодами VD2—VD5, сглаживается конденсатором С5 и поступает на микроамперметр РА1, проградуированный как омметр, по показаниям которого оценивается ЭПС и пригодность конденсатора. Микросхема DD1 питается через стабилизатор на транзисторе VT1; это необходимо для стабилизации амплитуды испытательного сигнала на щупах прибора Х1 — XS1. Потребляемый микросхемой ток не превышает 15 мА.Настройку прибора начинают с установки частоты ВЧ генератора. Подключив осциллограф к щупам XS1 (Х1) и XS2, устанавливают частоту в интервале 350...400 кГц (в авторском варианте период колебаний равен 2,66 мкс). Подстроечником катушки L1 устанавливают частоту; если частота не укладывается в заданные пределы, можно изменить число витков катушки L1, добавив или отмотав их. Затем подстроечным резистором R2 устанавливают амплитуду колебаний, равную 50 мВ. После этого нужно установить рабочий режим транзистора VT2. До впаивания конденсатора СЗ подбором резистора R5 устанавливают напряжение между коллектором и эмиттером транзистора VT2, примерно равным половине напряжения питания прибора. Затем впаивают конденсатор СЗ.
Рис. 3
Сопротивление переменного резистора R8 устанавливают таким, чтобы при разомкнутых щупах прибора стрелка устанавливалась на максимальное значение, не зашкаливая при этом. Затем градуируют шкалу в Омах.Для этого вскрывают микроамперметр РА1, на его шкалу наклеивают бумагу и, последовательно подключая резисторы сопротивлением 1, 2, 3, 5, 10, 20, 50, 100 Ом, делают риски карандашом на шкале прибора. После окончательного оформления шкалы микроамперметр собирают.
В приборе использованы детали:
Конденсаторы — импортные от старого китайского плейера.
Катушка L1 намотана на пластмассовом каркасе диаметром 7 мм проводом ПЭВ-2 диаметром 0,3 мм и содержит 125 витков (в секции I — 50 витков). Подстроечник — ферритовый с резьбой М4 и длиной 7 мм. Для катушки можно использовать каркасы от контуров ПЧ приемников. Число витков в этом случае придется подобрать экспериментально.
При этом секция II катушки L1 должна содержать примерно в 1,5 раза больше витков, чем секция I.
Кнопка SB1 — МП7. Резисторы — МЛТ-0,125, подстроечный R2 — СПЗ-386, переменный R8 - СПЗ-166.
Плата прибора с расположением деталей показана на рис. 2. Все детали размещены на одной стороне печатной платы, за исключением катушки L1 и переменного резистора R8, которые находятся со стороны проводников.
Как видно из чертежа, проводники со стороны установки элементов, выделенные цветом, можно при желании выполнить монтажным проводом, используя для платы стеклотекстолит, фольгированный с одной стороны.
Корпус прибора изготовлен из двух алюминиевых экранов от контуров ПЧ лампового цветного телевизора, которые имеют на внутренней стороне направляющие пазы для платы. Так как точность изготовления экранов невысокая, то размеры платы перед изготовлением следует уточнить. Плата должна плотно входить в направляющие. В одном из экранов делают вырез для стрелочного индикатора. Экраны соединяют между собой пайкой — на них имеются с двух сторон латунные выводы, которыми они крепились в плате телевизора.
Щуп—иглу XS1 делают съемной на резьбе. По окончании работы иглу вывинчивают, разворачивают наоборот и вставляют внутрь прибора. Щуп XS2 на коротком гибком проводе подключают к корпусу прибора. Эти провода желательно выполнить по возможности короткими, чтобы исключить влияние их индуктивности на показания прибора.
В противном случае при замкнутых щупах прибора стрелка не будет устанавливаться на нулевое значение.
Источник: http://forum.cxem.net/
Также по теме: ESR - METP Помощник Радиомеханика.
Copyright ©2011 SHCompamy Odessa
electro-tehnyk.narod.ru
Простой прибор для проверки электролитических конденсаторов
Простой прибор для проверки электролитических конденсаторов
Тем, кто связан с ремонтом электроники и бытовой техники давно известно, что причиной неисправности аппаратуры и блоков питания зачастую является выход из строя электролитических конденсаторов. При этом не всегда можно определить это по внешнему виду, как например на фотографии выше. Большинство имеющихся в продаже устройств для проверки конденсаторов позволяют точно определить все параметры конденсаторов… но перед этим их необходимо выпаять из платы. Предлагаю Вашему вниманию прибор для проверки электролитических конденсаторов, который достаточно простой в изготовлении и простой в использовании. Он позволит значительно сократить время на поиск неисправных конденсаторов.
