Содержание

Понятие электричества - Вольтик.ру

 Электричество – форма энергии, существующая благодаря движению и взаимодействию электрических зарядов. Термин был введён английским физиком Уильямом Гильбертом в 1600 году. Он проводил опыты с янтарём, который приобретает электрический заряд после трения о шерсть. Электричество так названо потому, что янтарь на греческом языке – “электрон“(ήλεκτρον).

 Электрически заряженные тела создают вокруг себя электрическое поле и могут влиять на другие заряженные тела. Возможность тел быть проводниками электричества обусловлена строением атомов, включающих в себя частицы с элементарными зарядами – электроны (отрицательный) и протоны (положительный). Названы заряды так чисто условно, однако этот выбор закрепился исторически. Заряженные частицы и их движение создают магнитное поле. Тела с одноимёнными зарядами отталкиваются, с разноимёнными – притягиваются. Благодаря этому можно установить родство электричества и магнетизма.

Основные величины, характеризующие электричество:

– напряжение;

– сила тока;

– мощность тока.

Напряжение характеризует разность потенциалов между началом и концом цепи либо её участка. При нулевом напряжении не возникнет электрический ток. Часто можно встретить сравнение электрического напряжения с давлением жидкости в водопроводе. Чем оно больше – тем больше воды потечёт по трубам, а лампочка при повышении напряжения станет светить ярче, электродвигатель разовьёт больше оборотов. Так же и с электрическим током. Его сила (I) прямо зависит от напряжения (U).

Сила тока характеризует количество заряда (q), прошедшего через проводник, по отношению ко времени (t).  

А мощность тока (P) выражает скорость передачи электрической энергии и соответствует произведению силы тока на его напряжение либо отношению работы (A) ко времени.

Мощность не зависит от времени.

Есть и такая физическая величина, выражающая способность проводника препятствовать движению электрического тока, как сопротивление. Сила тока обратно пропорциональна ему.

 Электрический ток может быть постоянным и переменным. Постоянный не изменяется по величине и направлению с течением времени. Постоянным током обычно называют однонаправленный ток, то есть ток, не меняющий своего направления. Переменный ток меняет величину и направление. Чаще всего под переменным током имеют в виду периодический двунаправленный ток (синусоидальный).

Электричество для детей — что такое электричество и откуда оно берется?

Представьте, вы с ребенком собрались просмотреть мультфильм или познавательную передачу, улеглись на диван и вдруг ваше чадо спрашивает: «А от чего работает телевизор/телефон/планшет?» Вроде бы ответ простой — от электричества, но не нужно быть Нострадамусом, чтобы предугадать следующий вопрос, который поступит от ребенка: «А откуда берется электричество?» И здесь у многих родителей наступает ступор, в особенности у тех, кто не заканчивал физмат, и их профессия никоим образом не связана с этим направлением.

Конечно, можно ответить так же просто, как и на предыдущий вопрос: «Электричество берется из розетки». Но чтобы ваш ребенок получил полный и раскрытый ответ, причем доступным и понятным языком, без заумных формул и определений, которыми написана большая часть учебников по физике, мы предлагаем задержаться на этой странице и прочитать, возможно, не новую, но полезную и познавательную информацию.

Что такое электричество?

Само слово «электричество», а точнее, «электрическая» сила появилось более 2000 лет назад в Древней Греции. Люди заметили, что если потереть янтарь о шерсть, то камень начинает притягивать к себе различные предметы небольшого размера. Янтарь на древнегреческом языке именовался «электроном», отсюда и произошло само название.

Но дальше простых экспериментов со статическим электричеством у Древних Греков изучение загадочного феномена не продвинулось. А раскрывать сущность всего явления стали намного позже. Ученые выяснили, что окружающие предметы состоят из элементарных частиц: протонов и электронов. Эти два вида частичек имеют электрический заряд: у электрона он отрицательный, а вот у протона — положительный. Притягиваясь друг к другу, они тесно взаимодействуют и в зависимости от количества протонов и электронов образуют атомы разных материй.

Сами протоны располагаются в ядре атома, а вот электроны вращаются возле них по кругу. Атомы с количеством протонов равным числу электронов имеют нулевой заряд. Например, если камень янтаря лежит сам по себе, и его никто не трогает, то его атомы также имеют нулевой заряд. Но стоит потереть атомы янтаря об атомы шерсти, как электроны из шерсти мигом переберутся на янтарные, и их «переизбыток» сделает заряд отрицательным. Такой камушек с «новой силой» и начинает притягивать к себе мелкие предметы с нулевым или положительным зарядом, а если у предмета будет отрицательный заряд — он их оттолкнет.

Электрический ток — организованный отряд электронов

Но каким образом электричество живет в розетке, если все настолько рассеянно в этой схеме?

Почти все атомы могут терять и хватать электроны. Так, если у одних их будет избыток, а у других —недостаток, то направляемые электрическими силами электроны устремятся туда, где их не хватает. Вот этот поток и называется электрическим током.

Среди привычных нам понятий электрический ток похож на реку, которая, разливаясь на множество ответвлений, питает электроприборы. Но перед тем, как направить этот поток отрицательно заряженных частиц, их нужно откуда-то взять?

Над этим вопросом бились лучшие умы прошлого тысячелетия, но первым смог сделать прорыв итальянский ученый — Алессандро Вольта, который в 1800 году изобрел первую батарею, получившую название «Вольтов столб», тем самым подарив миру надежный источник постоянной электроэнергии. В благодарность за такое открытие фамилия ученого была увековечена, и с того времени напряжение тока измеряется в вольтах.

Откуда берется электричество?

Несмотря на то, что «Вольтов столб» и совершил прорыв в науке того времени, за последующие 200 лет была сделана уйма более глобальных открытий и выявлено множество способов добывать электрический ток, для которых построены огромные сооружения и используются новейшие технологии! А теперь по порядку.

ТЭС — тепловая электростанция

Для выработки тока на ТЭС установлен турбоэлектрогенератор, состоящий из:

  • неподвижной части — статора в виде двухполярного магнита;
  • вращающегося ротора, который обмотан медной проволокой, так как этот металл считается наилучшим и наиболее доступным проводником.

Беспрерывное вращение магнита постоянно меняет полярность (полюса) отчего электроны в проволоке приходят в движение, как в примере с янтарем и шерстью, только в больших масштабах. Но чтобы весь этот механизм работал и вырабатывалось электричество, «что-то» должно крутить огромную турбину. Для этой цели на ТЭС установлены огромные котлы, которые нагревают воду до 450 ℃, отчего она превращается в пар. Далее под высоким давлением пар поступает из котла на лопасти, закрепленные к ротору, и запускает его в работу с невероятной скоростью — 3000 оборотов в минуту!

АЭС — атомная электростанция

Здесь так же, как и в ТЭС, установлен турбоэлектрогенератор, но вот за нагрев воды отвечает очень опасный, но энергоэффективный Уран-235. Чтобы он выделил тепло, на АЭС построены огромные ядерные реакторы, в которых Уран-235 распадается на мелкие частички, отчего и вырабатывается большое количество энергии, используемой для нагрева воды до состояния пара и запуска турбоэлектрогенератора.

ГЭС — гидроэлектростанция

Более безопасный, но не менее эффективный способ получения энергии. Хотя для него и потребуется соорудить целую цепь гидротехнических сооружений, чтобы создать необходимый напор воды для обеспечения работы турбин электрогенератора. А далее принцип, как и в предыдущих двух электростанциях: крутится ротор и вырабатывается электричество.

Ветряные станции

Выглядят они величественно и красиво, да и с помощью силы ветра еще в древности запускали в работу огромные механизмы, такие как ветряные мельницы.

В современном мире решили усовершенствовать этот механизм и использовать для преобразования механической энергии в электрическую. Принцип следующий: ветер толкает огромные лопасти, которые запускают в работу ротор генератора, а он уже, как мы знаем на примере первых трех электростанций, и вырабатывает ток.

Но таким способом при помощи одного ветрогенератора не обеспечишь электричеством даже небольшой городок, поэтому и устанавливается целая сеть огромных механизмов, состоящая из 100 и более единиц.

Немного истории

Первая в мире электростанция для общественного пользования «Перл Стрит» была построена в Нью-Йорке в 1882 году. Ее спроектировал и установил не кто иной, как Томас Эдисон. И даже не брал плату за пользование вырабатываемой электроэнергией, пока весь механизм не заработал слаженно и без перебоев.

Но «прабабушка» всех станций могла зажечь только 10000 ламп, хотя и по тем временам это было чем-то сверхъестественным. В то же время современные электростанции вырабатывают в тысячи раз больше, обеспечивая электрическим током города с населением в 100000 человек!

Как электрический ток поступает в дома?

После того, как электростанции выработают ток, он по кабелю попадает на распределительную подстанцию для измерения и преобразования. Там же установленные трансформаторы повышают напряжение до 10000 вольт. Благодаря такому напряжению ток с минимальными потерями передается на дальние расстояния с невероятной скоростью, составляющей до 3000 км в секунду!

Потом ток поступает на понижающую подстанцию, где трансформаторы уменьшают напряжение до 220 вольт — стандарт, принятый в РФ. И далее электричество направляется на распределительные сети города, а оттуда — к вам в дом и квартиру. Вот такой непростой путь он проделывает, чтобы зарядить наш телефон, зажечь лампочку или заставить работать холодильник.

Как ток заставляет работать электроприборы?

Но как же у тока получается запустить в работу электрические устройства? Для наглядного понимания возьмем за основу обычную лампу накаливания и вернемся к нашим маленьким частицам.

Когда электроны с невероятной скоростью проходят по спирали лампочки, они постоянно наталкиваются на атомы металла, из которых состоит спираль. Атомы раскачиваются, и их температура сильно поднимается. Таким образом, электрический ток нагревает спираль лампы до 3000 градусов, отчего она начинает светиться. Именно поэтому для спирали не подходит использование любого металла, потому что он просто будет плавиться из-за высокой температуры.

В современных устройствах — мобильных телефонах, телевизорах, микроволновых печах — задействованы более сложные схемы, но принцип остается таким же: из-за быстрого потока частиц атомы проводников нагреваются, отчего и выделяют энергию и запускают в работу приборы.

Не только друг, но и враг!

Конечно же, электричество — важное и незаменимое изобретение для всего человечества. С его помощью люди:

  • сделали и ежедневно делают уйму открытий;
  • лечат смертельные в прошлом болезни;
  • ездят на электротранспорте, не загрязняя окружающую среду выхлопными газами;
  • могут путешествовать по миру, узнавать и видеть достопримечательности не выходя из дома!

Всей пользы электричества просто не описать в одной статье!

Но при всем этом ток может быть и опасным и в долю секунды забрать жизнь любого живого существа.

Кстати, любопытный факт. Птицы, которые сидят на высоковольтных проводах, не получают разряда из-за того, что принимают такое же напряжение, как и в самом кабеле. Дело в том, что они сидят только на одной фазе, но если вдруг хвостом или другой частью тела птица коснется земли, столба или другого провода, то ток сразу же ее ударит.

Правила безопасного обращения с электричеством для детей

Маленькие дети не понимают всей опасности обращения с электричеством. Конечно, речь сейчас идет не об игрушках, питающихся от батареек напряжением в 12 вольт, а об опасном и сильном «звере», живущем в розетках. Поэтому малышей нельзя оставлять вблизи розеток без специальных заглушек, да еще и без родительского присмотра.

Для более взрослых детей стоит провести беседу и объяснить следующие правила. Нельзя:

  1. Ставить или вешать посторонние предметы на провод прибора.
  2. Закручивать кабель в узлы.
  3. Пользоваться грязным проводом.
  4. Использовать электроприбор вблизи источников тепла: батарей, плит, духовых шкафов и т. п.
  5. Включать несколько мощных устройств одновременно в одну розетку. Покажите ребенку, где и как можно посмотреть мощность, или сами заранее составьте список, что с чем можно включать, а что — нет.
  6. Использовать или пытаться починить сломанный электроприбор, в том числе если нарушена изоляция (целостность) кабеля, повреждена вилка и т. п.
  7. Браться мокрыми руками за прибор или кабель.
  8. Тянуть за шнур (нужно выключать прибор из розетки, держась за вилку).

Также могут возникнуть непредвиденные ситуации:

  • искры из розетки;
  • дым от кабеля или прибора;
  • запах гари и т. п.

На этот случай необходимо показать ребенку, где находится электрический щиток и как его выключить, и объяснить, что после отключения электричества нужно обязательно позвонить кому-то из взрослых.

И в заключение

Мы живем в прекрасное время, когда с помощью электричества создаются невероятные вещи, делающие нашу жизнь комфортной и безопасной. Чтобы оставить нам этот бесценный дар, многие ученые положили десятилетия своей жизни на его изучение. А с нашей стороны требуется всего лишь малость — научить детей правилам обращения с электричеством и подать им правильный пример, чтобы все труды лучших умов были использованы лишь на благо человечества!

Курсы по физике для детей 7-14 лет

Обучаем физике и естественным наукам в увлекательном игровом формате.

узнать подробнее

Электричество - Vaillant

Отопление электричеством отличается простотой монтажа и сравнительно невысокой ценой оборудования. Тем не менее, в долгосрочной перспективе более эффективными являются системы отопления, использующие другие источники энергии: газ, твердое топливо, солнечную и геотермальную энергию.

Отопление электричеством может быть весьма полезным в качестве дополнения к другим вариантам обогрева или в местах, которые не используются очень часто, например, загородных домах. Электрические устройства также рекомендуется в некоторых местах, где центральное отопление не представляется возможным или целесообразным, таких как небольшой офис или на складе.

Большинство устройств не требуют много места и не дороги. Другими преимуществами являются низкие затраты на установку и техническое обслуживание. Кроме того, проточные нагреватели производят тепло сразу, поэтому, они подходят для того, чтобы быстро принять душ.

Практические выгоды компенсируются относительно низкими затратами на использование электроэнергии. Сжигание ископаемых видов топлива для выработки электроэнергии влечет за собой потери вследствие преобразования в электричество. Кроме того, часть энергии теряется на своем пути по сети. Это означает, что потребление энергии является более высоким по сравнению с отопительной системой в доме. Таким образом, использование электроэнергии для долгосрочного отопления в постоянно используемых зданиях не рекомендуется.

Преимущества электроэнергии:

  • Высокая доступность
  • Низкие требования к пространству
  • Низкие закупочные цены
  • Низкие расходы на установку и техническое обслуживание
  • Возможность использовать дифференциальные тарифы для получения максимальной выгоды

Требования, которые должны быть выполнены в вашем доме:

  • Он должен быть подключен к сети общего пользования или иметь автономный источник питания
  • Некоторые устройства, такие как автономные емкостные нагреватели, требуют высоких токов

Электрические отопительные приборы

Существует ряд устройств, которые нагревают помещения с помощью электричества: автономные емкостные нагреватели, тепловентиляторы, радиаторы или электрические инфракрасные обогреватели. Радиаторы и электрические инфракрасные обогреватели являются прямыми отопительными приборами, которые сразу же передают свое тепло в окружающую среду.

Электрические водонагреватели

Часто электроэнергия используется для нагрева воды для кухонь и ванных комнат, например, через проточные водонагреватели.

Тепловые насосы

Тепловым насосам также требуются электрическая энергия. Они используют ее для привода насосов.

Трёхфазный ток, преимущества трёхфазного тока при использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Трехфазный переменный ток

Большинство людей, за исключением специалистов - электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, - часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом - по техническим причинам - мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх - и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе - А, В и С, у потребителя - L1, L2 и L3. Нулевой провод так и обозначается – 0. 

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» - между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Электрический ток, что это такое

Электрический ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.

Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.

В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.

Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод

Постоянный ток:

Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током.

Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы.

Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.

Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.

Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой).

Генератор Ван Де Граафа:

В электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.

Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного.

Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.

Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.

Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля.

Ранее ЭлектроВести писали, что две команды американских физиков разработали стратегию производства устройств для преобразования света в электричество с помощью органических полупроводников и «освобожденных» электронов.

По материалам: electrik.info.

«Энергосбережение: способы экономии электроэнергии в быту»

Тема № 46: «Энергосбережение: способы экономии электроэнергии в быту»

Лекция 46 (Скачать…)

Презентация (Скачать…)

 

Сегодня уровень развития цивилизации позволяет нам пользоваться всеми необходимыми для жизни ресурсами прямо у себя дома. Вода, газ, электричество, тепловая энергия в виде горячей воды доставляются нам прямо в квартиру или дом. Однако мы не всегда правильно и эффективно используем эти ресурсы.

Энергосбережение — это рациональное использование энергии.

Государство для достижения целей экономии и эффективного расходования энергии и ресурсов издает специальные законы. Предприятия и организации стараются сократить потребление энергии, чтобы уменьшить затраты на производство продукции, свои издержки и повысить прибыль. Многоквартирные дома экономят энергию для того, чтобы каждый из жильцов получал минимальный счет за коммунальные услуги. В зависимости от вида энергии существуют разные методы, позволяющие использовать эту энергию более эффективно.

Самыми крупными потребителями электроэнергии в коммунально-бытовом хозяйстве являются жилые дома. В них ежегодно расходуется в среднем 400 кВт*ч на человека, из которых примерно 280 кВт*ч потребляется внутри квартиры на освещение и бытовые приборы различного назначения и 120 кВт*ч – в установках инженерного оборудования и освещения общедомовых помещений. Внутриквартирное потребление электроэнергии составляет примерно 900 кВт*ч в год в расчёте на «усреднённую» городскую квартиру с газовой плитой и 2000 кВт*ч – с электрической плитой. Поэтому именно экономия становится важнейшим источником роста производства.

Расчёты показали, а практика подтвердила, что каждая единица денежных средств, затраченных на мероприятия, связанные с экономией электроэнергии, даёт такой же эффект, как вдовое большая сумма, израсходованная на увеличение её производства.

Кроме того, в связи с периодическим ростом тарифов на электроэнергию все более актуальной становится возможность ограничить затраты на ее оплату. Это можно сделать множеством способов. Некоторые способы энергосбережения в быту, связанные с новыми технологиями, для рядового потребителя могут быть дорогостоящими. Но есть способы, не требующие больших затрат и специальных знаний. Рассмотрим их подробно.

Советы, которые позволят минимизировать затраты на оплату электроэнергии

 

  1. Замените обычные лампы накаливания на энергосберегающие. Срок их службы в 5 раз больше, а потребление электроэнергии в 5 раз ниже. Конечно, энергосберегающие лампочки стоят на порядок дороже обычных ламп накаливания, но за время эксплуатации окупают себя 8-10 раз.
  2. Установите приборы многотарифного учета. В ночные часы тариф на электричество в несколько раз ниже дневного. Если вы «сова» и ложитесь спать поздно, если у вас на стиральной машинке есть таймер отложенного запуска — вы можете реально экономить немалые средства. На холодильник, который работает круглые сутки, приходится четверть потребляемой бытовыми приборами энергии. Двухтарифная оплата позволит сделать его содержание менее обременительным.
  1. Установите светорегуляторы (диммеры) и сами выбирайте интенсивность освещения вашей комнаты. Экономия может составить до 30% от электроэнергии, потребляемой для освещения.
  1. Применяйте технику класса энергоэффективности не ниже «А», а лучше «А+» или «А++». Устаревшие бытовые устройства расходуют электроэнергии примерно на 50% больше, чем современные.
  1. Проверьте целостность проводки. Очень часто в наших квартирах проводка менялась очень давно, и ее состояние оставляет желать лучшего. А между тем, плохие контакты – это не только источник опасности короткого замыкания, но и канал «утечки» электричества, которую не смогут уменьшить или предотвратить никакие современные энергосберегающие технологии.
  1. Отключайте устройства, длительное время находящиеся в режиме ожидания. Телевизоры, музыкальные центры, микроволновая печь и другая техника в режиме ожидания потребляют энергию от 3 до 10 Вт. За год 4 таких прибора, а также оставленные в розетках зарядные устройства дадут дополнительный расход энергии 300-400 кВт/час.