Что нам понадобиться микросхема КА155ЛА3, три конденсатора, стабилитрон, динамик и зарядное устройство от старого мобильного телефона. При необходимости можно сделать питание от батареи.
Схема для проверки конденсаторов:
При проверке, неисправные конденсаторы практически любой ёмкости определиться на слух. Это удобно тем, что не нужно смотретьотводить глаза от платы. Со временем привыкаешь, и на слух с большой точностью определяешь ёмкость. Ничего не нужно отпаивать. Почти все конденсаторы (за исключением тех, которые зашунтированы сопротивлением меньше десяти Ом) изменяют частоту пробника, по которой мы судим о ёмкости конденсатора. Если имеется повышенное внутреннее сопротивление, то частота не меняется, или меняется незначительно.
Поделитесть полезным с друзьями:
set-os.ru
Радиосхемы. - Прибор для проверки конденсаторов
Самодельные приборы
материалы в категории
При помощи этого простого прибора можно проверить конденсатор на утечку или обрыв.
Рассчитан он на конденсаторы емкостью более 50 пФ. Основой прибора является собранный на элементах DD1.1— DD1.3 генератор прямоугольных импульсов, частота следования которых составляет около 75 кГц, а скважность примерно 3.
Схема прибора для проверки конденсаторов
Элемент DD1.4, включенный инвертором, исключает влияние нагрузки на работу генератора. С его выхода импульсное напряжение идет по цепи: резистор R3, конденсатор С2 и проверяемый конденсатор, подключенный к гнездам XS1 и XS2 и далее через диод VD1, микроамперметр РА1 и шунтирующий их резистор R2.
Детали этой нагрузочной цепи подобраны таким образом, что без проверяемого конденсатора в ней ток через стрелочный прибор РА1 не превышает 15 мкА. При подключении проверяемого конденсатора и нажатии кнопки SB1 ток в цепи увеличивается до 40 ... 60 мкА, и если прибор будет показывать ток в этих пределах, то независимо от емкости проверяемого конденсатора можно сделать вывод о его исправности.
Эти пределы тока цепи отмечают на шкале прибора цветными метками. Если емкость проверяемого конденсатора больше 5 мкФ, то при нажатии на кнопку стрелка индикатора резко отклонится до конечной отметки шкалы, а затем, возвращаясь назад, устанавливается в пределах отмеченного сегмента.
Полярный конденсатор "плюсовым" выводом подключают к гнезду XS1.При внутреннем обрыве проверяемого конденсатора стрелка индикатора останется на исходной отметке, а если конденсатор пробит или его внутренне сопротивление, характеризующее ток утечки, менее 60 кОм, стрелка индикатора отклоняется за пределы контрольного сегмента и даже может зашкаливать.
Настройка прибора для проверки конденсаторов
После включения питания стрелка должна отклониться до деления примерно 15 мкА. В случае необходимости такой ток устанавливают подбором резистора R3. Затем к гнездам «Сх» подключают конденсатор емкостью 220 ... 250 пФ и подбором резистора R2 добиваются отклонения стрелки индикатора до отметки 50 мкА.
После этого замкнув гнезда, убеждаются в отклонении стрелки за пределы шкалы.Монтажную плату устройства вместе с питающей его батареей 3336Л следует разместить в корпусе подходящих размеров. Но прибор можно питать от любого другого источника с напряжением 5 В и током не менее 50 мА.
Печатная плата прибора
В качестве микроамперметра можно использовать китайский стрелочный прибор. Вот его шкала:
Вместо нее изготавливается другая шкала (клеится поверх прежней).
На новой шкале отмечается сектор: относительно "родной" шкалы он будет находиться в районе 8...20 Ом по верхним делениям. Вот так она будет выглядеть
Для нормальной работы микроамперметра сопротивление R3 снижено до 100 Ом. Выключатель SB1 не применяется. Всё устройство получает питание от 4-х батареек 1,5В, то есть 6В, что ни как не сказывается на работе измерителя. Ток потребления в дежурном режиме с микросхемой К131ЛА3 составил 20,3 мА, в режиме измерения 20,5 мА.
Внешний вид прибора
Примеры измерений
Примечание:
Источник: Массовая радиобиблиотека (МРБ), И.А.Нечаев, "Конструкции на логических элементах цифровых микросхем" стр.43, Издательство "Радио и связь"
Фото с сайта radio-hobby.org
radio-uchebnik.ru