Пример: стандартный телевизор с диагональю 21 дюйм в режиме ожидания потребляет в сутки 297 Вт/ч, а за месяц почти 9 кВт/ч.

Музыкальный центр: почти 8 кВт/ч.

ДВД-плеер: почти 4 кВт/ч.

Включенное в розетку зарядное устройство от телефона использует энергию впустую, поскольку оно все равно нагревается, даже если к нему не подключен телефон. Естественно, что потери от постоянно включенных зарядных устройств в розетку небольшие по сравнению с другой бытовой техникой. Однако они относятся к импульсным источникам питания, а такие приборы не должны работать без нагрузки. Если к ним не подключен мобильный телефон, ноутбук или плеер, то такие устройства могут перегреться, выйти из строя и привести к возгоранию.

  1. Холодильник. Примерно 30-40% потребляемой в доме электрической энергии приходится на холодильник. Необходимо его регулярно размораживать. Это даст 3-5% снижения потребления электроэнергии. Желательно, чтобы холодильник был установлен в наиболее холодном месте комнаты (у наружной стены), подальше от нагревательных приборов. Не устанавливайте холодильник рядом с газовой плитой или радиатором отопления. Это увеличивает расход энергии на 20-30%. Не закрывайте радиатор холодильника, пусть между стеной помещения и задней стенкой холодильника останется зазор. Это позволит радиатору охлаждаться за счет воздушной прослойки. Проверьте чистоту и плотность прилегания уплотнителя холодильника – даже небольшая щель увеличивает расход энергии на 20-30%. Охлаждайте до комнатной температуры продукты перед их помещением в холодильник. Раскладывайте продукты в холодильнике без нагромождения, чтобы обеспечить необходимую циркуляцию воздуха в камере. Не открывайте без причины дверь холодильника и не держите ее слишком долго открытой. При хранении продуктов старайтесь устанавливать терморегулятор в минимальном или среднем положении.
  1. Кондиционер. Включайте кондиционер только при закрытых дверях и окнах. Это экономит от 10% до 30% энергии.
  1. Электроплита – самый расточительный из бытовых электроприборов. Она потребляет в три раза больше энергии, чем телевизор и в два раза больше энергии, чем холодильник. Выбирайте электроплиты со стеклокерамической или индукционной панелями, они позволяют свести к минимуму теплопотери при готовке и снизить энергозатраты. Правильно подобранная посуда также поможет сократить время приготовления пищи, а соответственно – и количество расходуемой энергии. Готовить пищу экономичнее на «медленном огне», а для доведения до готовности блюда лучше использовать остаточное тепло конфорки. Следите за тем, чтобы конфорки электроплиты не были деформированы и плотно прилегали к днищу нагреваемой посуды. Это исключит излишний расход тепла и электроэнергии. Не включайте плиту заранее и выключайте плиту несколько раньше, чем необходимо для полного приготовления блюда. Наверняка вам уже приходилось сталкиваться со следующим явлением. Закипел на плите чайник, конфорка отключена, но чайник продолжает неистово кипеть. Простой совет: отключение конфорки заранее, еще до закипания чайника на 2–3 минуты, сбережет вам до 20% электрической энергии. Момент отключения вы можете без труда установить по характерному шуму нагреваемой воды, который та начинает производить незадолго до закипания. Нагрев воды до кипения будет продолжаться и после отключения за счет тепловой инерции раскаленной конфорки. Не допускайте бурного кипения воды на включенной на полную мощность конфорке, ведь для кипения на разогретой плите достаточно и гораздо меньшей мощности.

Кстати, пользование электрическим чайником предпочтительнее, чем кипячение воды на плите. КПД чайника 90%, а конфорок электроплиты 50-60%. В этом случае, пользуясь чайником, можно сберечь до 40% электрической энергии. Иными словами, израсходовав одно и то же количество электроэнергии, в чайнике можно нагреть до кипения воды почти вдвое больше, чем на плите. А рекордсменом по эффективности является обычный кипятильник. При его применении практически вся потребляемая электроэнергия расходуется на нагрев воды.

После приготовления пищи одна или две конфорки, как правило, остаются горячими. Следует поставить на них холодную воду перед тем, как заливать ее в чайник или кофеварку. Этим можно сберечь от 10 до 30% электроэнергии (в зависимости от температуры отключенной конфорки) при последующем кипячении, поскольку температура воды, заливаемой в чайник, будет не 8-10°С (температура холодной воды из-под крана), а 25-40°С (после подогрева на остывающей конфорке). Кстати, для приготовления как пищи, так чая и кофе желательно пользоваться предварительно отстоявшейся водой, а не из-под крана. Во-первых, отстаиваясь, вода нагревается почти до комнатной температуры (а это примерно 10% энергосбережения при ее последующем кипячении). Во-вторых, из воды частично уходят элементы, которые используются при ее обеззараживании (например, хлор), что важно для здоровья.

Стремитесь иметь на кухне посуду с утолщенным дном, которая специально предназначена для приготовления пищи на конфорках электроплит.

Не используйте конфорки электроплит для обогрева помещений — толку от этого мало, а риск вывести из строя конфорку, работающую на холостом ходу, велик.

  1. При покупке стиральной машины выбирайте объем бака, соответствующий количеству проживающих дома человек: чем их больше, тем больше объем. Стирайте при полной загрузке барабана – так электроэнергии и воды расходуется меньше. В случае неполной загрузки машина израсходует до 15 процентов энергии больше, а при неправильно выбранной программе потери составят до 30 процентов. Устанавливайте оптимальную и более короткую программу стирки, результат которой вас устраивает. Наибольшее количество энергии при машинной стирке уходит на подогрев воды. На стирку при 90° тратится в три раза больше энергии, чем на стирку при 40°. При этом известно, что порошок растворяется и активно реагирует с грязным бельем при 40°.
  1. Если есть возможность, приобретите электроутюг с терморегулятором и выключателем на ручке — это, пожалуй, самые экономичные утюги, поскольку работают тогда, когда ими гладят. При эксплуатации утюга старайтесь не перекручивать электрический шнур и регулярно проверяйте его целостность. Сначала прогладьте вещи, которые необходимо обрабатывать при низких температурах, а затем повышайте нагрев утюга по мере необходимости. Не забывайте чистить рабочую поверхность электроутюга, так как это облегчает глажение и экономит электроэнергию. Не пересушивайте белье, так как при этом требуется более нагретый утюг и больше времени. Можно применить одну «хитрость», которая позволит снизить затраты – это воспользоваться алюминиевой фольгой, которую кладут под ткань гладильной доски. Фольга не позволяет рассеиваться тепловой энергии, а сосредотачивает ее в разглаживаемой ткани.
  1. Применяйте местные светильники, когда нет необходимости в общем освещении. Многоламповая люстра на потолке обеспечивает освещение всего помещения, но ведет к нежелательному образованию тени при работе за письменным столом, швейной машинкой, в уголке с игрушками. Целенаправленное освещение, несмотря на меньшую мощность ламп, обеспечит лучшую освещенность без нежелательной тени. Следует чаще пользоваться настольной лампой, которая с лампочкой мощностью 30 Вт позволяет достичь лучшей освещенности на рабочем столе, чем люстра с тремя и даже пятью лампочками общей мощностью Вт. В результате двойной выигрыш: сохранение зрения и сбережение электрической энергии.
  1. Сделайте возможным комбинированное включение люстры общего освещения – используйте многоклавишные выключатели, позволяющие постепенно включать от одного до нескольких рожков, а не все сразу, в зависимости от ваших потребностей.
  1. «Уходя, гасите свет» — это золотое правило известно с советских времен. Учитывая тарифы на электроэнергию, сегодня это выражение более чем актуально. Выключайте свет, не только покидая квартиру, но и уходя из комнаты более чем на 10 минут. Подумайте, нужны ли вам включенные в каждой комнате телевизоры? Часто бывает так, что телевизор работает на кухне, в спальне и в гостиной, а зритель в квартире всего один.
  1. Оборудуйте места низкой проходимости в вашем доме (лестничные пролеты, тамбуры, подъезды) приборами автоматического управления освещением. Выключатели с датчиком движения, реле времени, датчики присутствия позволяют сократить почти в 2 раза потребление электроэнергии в местах общего пользования.
  1. Настройте домашний компьютер на экономичный режим работы (отрегулируйте яркость монитора, задайте параметры перехода в спящий режим, отключения жестких дисков).
  1. Максимально используйте естественное освещение – это один из путей уменьшения расхода электроэнергии на искусственное освещение. Имейте это в виду и следите за чистотой оконных стекол в квартире. Умело сочетайте в доме все три вида искусственного освещения: общее, местное и комбинированное. Приучите себя регулярно, примерно 1 раз в месяц, вытирать пыль со светильников, что обеспечит и чистоту, и улучшение освещенности в доме.
  1. Не применяйте электроотопительные агрегаты в доме, если в том нет острой необходимости. Лучше проведите целенаправленную работу по утеплению окон и дверей.
  1. Ежемесячно в один и тот же день месяца снимайте показания электросчетчика, сравнивайте потребление электроэнергии в настоящем месяце с предыдущим, анализируйте, отчего произошла экономия (или перерасход) электроэнергии, и делайте соответствующие выводы.
  1. Не пытайтесь заниматься хищением электроэнергии. Во-первых, это опасно, а во-вторых, знайте, что не существует такого способа воровства электроэнергии, который бы не раскрыл опытный эксперт-электротехник. Имейте в виду, что с помощью лабораторных исследований легко определить, было ли совершено вмешательство в работу электросчетчика.

В целом, вполне реально сократить потребление электроэнергии на 40-50% без снижения качества жизни и ущерба для привычек.

Справочная информация о системе обслуживания потребителей электроэнергии филиала МРСК Северного Кавказа – «Ставропольэнерго»:

 

ОЧНАЯ ФОРМА ОБСЛУЖИВАНИЯ

 

ЗАОЧНАЯ ФОРМА ОБСЛУЖИВАНИЯ
Офисы обслуживания:Телефон:
— Центры обслуживания клиентов

— Контакт-центр: 8-800-775-91-12 (звонок

бесплатный)

— Пункты по работе с клиентами

(на базе районных электрических сетей)

 
 Интернет:
 

— Портал по работе с клиентами Россети

— Личный кабинет на сайте МРСК

Северного Кавказа

— Интернет-приемная на сайте МРСК

Северного Кавказа

Электричество - величайшее изобретение человечества

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

----Основные свойства и законы электричества--установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество--это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

----Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

----Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,-- первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

----Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде "вольтова столба".

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г. Омом. На основании всех этих исследований подмастерье М.Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Что такое электричество? - learn.sparkfun.com

Добавлено в избранное Любимый 68

Начало работы

Электричество окружает нас повсюду, питая такие технологии, как наши сотовые телефоны, компьютеры, фонари, паяльники и кондиционеры. В современном мире от этого трудно спастись. Даже когда вы пытаетесь избежать электричества, оно по-прежнему действует по всей природе, от молнии во время грозы до синапсов внутри нашего тела.Но что такое - это электричество ? Это очень сложный вопрос, и по мере того, как вы копаете глубже и задаете больше вопросов, на самом деле нет окончательного ответа, только абстрактные представления о том, как электричество взаимодействует с нашим окружением.

Электричество - это природное явление, которое встречается в природе и принимает множество различных форм. В этом уроке мы сосредоточимся на современной электроэнергии: на том, что питает наши электронные гаджеты. Наша цель - понять, как электричество течет от источника питания по проводам, зажигает светодиоды, вращающиеся двигатели и питает наши коммуникационные устройства.

Электричество кратко определяется как поток электрического заряда , , но за этим простым утверждением стоит так много всего. Откуда берутся обвинения? Как мы их перемещаем? Куда они переезжают? Как электрический заряд вызывает механическое движение или заставляет вещи загораться? Так много вопросов! Чтобы начать объяснять, что такое электричество, нам нужно приблизиться, за пределы материи и молекул, к атомам, из которых состоит все, с чем мы взаимодействуем в жизни.

Это руководство основано на некотором базовом понимании физики, силы, энергии, атомов и [полей] (http: // en. wikipedia.org/wiki/Field_(physics)), в частности. Мы рассмотрим основы каждой из этих физических концепций, но, возможно, также будет полезно обратиться к другим источникам.

Going Atomic

Чтобы понять основы электричества, нам нужно для начала сосредоточиться на атомах, одном из основных строительных блоков жизни и материи. Атомы существуют в более чем сотне различных форм в виде химических элементов, таких как водород, углерод, кислород и медь. Атомы многих типов могут объединяться в молекулы, из которых строится материя, которую мы можем физически увидеть и потрогать.

Атомы - это крошечных , максимальная длина которых составляет около 300 пикометров (это 3х10 -10 или 0,0000000003 метра). Медный пенни (если бы он на самом деле был сделан из 100% меди) имел бы 3,2х10 22 атома (32 000 000 000 000 000 000 000 атомов) меди внутри.

Даже атом недостаточно мал, чтобы объяснить работу электричества. Нам нужно спуститься еще на один уровень и посмотреть на строительные блоки атомов: протоны, нейтроны и электроны.

Строительные блоки атомов

Атом состоит из трех различных частиц: электронов, протонов и нейтронов. У каждого атома есть центральное ядро, в котором протоны и нейтроны плотно упакованы вместе. Ядро окружает группа вращающихся электронов.

Очень простая модель атома. Это не в масштабе, но полезно для понимания того, как устроен атом. Ядро ядра протонов и нейтронов окружено вращающимися электронами.

В каждом атоме должен быть хотя бы один протон. Число протонов в атоме важно, потому что оно определяет, какой химический элемент представляет собой атом. Например, атом с одним протоном - это водород, атом с 29 протонами - это медь, а атом с 94 протонами - это плутоний. Это количество протонов называется атомным номером атома .

Ядро-партнер протона, нейтроны, служат важной цели; они удерживают протоны в ядре и определяют изотоп атома. Они не критичны для нашего понимания электричества, поэтому давайте не будем о них беспокоиться в этом уроке.

Электроны критически важны для работы электричества (обратите внимание на общую тему в их названиях?) В наиболее стабильном, сбалансированном состоянии атом будет иметь такое же количество электронов, что и протоны. Как и в модели атома Бора ниже, ядро ​​с 29 протонами (что делает его атомом меди) окружено равным числом электронов.

По мере того, как наше понимание атомов эволюционировало, наш метод их моделирования тоже.Модель Бора - очень полезная модель атома при изучении электричества.

Не все электроны атома навсегда связаны с атомом. Электроны на внешней орбите атома называются валентными электронами. При наличии достаточной внешней силы валентный электрон может покинуть орбиту атома и стать свободным. Свободные электроны позволяют нам перемещать заряд, в чем и заключается вся суть электричества. Кстати о зарядке . ..

Текущие расходы

Как мы упоминали в начале этого урока, электричество определяется как поток электрического заряда. Заряд - это свойство материи, такое же как масса, объем или плотность. Это измеримо. Точно так же, как вы можете количественно определить, сколько у чего-то массы, вы можете измерить, сколько у него заряда. Ключевой концепцией заряда является то, что он может быть двух типов: положительный (+) или отрицательный (-) .

Чтобы переместить заряд, нам нужно носителей заряда , и именно здесь наши знания об атомных частицах - в частности, об электронах и протонах - пригодятся. Электроны всегда несут отрицательный заряд, а протоны - положительно.Нейтроны (верные своему названию) нейтральны, у них нет заряда. И электроны, и протоны несут одинаковую величину заряда , только другого типа.

Модель атома лития (3 протона) с обозначенными зарядами.

Заряд электронов и протонов важен, потому что он дает нам возможность воздействовать на них силой. Электростатическая сила!

Электростатическая сила

Электростатическая сила (также называемая законом Кулона) - это сила, действующая между зарядами.В нем говорится, что заряды одного типа отталкиваются друг от друга, а заряды противоположных типов притягиваются друг к другу. Противоположности притягивают, а любит отталкивать .

Величина силы, действующей на два заряда, зависит от того, как далеко они находятся друг от друга. Чем ближе подходят два заряда, тем больше становится сила (сдвигающая или отталкивающая).

Благодаря электростатической силе электроны отталкивают другие электроны и притягиваются к протонам.Эта сила является частью «клея», удерживающего атомы вместе, но это также инструмент, который нам нужен, чтобы заставить электроны (и заряды) течь!

Поток начислений

Теперь у нас есть все инструменты, чтобы заставить заряды течь. Электроны в атомах могут действовать как наш носитель заряда , потому что каждый электрон несет отрицательный заряд. Если мы сможем освободить электрон от атома и заставить его двигаться, мы сможем создать электричество.

Рассмотрим атомную модель атома меди, одного из предпочтительных источников элементарного заряда.В сбалансированном состоянии медь имеет 29 протонов в ядре и такое же количество электронов, вращающихся вокруг нее. Электроны вращаются на разных расстояниях от ядра атома. Электроны, расположенные ближе к ядру, испытывают гораздо более сильное притяжение к центру, чем электроны на далеких орбитах. Крайние электроны атома называются валентными электронами , , для их освобождения от атома требуется наименьшее количество силы.

Это диаграмма атома меди: 29 протонов в ядре, окруженные полосами вращающихся электронов.Электроны, расположенные ближе к ядру, трудно удалить, в то время как валентный электрон (внешнее кольцо) требует относительно небольшой энергии для выброса из атома.

Используя достаточную электростатическую силу на валентный электрон - либо толкая его другим отрицательным зарядом, либо притягивая его положительным зарядом - мы можем выбросить электрон с орбиты вокруг атома, создав свободный электрон.

Теперь рассмотрим медную проволоку: вещество, заполненное бесчисленными атомами меди. Поскольку наш свободный электрон плавает в пространстве между атомами, он тянется и подталкивается окружающими зарядами в этом пространстве.В этом хаосе свободный электрон в конце концов находит новый атом, за который он цепляется; при этом отрицательный заряд этого электрона выбрасывает другой валентный электрон из атома. Теперь новый электрон дрейфует в свободном пространстве, пытаясь сделать то же самое. Этот цепной эффект может продолжаться и продолжаться, создавая поток электронов, называемый электрическим током , .

Очень упрощенная модель зарядов, протекающих через атомы для создания тока.

Электропроводность

Некоторые элементарные типы атомов лучше других выделяют свои электроны.Чтобы получить наилучший возможный поток электронов, мы хотим использовать атомы, которые не очень крепко держатся за свои валентные электроны. Проводимость элемента измеряет, насколько сильно электрон связан с атомом.

Элементы с высокой проводимостью, которые имеют очень подвижные электроны, называются проводниками . Это типы материалов, которые мы хотим использовать для изготовления проводов и других компонентов, которые способствуют электронному потоку. Металлы, такие как медь, серебро и золото, обычно являются нашим лучшим выбором в качестве хороших проводников.

Элементы с низкой проводимостью называются изоляторами . Изоляторы служат очень важной цели: они предотвращают поток электронов. Популярные изоляторы включают стекло, резину, пластик и воздух.

Статическое или текущее электричество

Прежде чем мы продолжим, давайте обсудим две формы, которые может принимать электричество: статическое или текущее. При работе с электроникой гораздо чаще встречается текущее электричество, но также важно понимать статическое электричество.

Статическое электричество

Статическое электричество возникает, когда на объектах, разделенных изолятором, накапливаются противоположные заряды. Статическое (как в «состоянии покоя») электричество существует до тех пор, пока две группы противоположных зарядов не найдут путь между собой, чтобы сбалансировать систему.

Когда заряды все же находят способ уравновешивания, происходит статический разряд . Притяжение зарядов становится настолько большим, что они могут проходить даже через лучшие изоляторы (воздух, стекло, пластик, резину и т. Д.).). Статические разряды могут быть вредными в зависимости от того, через какую среду проходят заряды и на какие поверхности переносятся заряды. Выравнивание зарядов через воздушный зазор может привести к видимому сотрясению, поскольку движущиеся электроны сталкиваются с электронами в воздухе, которые возбуждаются и выделяют энергию в виде света.

Запальные устройства с искровым разрядником используются для создания управляемого статического разряда. Противоположные заряды накапливаются на каждом из проводников, пока их притяжение не станет настолько сильным, что заряды могут течь по воздуху.

Один из самых ярких примеров статического разряда - молния . Когда облачная система накапливает достаточно заряда относительно другой группы облаков или земли, заряды будут пытаться уравновеситься. Когда облако разряжается, огромное количество положительных (а иногда и отрицательных) зарядов проходит по воздуху от земли к облаку, вызывая видимый эффект, с которым мы все знакомы.

Статическое электричество также существует, когда мы терем воздушные шары о голову, чтобы волосы встали дыбом, или когда мы шаркали по полу в пушистых тапочках и шокировали семейную кошку (конечно, случайно).В каждом случае трение от трения материалов разных типов переносит электроны. Объект, теряющий электроны, становится положительно заряженным, а объект, получающий электроны, становится отрицательно заряженным. Два объекта притягиваются друг к другу, пока не найдут способ уравновесить их.

Работая с электроникой, мы обычно не сталкиваемся со статическим электричеством. Когда мы это делаем, мы обычно пытаемся защитить наши чувствительные электронные компоненты от статического разряда.Профилактические меры против статического электричества включают ношение браслетов ESD (электростатический разряд) или добавление специальных компонентов в схемы для защиты от очень высоких скачков заряда.

Текущее электричество

Текущее электричество - это форма электричества, которая делает возможными все наши электронные устройства. Эта форма электричества существует, когда заряды могут постоянно течь . В отличие от статического электричества, когда заряды собираются и остаются в покое, текущее электричество является динамическим, заряды всегда находятся в движении.Мы сосредоточимся на этой форме электричества на протяжении всего урока.

Цепи

Для протекания электрического тока требуется цепь: замкнутая, бесконечная петля из проводящего материала. Схема может быть такой же простой, как проводящий провод, соединенный встык, но полезные схемы обычно содержат смесь проводов и других компонентов, которые контролируют поток электричества. Единственное правило, когда дело доходит до создания цепей, - в них не должно быть изоляционных промежутков .

Если у вас есть провод, полный атомов меди, и вы хотите вызвать поток электронов через него, все свободных электронов должны где-то течь в том же общем направлении. Медь - отличный проводник, идеальный для протекания зарядов. Если цепь из медного провода разорвана, заряды не могут проходить через воздух, что также предотвратит перемещение любого из зарядов к середине.

С другой стороны, если бы провод был соединен встык, у всех электронов был бы соседний атом, и все они могли бы течь в одном и том же общем направлении.


Теперь мы понимаем , как могут течь электронов, но как мы вообще можем заставить их течь? Затем, когда электроны текут, как они производят энергию, необходимую для освещения лампочек или вращающихся двигателей? Для этого нам нужно понимать электрические поля.

Электрические поля

Мы знаем, как электроны проходят через материю, чтобы создать электричество. Это все, что касается электричества. Ну почти все.Теперь нам нужен источник, чтобы вызвать поток электронов. Чаще всего источником электронного потока является электрическое поле.

Что такое поле?

Поле - это инструмент, который мы используем для моделирования физических взаимодействий, которые не включают никаких наблюдаемых контактов . Поля нельзя увидеть, поскольку они не имеют физического внешнего вида, но эффект, который они оказывают, очень реален.

Мы все подсознательно знакомы с одной областью, в частности: гравитационным полем Земли, эффектом притяжения массивного тела другими телами.Гравитационное поле Земли можно смоделировать с помощью набора векторов, направленных в центр планеты; независимо от того, где вы находитесь на поверхности, вы почувствуете силу, толкающую вас к ней.

Сила или напряженность поля неодинакова во всех точках поля. Чем дальше вы находитесь от источника поля, тем меньшее влияние поле оказывает. Величина гравитационного поля Земли уменьшается по мере удаления от центра планеты.

Когда мы продолжим изучать электрические поля, вспомним, в частности, как работает гравитационное поле Земли, оба поля имеют много общего.Гравитационные поля действуют на объекты массы, а электрические поля действуют на объекты заряда.

Электрополя

Электрические поля (е-поля) - важный инструмент в понимании того, как начинается и продолжает течь электричество. Электрические поля описывают тянущую или толкающую силу в пространстве между зарядами . По сравнению с гравитационным полем Земли, электрические поля имеют одно важное отличие: в то время как поле Земли обычно привлекает только другие объекты массы (так как все , поэтому значительно менее массивны), электрические поля отталкивают заряды так же часто, как и притягивают их.

Направление электрических полей всегда определяется как направление , положительный тестовый заряд переместился бы на , если бы он был сброшен в поле. Испытательный заряд должен быть бесконечно малым, чтобы его заряд не влиял на поле.

Мы можем начать с построения электрических полей для отдельных положительных и отрицательных зарядов. Если вы уроните положительный тестовый заряд рядом с отрицательным зарядом, тестовый заряд будет притягиваться к отрицательному заряду . Итак, для одиночного отрицательного заряда мы рисуем стрелки электрического поля, направленные внутрь во всех направлениях.Тот же самый испытательный заряд, падающий рядом с другим положительным зарядом , приведет к отталкиванию наружу, что означает, что мы рисуем стрелки , выходящие из положительного заряда.

Электрические поля одиночных зарядов. Отрицательный заряд имеет внутреннее электрическое поле, потому что он притягивает положительные заряды. Положительный заряд имеет внешнее электрическое поле, отталкиваясь, как заряды.

Группы электрических зарядов могут быть объединены для создания более полных электрических полей.

Равномерное электронное поле сверху направлено от положительных зарядов к отрицательным. Представьте себе крошечный положительный тестовый заряд, сброшенный в электронное поле; он должен следовать в направлении стрелок. Как мы видели, электричество обычно включает в себя поток электронов - отрицательных зарядов - которые текут против электрических полей .

Электрические поля дают нам толкающую силу, необходимую для протекания тока. Электрическое поле в цепи похоже на электронный насос: большой источник отрицательных зарядов, который может толкать электроны, которые будут течь по цепи к положительному сгустку зарядов.

Электрический потенциал (энергия)

Когда мы используем электричество для питания наших цепей, устройств и устройств, мы действительно преобразуем энергию. Электронные схемы должны уметь накапливать энергию и передавать ее другим формам, таким как тепло, свет или движение. Накопленная энергия цепи называется электрической потенциальной энергией.

Энергия? Потенциальная энергия?

Чтобы понять потенциальную энергию, нам нужно понять энергию в целом. Энергия определяется как способность объекта выполнять работы над другим объектом, что означает перемещение этого объекта на некоторое расстояние.Энергия имеет множество форм , некоторые из которых мы можем видеть (например, механическая), а другие - нет (например, химическая или электрическая). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.

Объект имеет кинетическую энергию , когда он движется. Количество кинетической энергии объекта зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой запасенную энергию , когда объект находится в состоянии покоя. Он описывает, сколько работы мог бы сделать объект, если бы он был приведен в движение.Это энергия, которую мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую.

Давайте вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно сидящий на вершине башни Халифа, имеет много потенциальной (запасенной) энергии. После падения мяч, притягиваемый гравитационным полем, ускоряется по направлению к земле. По мере ускорения мяча потенциальная энергия преобразуется в кинетическую (энергию движения). В конце концов вся энергия мяча превращается из потенциальной в кинетическую, а затем передается всему, в что он попадает.Когда мяч находится на земле, он имеет очень низкую потенциальную энергию.

Электрический потенциал энергии

Подобно тому, как масса в гравитационном поле имеет потенциальную энергию гравитации, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько у него накопленной энергии, когда она приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может выполнять работу.

Подобно шару для боулинга, сидящему на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда имеет высокую потенциальную энергию; оставленный свободным для движения, заряд будет отталкиваться от аналогичного заряда.Положительный тестовый заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, как и шар для боулинга на земле.

Чтобы привить чему-либо потенциальную энергию, мы должны выполнить работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля силы тяжести. Точно так же необходимо проделать работу, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда).Чем дальше идет заряд, тем больше работы вам предстоит сделать. Точно так же, если вы попытаетесь отвести отрицательный заряд от положительного заряда - против электрического поля - вам придется выполнять работу.

Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительный или отрицательный), количества заряда и его положения в поле. Электрическая потенциальная энергия измеряется в джоулях ( Дж, ).

Электрический потенциал

Электрический потенциал основан на электрическом потенциале energy , чтобы помочь определить, сколько энергии хранится в электрических полях .Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал равен , а не , как электрическая потенциальная энергия!

В любой точке электрического поля электрический потенциал равен количеству электрической потенциальной энергии, деленному на количество заряда в этой точке. Он исключает количество заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал выражается в джоулях на кулон ( Дж / К ), который мы определяем как вольт и (В).

В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.

Один из наиболее распространенных терминов, которые мы обсуждаем при оценке электричества, - это напряжение . Напряжение - это разница потенциалов между двумя точками электрического поля.Напряжение дает нам представление о том, сколько толкающей силы имеет электрическое поле.


Имея в своем арсенале потенциальную и потенциальную энергию, у нас есть все ингредиенты, необходимые для производства электричества. Давай сделаем это!

Электричество в действии!

Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Сделаем схему!

Сначала рассмотрим ингредиенты, необходимые для производства электричества:

  • Электричество определяется как поток заряда .Обычно наши заряды переносятся свободно текущими электронами.
  • Отрицательно заряженные электронов слабо прикреплены к атомам проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
  • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
  • Заряды приводятся в движение электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.

Короткое замыкание

Батареи - распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной части схемы. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются. Это разность электрических потенциалов, ожидающая начала действия!

Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы называем электричеством.

После секунды протекания тока электроны фактически переместились на очень - на доли сантиметра. Однако энергия, производимая текущим потоком, составляет огромных , особенно потому, что в этой цепи нет ничего, что могло бы замедлить поток или потребить энергию.Подключение чистого проводника напрямую к источнику энергии - плохая идея, . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.

Освещение лампочки

Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении батареи и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь передает электрическую энергию в другую форму - свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.

Схема: батарея (слева) подключается к лампочке (справа), цепь замыкается, когда замыкается переключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.

В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с максимальным потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в ​​световую (или тепловую).

Ресурсы и дальнейшее развитие

В этом уроке мы раскрыли лишь крохотную часть пресловутого айсберга.Остается еще масса нераскрытых концепций. Отсюда мы рекомендуем вам перейти сразу к нашему руководству по напряжению, току, сопротивлению и закону Ома. Теперь, когда вы знаете все об электрических полях (напряжении) и текущих электронах (токе), вы на правильном пути к пониманию закона, регулирующего их взаимодействие.

Для получения дополнительной информации и визуализаций, объясняющих электричество, посетите этот сайт.

Вот еще несколько концептуальных руководств для начинающих, которые мы рекомендуем прочитать:

Или, может быть, вы хотите узнать что-нибудь практическое? В этом случае ознакомьтесь с некоторыми из этих руководств по навыкам базового уровня:

Объяснитель: Что такое электричество?

Что такое электричество?

Электричество - это форма энергии.Электричество - это поток электронов. Вся материя состоит из атомов, и у атома есть центр, называемый ядром. Ядро содержит положительно заряженные частицы, называемые протонами, и незаряженные частицы, называемые нейтронами. Ядро атома окружено отрицательно заряженными частицами, называемыми электронами. Отрицательный заряд электрона равен положительному заряду протона, а количество электронов в атоме обычно равно количеству протонов. Когда уравновешивающая сила между протонами и электронами нарушается внешней силой, атом может получить или потерять электрон.Когда электроны «теряются» из атома, свободное движение этих электронов образует электрический ток.

Электричество - это основная часть природы и одна из наиболее широко используемых форм энергии. Мы получаем электричество, которое является вторичным источником энергии, путем преобразования других источников энергии, таких как уголь, природный газ, нефть, ядерная энергия и другие природные источники, которые называются первичными источниками. Многие города были построены рядом с водопадами (основным источником механической энергии), которые вращали водяные колеса для выполнения работы.До того, как производство электроэнергии началось чуть более 100 лет назад, дома освещались керосиновыми лампами, еда охлаждалась в холодильниках, а комнаты обогревались дровяными или угольными печами. Начиная с эксперимента Бенджамина Франклина с воздушным змеем одной бурной ночью в Филадельфии, постепенно стали понятны принципы электричества. В середине 1800-х годов жизнь всех изменилась с изобретением электрической лампочки. До 1879 года электричество использовалось в дуговых лампах для наружного освещения.Изобретение лампочки использовало электричество для внутреннего освещения наших домов.

Как используется трансформатор?

Чтобы решить проблему отправки электричества на большие расстояния, Джордж Вестингауз разработал устройство, называемое трансформатором. Трансформатор позволял эффективно передавать электричество на большие расстояния. Это позволило подавать электроэнергию в дома и предприятия, расположенные вдали от электростанции.

Несмотря на его огромное значение в нашей повседневной жизни, большинство из нас редко задумывается о том, какой была бы жизнь без электричества.Тем не менее, как воздух и вода, мы склонны воспринимать электричество как должное. Ежедневно мы используем электричество для выполнения многих функций - от освещения и обогрева / охлаждения наших домов до источника энергии для телевизоров и компьютеров. Электричество - это управляемая и удобная форма энергии, используемая для производства тепла, света и энергии.

Сегодня электроэнергетика Соединенных Штатов (США) создана для того, чтобы обеспечить наличие достаточного количества электроэнергии для удовлетворения всех требований спроса в любой конкретный момент.

Как вырабатывается электроэнергия?

Электрогенератор - это устройство для преобразования механической энергии в электрическую. Процесс основан на взаимосвязи между магнетизмом и электричеством. Когда провод или любой другой электропроводящий материал перемещается в магнитном поле, в проводе возникает электрический ток. Большие генераторы, используемые в электроэнергетике, имеют стационарный провод. Магнит, прикрепленный к концу вращающегося вала, расположен внутри неподвижного токопроводящего кольца, обернутого длинным непрерывным куском проволоки.Когда магнит вращается, он индуцирует небольшой электрический ток в каждом отрезке провода, когда он проходит. Каждая секция провода представляет собой небольшой отдельный электрический проводник. Все малые токи отдельных секций составляют один ток значительной величины. Этот ток используется для выработки электроэнергии.

Как турбины используются для выработки электроэнергии?

Электростанция общего пользования использует турбину, двигатель, водяное колесо или другую аналогичную машину для приведения в действие электрогенератора или устройства, преобразующего механическую или химическую энергию в электричество.Паровые турбины, двигатели внутреннего сгорания, газовые турбины сгорания, водяные турбины и ветряные турбины являются наиболее распространенными методами производства электроэнергии.

Большая часть электроэнергии в США производится паровыми турбинами. Турбина преобразует кинетическую энергию движущейся жидкости (жидкости или газа) в механическую энергию. Паровые турбины имеют ряд лопастей, установленных на валу, на который нагнетается пар, таким образом вращая вал, соединенный с генератором. В паровой турбине, работающей на ископаемом топливе, топливо сжигается в печи, чтобы нагреть воду в котле для производства пара.

Уголь, нефть (нефть) и природный газ сжигаются в больших печах для нагрева воды и образования пара, который, в свою очередь, воздействует на лопатки турбины. Знаете ли вы, что уголь - это самый крупный первичный источник энергии, используемый для производства электроэнергии в Соединенных Штатах? В 1998 году более половины (52%) из 3,62 триллиона киловатт-часов электроэнергии округа использовали уголь в качестве источника энергии.

Природный газ не только сжигается для нагрева воды для получения пара, но также может сжигаться для получения горячих дымовых газов, которые проходят непосредственно через турбину, вращая лопасти турбины для выработки электроэнергии.Газовые турбины обычно используются, когда электроэнергия пользуется большим спросом. В 1998 году 15% электроэнергии в стране производилось за счет природного газа.

Нефть также можно использовать для производства пара, вращающего турбину. Остаточное жидкое топливо, продукт, очищенный из сырой нефти, часто является нефтепродуктом, используемым на электростанциях, которые используют нефть для производства пара. Нефть использовалась для выработки менее трех процентов (3%) всей электроэнергии, произведенной на электростанциях США в 1998 году.

Ядерная энергия - это метод, при котором пар производится путем нагрева воды в процессе ядерного деления.На атомной электростанции реактор содержит активную зону из ядерного топлива, в основном обогащенного урана. Когда на атомы уранового топлива попадают нейтроны, они делятся (расщепляются), выделяя тепло и новые нейтроны. В контролируемых условиях эти другие нейтроны могут поражать большее количество атомов урана, расщепляя больше атомов и т. Д. Таким образом, может происходить непрерывное деление с образованием цепной реакции с выделением тепла. Тепло используется для превращения воды в пар, который, в свою очередь, вращает турбину, вырабатывающую электричество.В 2015 году ядерная энергия используется для производства 19,47% всей электроэнергии страны.

По данным на 2013 год, гидроэнергетика составляет 6,8% производства электроэнергии в США. Это процесс, в котором проточная вода используется для вращения турбины, подключенной к генератору. В основном есть два основных типа гидроэлектрических систем, производящих электроэнергию. В первой системе проточная вода накапливается в резервуарах, созданных с помощью дамб. Вода падает через трубу, называемую напорным затвором, и оказывает давление на лопасти турбины, заставляя генератор производить электричество.Во второй системе, называемой руслом реки, сила речного течения (а не падающая вода) оказывает давление на лопасти турбины для производства электроэнергии.

Другие источники генерации

Геотермальная энергия исходит из тепловой энергии, скрытой под поверхностью земли. В некоторых районах страны магма (расплавленное вещество под земной корой) течет достаточно близко к поверхности земли, чтобы нагревать подземную воду до пара, который можно использовать на паротурбинных установках.По состоянию на 2013 год этот источник энергии вырабатывает менее 1% электроэнергии в стране, хотя, по оценке Управления энергетической информации США, девять западных штатов потенциально могут производить достаточно электроэнергии для обеспечения 20% потребностей страны в энергии.

Солнечная энергия получается из энергии солнца. Однако солнечная энергия недоступна постоянно, и она широко разбросана. Процессы, используемые для производства электроэнергии с использованием солнечной энергии, исторически были более дорогими, чем использование традиционных ископаемых видов топлива.Фотоэлектрическое преобразование генерирует электроэнергию непосредственно из солнечного света в фотоэлектрических (солнечных) элементах. Солнечно-тепловые электрические генераторы используют лучистую энергию солнца для производства пара для привода турбин. В 2015 году менее 1% электроэнергии в стране было произведено за счет солнечной энергии.

Энергия ветра получается путем преобразования энергии ветра в электричество. Энергия ветра, как и солнце, обычно является дорогостоящим источником производства электроэнергии. В 2014 году он использовался примерно 4.44 процента электроэнергии страны. Ветряная турбина похожа на типичную ветряную мельницу.

Биомасса (древесина, твердые бытовые отходы (мусор) и сельскохозяйственные отходы, такие как кукурузные початки и солома пшеницы, являются некоторыми другими источниками энергии для производства электроэнергии. Эти источники заменяют ископаемое топливо в котле. При сжигании древесины и отходов образуется пар, который обычно используется на обычных пароэлектрических установках.В 2015 году биомасса составляла 1,57 процента электроэнергии, вырабатываемой в Соединенных Штатах.

Электроэнергия, производимая генератором, проходит по кабелям к трансформатору, который меняет напряжение с низкого на высокое напряжение. Электричество можно перемещать на большие расстояния более эффективно, используя высокое напряжение. Линии электропередачи используются для передачи электроэнергии на подстанцию. На подстанциях есть трансформаторы, которые преобразуют электричество высокого напряжения в электричество более низкого напряжения. От подстанции по распределительным линиям электричество доставляется в дома, офисы и фабрики, которым требуется электричество низкого напряжения.

Как измеряется электроэнергия?

Электричество измеряется в единицах мощности, называемых ваттами. Он был назван в честь Джеймса Ватта, изобретателя паровой машины. Один ватт - это очень небольшая мощность. Для одной лошадиных сил потребуется около 750 Вт. Киловатт представляет 1000 ватт. Киловатт-час (кВтч) равен энергии 1000 ватт, работающих в течение одного часа. Количество электроэнергии, производимой электростанцией или потребляемой потребителем в течение определенного периода времени, измеряется в киловатт-часах (кВтч).Киловатт-часы определяются путем умножения количества требуемых киловатт на количество часов использования. Например, если вы используете 40-ваттную лампочку 5 часов в день, вы израсходовали 200 ватт мощности или 0,2 киловатт-часа электроэнергии.

Подробнее о Электричество: История, электроника и известные изобретатели

Как производится электричество? | Как работает электричество?

Какие источники питания зеленые?

Энергия, вырабатываемая из возобновляемых источников, таких как гидро-, ветровая, солнечная и геотермальная, является зеленой.В отличие от ископаемого топлива эти источники энергии не истощают природные ресурсы. Они также являются более чистыми источниками энергии, которые не загрязняют окружающую среду выбросами углерода.

Хотя возобновляемые источники энергии лучше для здоровья нашей планеты, они обычно стоят больше, чем другие источники энергии, поэтому большая часть нашей электроэнергии не вырабатывается из зеленых источников.

Продукт JustGreen Power от компании

Just Energy позволяет гарантировать, что до 100% потребляемой вами электроэнергии вырабатывается из возобновляемых источников.

Узнать больше
Ежегодное раскрытие экологической информации
Ежеквартальное раскрытие экологической информации

Хотя варианты зеленой энергии Just Energy доступны на большинстве рынков, которые мы обслуживаем, они пока доступны не на всех наших рынках. Посмотрите, на каких рынках мы в настоящее время предлагаем варианты зеленой энергии.

Хотите узнать больше об электричестве? Ознакомьтесь с нашей серией обучающих статей с часто задаваемыми вопросами об электричестве.

Раскрытие экологической информации

Заявление об охране окружающей среды штата Иллинойс
Заявление об охране окружающей среды штата Делавэр

Источники: «Электроэнергия - вторичный источник энергии.”Университет Лихай,

1. «Электроэнергия - вторичный источник энергии». Университет Лихай, http://www.ei.lehigh.edu/learners/energy/readings/electricity.pdf

2. «Наука об электричестве». Факторы, влияющие на цены на бензин - объяснение энергии, ваше руководство по пониманию энергетики - Управление энергетической информации, www.eia.gov/energyexplained/electricity/the-science-of-electricity.php

3. «Уголь и электричество». Всемирная угольная ассоциация, 17 апреля 2018 г., www.worldcoal.орг / уголь / использует-уголь / уголь-электричество

4. «Как электроэнергия доставляется потребителям». Факторы, влияющие на цены на бензин - объяснение энергии, ваше руководство по пониманию энергетики - Управление энергетической информации, www.eia.gov/energyexplained/electricity/delivery-to-consumers.php

5. Перлман, Ховард и Геологическая служба США. «Гидроэнергетика: как это работает». Адгезионные и когезионные свойства воды, Школа водных наук Геологической службы США, water.usgs.gov/edu/hyhowworks.html.

6. «Электросчетчики.”Министерство энергетики, www.energy.gov/energysaver/appliances-and-electronics/electric-meters.

Объяснение электроэнергии - Управление энергетической информации США (EIA)

Электроэнергия - вторичный источник энергии

Электричество - это поток электроэнергии или заряда. Электричество - это одновременно основная часть природы и одна из наиболее широко используемых форм энергии.

Электроэнергия, которую мы используем, является вторичным источником энергии, поскольку она производится путем преобразования первичных источников энергии, таких как уголь, природный газ, ядерная энергия, солнечная энергия и энергия ветра, в электрическую энергию.Электричество также называют энергоносителем , что означает, что оно может быть преобразовано в другие формы энергии, такие как механическая энергия или тепло. Первичные источники энергии - это возобновляемые или невозобновляемые источники энергии, но электричество, которое мы используем, не является ни возобновляемым, ни невозобновляемым.

Источник: стоковая фотография (защищена авторским правом)

Нажмите для увеличения

Использование электроэнергии коренным образом изменило повседневную жизнь

Несмотря на большое значение в повседневной жизни, мало кто задумывается о том, какой была бы жизнь без электричества.Как воздух и вода, люди склонны воспринимать электричество как должное. Однако люди ежедневно используют электричество для выполнения множества работ - от освещения, отопления и охлаждения домов до питания телевизоров и компьютеров.

До того, как электричество стало широко доступным, около 100 лет назад, свечи, лампы с китовым маслом и керосиновые лампы обеспечивали свет; холодильники хранят продукты в холодном состоянии; а дровяные или угольные печи обеспечивали тепло.

Ученые и изобретатели работали над расшифровкой принципов электричества с 1600-х годов.Бенджамин Франклин, Томас Эдисон и Никола Тесла внесли заметный вклад в наше понимание и использование электричества.

Бенджамин Франклин продемонстрировал, что молния - это электричество. Томас Эдисон изобрел первую лампу накаливания с длительным сроком службы.

До 1879 года в дуговых лампах для наружного освещения использовалось электричество постоянного тока. В конце 1800-х годов Никола Тесла был пионером в производстве, передаче и использовании электроэнергии переменного тока, что снизило стоимость передачи электроэнергии на большие расстояния.Изобретения Теслы принесли электричество в дома для внутреннего освещения и на фабриках для питания промышленных машин.

Последнее обновление: 18 марта 2021 г.

Что такое электричество?

Вы могли задаваться вопросом в тот или иной момент; что такое на самом деле электричество?

Трудно сбежать; смотрите ли вы на природу и наблюдаете, как надвигается гроза с ее красивыми, но мощными ударами молний.Или вы просто идете на кухню, включаете свет и открываете холодильник; электричество - это часть нашей повседневной жизни.

Но чтобы по-настоящему понять, что такое электричество, нам нужно взглянуть на науку, лежащую в основе его на атомном уровне.

Все начинается с атомов

Атомы - это маленькие частицы, проще говоря, они являются основными строительными блоками всего, что нас окружает, будь то наши стулья, столы или даже наше собственное тело. Атомы состоят из еще более мелких элементов, называемых протонами, электронами и нейтронами.

Когда электрические и магнитные силы перемещают электроны от одного атома к другому, образуется электрический ток.

Посмотрите это видео, чтобы увидеть электроны в действии.

Как производится электричество?

Во-первых, для выработки электроэнергии вам понадобится источник топлива, например уголь, газ, гидроэнергия или ветер.

В Австралии большая часть нашей электроэнергии вырабатывается из традиционных видов топлива, таких как уголь и природный газ, при этом около 14 процентов приходится на возобновляемые источники энергии. 1

Независимо от выбранного топлива, большинство генераторов работают по одному и тому же проверенному принципу: поверните турбину так, чтобы она вращала магниты, окруженные медной проволокой, чтобы получить поток электронов через атомы, который, в свою очередь, вырабатывает электричество.

Уголь и газ работают аналогично; они оба сжигаются, чтобы нагреть воду, которая создает пар и вращает турбину.

Возобновляемые источники энергии, такие как гидроэнергетика и ветер, работают несколько иначе: вода или ветер используются для вращения турбины и выработки электроэнергии.

Солнечные фотоэлектрические панели используют другой подход: они вырабатывают электроэнергию, преобразуя солнечное излучение в электричество с помощью полупроводников.

Электростанции перерабатывают топливо в электричество

Уголь и газ сжигаются для нагрева воды и превращения ее в пар.

Затем пар под очень высоким давлением используется для вращения турбины.

Вращающаяся турбина заставляет большие магниты вращаться внутри катушек из медной проволоки - это называется генератором.

Движущиеся магниты заставляют электроны в проводах перемещаться из одного места в другое, создавая электрический ток и производя электричество.

В сеть уходит электричество

В Австралии мы получаем электроэнергию через сложную сетевую сеть.

Электричество оставляет генераторы и перемещается по проводам в сетевой сети к домам и предприятиям по всей стране. К тому времени, когда электричество дойдет до вас, оно, скорее всего, пройдет сотни километров по сети.

Национальный рынок электроэнергии Австралии или NEM является крупнейшей объединенной энергосистемой в мире.

Интересует, как вы используете энергию дома? Если у вас есть цифровой интеллектуальный счетчик, вы можете отслеживать его использование через Моя учетная запись или через приложение Origin.

Список литературы

Согласно анализу от Origin Energy, данные включают всю Австралию: национальный рынок электроэнергии (QLD, NSW, Vic, SA, TAS), а также Западную Австралию и Северную территорию, но не включают Mt Isa.Данные встроенной генерации получены из отчета о состоянии энергетического рынка за 2014 г., Австралийского регулятора энергетики, данных WA за 2012 г. от Грега Рутвена, 2012 г., брифинга «Заявление о возможностях» перед запуском, Независимого оператора рынка за 2012 г. и NT FY13; данные Ассоциации энергоснабжения Австралии 2012 г., Электричество Газ Австралия 2014 г.

Что такое электричество? - Чудеса физики - UW – Madison

Большинство людей знают, что такое электричество. Он выходит из розеток в наших домах и заставляет свет включаться.Если вы прикоснетесь к нему, это может повредить вам. Это почему? Почему вы испытываете шок, когда дотрагиваетесь до дверной ручки? Молния похожа на электричество. Это почему?

Все в мире состоит из крошечных частиц, называемых атомами. Они настолько малы, что их невозможно увидеть даже в микроскоп. Атомы состоят из двух видов электрического заряда. В середине атомов находятся положительные заряды, а с внешней стороны - отрицательные. В большинстве случаев положительных зарядов столько же, сколько отрицательных.У каждого положительного заряда есть отрицательный партнер. Однако иногда бывает слишком много зарядов одного вида. Эти дополнительные расходы идут на поиски компаньона. Эти отрицательные заряды называются электронами и не удерживаются в атоме очень плотно, поэтому им легко перемещаться. Движущиеся электроны составляют то, что мы называем электричеством. Есть два вида электричества: статическое и текущее.

Статическое электричество - это то, что заставляет ваши волосы встать дыбом, когда вы трете о них воздушный шар или трясете дверной ручкой.В статическом электричестве электроны перемещаются механически (т. Е. Когда кто-то трется друг о друга двумя предметами). Когда вы водите ногами по ковру, с ковра соскребается дополнительный заряд, который накапливается на вашем теле. Когда вы касаетесь дверной ручки, весь заряд хочет покинуть вас и перейти к дверной ручке. Вы видите искру и получаете ток, когда электроны покидают вас.

Молния является результатом статического электричества. Во время грозы отрицательно заряженные частицы могут накапливаться в облаке. Электроны отталкиваются друг от друга; они действительно не любят друг друга и хотят уйти друг от друга как можно дальше.Наибольшее расстояние, на которое они могут уйти друг от друга, - это войти в землю, потому что это самая большая вещь вокруг. Когда электроны прыгают в группу, мы видим молнию. Это похоже на большую искру. Бенджамин Франклин выяснил, что молния может быть очень опасной. У молнии более 20 миллионов вольт!

В современном электричестве электричество должно течь по замкнутому контуру, называемому контуром. Если петля где-нибудь разорвется, электричество не пройдет. Это похоже на кровь в теле.Кровь прокачивается сердцем по артериям и в конечном итоге возвращается к сердцу по венам. В цепи электрические заряды - это кровь, а провода - это артерии и вены. Электрические заряды обладают определенным количеством энергии. Мера этой энергии называется напряжением (Вольт). Батарея фонарика имеет около 1 ½ вольт, а ваша настенная розетка - около 120 вольт. Электроны, движущиеся по цепи, называются током. Вы можете получить удар электрическим током, когда через ваше тело протекает большой ток - много электронов.

Электроны в цепи должны выталкиваться чем-то, например батареей. Если вы посмотрите на один конец батареи, есть знак +, где находятся дополнительные положительные заряды. На другом конце, где стоит знак -, есть дополнительные отрицательные заряды (электроны). Когда мы включаем фонарик, электроны вылетают из батареи по проводам и попадают туда, где находятся положительные заряды. По пути они пробегают провод внутри лампочки. Тонкий провод внутри колбы сильно нагревается и зажигает свет.

Что такое на самом деле электричество?

фокус

Давайте подробнее рассмотрим, что такое электричество и как движутся электроны. Но что такое электрон, я слышу, как вы плачете…

Электроны

Электроны - одна из трех частиц, составляющих атомы, две другие - протоны и нейтроны. Нейтроны получили свое название от нейтральности. Протоны и электроны, с другой стороны, имеют заряд .Мы говорим, что заряд электрона отрицательный; противоположный заряд можно найти в протоне, сохраняя все равновесие. Мы можем сокращать нейтроны, протоны и электроны до n 0 , p + и e - соответственно.

Нейтроны и протоны остаются в центре атома - мы называем его ядром - в то время как электроны вращаются вокруг ядра, как вращающиеся планеты (вроде - электроны очень быстро усложняются, я боюсь).Литий - элемент, о котором мы будем много говорить в этой серии - например, обычно имеет четыре нейтрона, три протона и три электрона.

Обычно в каждом атоме будет одинаковое количество электронов и протонов. Это сохраняет заряд сбалансированным - по одному отрицательному на каждый положительный! Это сохраняет стабильность, и мало что происходит. Однако некоторые элементы вполне счастливы отдать электрон и в целом получить положительный заряд. Другие жадны и могут забирать электроны у других атомов, чтобы получить отрицательный заряд.Затем есть металлы - они могут делить электроны! Каждый атом в металле может передавать электроны соседним атомам и получать другой электрон в качестве замены откуда-то еще. Это то, что позволяет им проводить электричество!

Если вы можете заставить электроны течь, у вас есть электричество.

Заряд

Каждый электрон имеет одинаковое количество заряда, и мы ничего не можем сделать, чтобы это изменить. Все, что мы можем сделать, это перемещать электроны из одного места в другое - и вместе с ними уходит этот заряд! Мы действительно хотим перемещать заряд.

Один или два дополнительных электрона не будут иметь большого значения, но если мы сможем накопить достаточно заряда, мы сможем начать с ним что-то делать.

Цепи

Если вы попытаетесь просто переместить электроны из A в B, то A потеряет отрицательный заряд электронов. Весь этот баланс, который у нас был раньше, исчезнет, ​​и положительный заряд от протонов в A, который никуда не денется, начнет действительно накапливаться.

Помните, прежде мы говорили, что сбалансированные обвинения мирны? Что ж, если вы получите слишком большую разницу в заряде между двумя вещами, вы получите искры!

Искры - это пучки электронов, движущиеся от отрицательно заряженной точки к положительно заряженной, чтобы нейтрализовать весь этот заряд и попытаться снова сбалансировать вещи. Молния случается, когда между облаками и землей существует огромная разница в заряде.

Чтобы иметь возможность перемещать электроны, не создавая этих огромных различий в заряде и не вызывая искр, нам нужно дать электронам полный круг от A до B и снова обратно к A.Мы называем это схемой .

Текущий

Если бы вы могли видеть электроны и действительно быстро считали вещи, вы могли бы наблюдать за частью цепи и подсчитывать, сколько электронов пролетает мимо вас каждую секунду. Вы будете измерять то, что мы называем текущим . Ток - это скорость, с которой движется заряд, то есть сколько электронов проходит часть цепи в секунду. Current - это сколько заряда течет.

Напряжение

Что произойдет, если электроны просто не текут? У вас есть электрическая цепь, у вас есть электроны ... какого ингредиента не хватает? Им просто нужно немного подтолкнуть! Напряжение показывает, насколько сильно электроны проталкиваются по цепи. Напряжение также известно как электродвижущая сила - сила, которая заставляет электроны двигаться!

Сопротивление

По некоторым трассам проехать легче, по другим.Представьте, что вам нужно преодолеть полосу препятствий… Некоторые ее части будут легкими, например, бег по полю к следующему препятствию. Некоторые части будут действительно сложными, например, пролезть через туннель или взобраться по веревочной лестнице. Легкие части курса не сильно противостоят вам , и вы легко справляетесь. Жесткие части обладают большим сопротивлением , и вам нужно действительно напрячься, чтобы пройти. Цепи, через которые мы пытаемся протолкнуть наши электроны, точно такие же.

Подумайте о вещах, которые вы бы использовали для создания схемы - таких как металлы - эти материалы легко перемещаются электронам. Электроны могут легко проводить через эти материалы. Другие материалы, которые вы, вероятно, не стали бы добавлять в свою схему - ковер, воздух, дерево, слизь - действительно затрудняют движение электронов! Они не проводят электричество… фактически, они сопротивляются ему! Сопротивление показывает, насколько трудно электронам перемещаться через материал, и является противоположностью проводимости .

Заставляет электроны двигаться - Заставляет течь ток

Если у нас есть цепь, по которой электроны легко перемещаются (сопротивление низкое), нам не нужно слишком сильно давить, чтобы электроны начали двигаться. Если сопротивление возрастает, то нам нужно либо приложить больше усилий, чтобы электроны прошли с той же скоростью, либо эта скорость (ток) упадет. Таким образом, ток, напряжение и сопротивление связаны вместе.

Что-то делать с электричеством - сила!

Заставить электроны двигаться - это не весело, не так ли? Но заставить машину двигаться или загораться телевизор может быть действительно полезно.Эти вещи требуют определенных усилий. Представьте, что толкаете машину - это много работы! Заряд электронов, проносящихся мимо части цепи, может быть использован с пользой. Поскольку они принудительно перемещаются по цепи и через такой компонент, как двигатель, они могут передать некоторую энергию этому компоненту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *