Содержание

Электрический ток, сила, плотность, условия существования. Источник тока. Курсы по физике

Тестирование онлайн

  • Электрический ток. Основные понятия

  • Сила, плотность тока

Условия существования тока

Электрический ток - направленное движение заряженных частиц. Направление, в котором движутся положительно заряженные частицы, считается направлением тока. Вещества, в которых возможно движение зарядов, называются проводниками.

В металлах единственными носителями тока являются электроны. Направление тока противоположно направлению движения электронов.

Для существования тока необходимо:
1) наличие свободных заряженных частиц;
2) существование внешнего электрического поля;
3) наличие источника тока - источника сторонних сил.

Характеристики тока

Сила тока - скалярная величина, определяется по формуле

Если ток изменяется, то заряд, прошедший через поперечное сечение проводника, определяется как площадь фигуры, ограниченной зависимостью I(t).

Плотность тока - векторная величина, определяется по формуле

Прибор для измерения силы тока называется

амперметром. Включается в сеть последовательно. Собственное сопротивление амперметра должно быть мало, поскольку включение амперметра не должно изменять силу тока в цепи.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.

Примерами источника тока могут являться катушка индуктивности, вторичная обмотка трансформатора. Внутреннее сопротивление источника тока стремится к нулю.

Под действием электрического поля, созданного источником тока, свободные заряды движутся в веществе с некоторой средней скоростью - скорость дрейфа.

Сила тока в физике — что это такое?

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

В Skysmart ученики погружаются в мир физических законов без стресса и с удовольствием. Обучение проходит в интерактивном формате, с захватывающими примерами из жизни, интересной домашкой и личным трекером прогресса. Все это помогает подружиться с физикой, подтянуть оценки и сдать экзамены.

Приходите на бесплатное вводное занятие — покажем, как проходит обучение и вдохновим на учебу!

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

I — сила тока [A]

q — заряд [Кл]

t — время [с]

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.


Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.


За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, через которые электрический ток проходит. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, через которые ток не проходит. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.



Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.


Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.


Разобраться во всех видах амперметров и не только в них помогут внимательные учителя детской школы Skysmart. Приходите на бесплатный вводный урок и начните заниматься в удовольствие уже завтра!

2. Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы

Электрический ток — направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).

Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.


 

Обрати внимание!

Условия существования электрического тока:

• наличие свободных электрических зарядов;
• наличие электрического поля, которое обеспечивает движение зарядов;
• замкнутая электрическая цепь.
Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.


 

Существуют различные виды источников тока:

  

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.


 

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

 

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.

 

 

 

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

 

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.


 

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

 

• Химический источник тока — внутренняя энергия преобразуется в электрическую в результате протекающих химических реакций.
Примером такого источника является гальванический элемент. 

 

 

Угольный стержень У (с металлической крышкой М) помещают в полотняный мешочек, наполненный смесью оксида марганца с углём С, а затем  в цинковый сосуд Ц. Оставшееся пространство заполняют желеобразным раствором соли Р. При протекании химической реакции цинк заряжается отрицательно (отрицательный электрод), а угольный стержень — положительно (положительный электрод). Между заряженным угольным стержнем и цинковым сосудом возникает электрическое поле.

Из нескольких гальванических элементов можно составить батарею.

 

 

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

 

 

 

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна — из спрессованного железного порошка, а вторая — из пероксида никеля.   
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие.

 

Элементы электрической цепи:

  • источник напряжения;
  • потребители: резисторы, лампы, реостат...
  • измерительные приборы: вольтметр, амперметр, ваттметр, омметр;
  • соединительные провода;
  • ключи для размыкания и переключения цепи.

Для поддержания электрического тока в цепи необходимы источники электрической энергии: источники электрического тока, источники электрического напряжения.

Источник ЭДС (идеальный источник напряжения) — двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением.

Источник электрического тока — двухполюсник, создающий ток постоянного значения, не зависящего от значения сопротивления на подключенной нагрузке. Внутреннее сопротивление такого источника приближается к бесконечности.

 

Необходимое условие существования тока  - замкнутая цепь! Это означает, что все элементы цепи должны быть проводниками электричества и в цепи не должно быть разрывов. В случае размыкания цепи ток прекращает течь. Именно размыкание цепи и лежит в основе работы всех реле, кнопок и выключателей.

  

Порядок сборки электрической цепи указывается на специальном чертеже, который принято называть схемой.

  

 

Приборы на схемах обозначают условными знаками. Вот некоторые из них:


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Источники:

 

 

http://www.fizika.ru/kniga/index.php?mode=paragraf&theme=09&id=9010
http://files.school-collection.edu.ru/dlrstore/669ba06a-e921-11dc-95ff-0800200c9a66/3_8.swf

Дополнительные главы физики: цепи постоянного тока. 8 класс: О курсе

Курс ориентирован на слушателей, владеющих школьной программой по физике 8 класса. В процессе обучения учащиеся познакомятся с различными методами определения токов и напряжений в цепях постоянного тока и с их помощью научатся рассчитывать самые сложные электрические цепи.

Курс состоит из 9 обязательных учебных модулей, 36 видеолекций с конспектами, 148 обязательных упражнений и факультативных задач для самостоятельного решения.

Учебные модули

— Ток, напряжение, сопротивление
— Последовательное и параллельное соединение проводников
— Симметрия в электрических цепях
— Метод наложения токов
— Бесконечные цепи
— Мост Уитстона и преобразование треугольник-звезда
— Амперметр и вольтметр
— Работа и мощность электрического тока
— ЭДС

Внутри каждого модуля есть:

— видео с кратким конспектом, где обсуждается теория и разбираются примеры решения задач,
— упражнения с автоматической проверкой, позволяющие понять, как усвоена теория,
— задачи для самостоятельного решения, которые не учитываются в прогрессе и не идут в зачет по модулю, но позволяют качественно повысить свой уровень. 

Каждый ученик самостоятельно определяет для себя темп и удобное время учебы. Часть модулей открыта сразу, следующие модули открываются после того, как получен зачет по предыдущим. В каждом разделе есть ответы на популярные вопросы, где можно уточнить свое понимание теории или условия задачи, но нельзя получить подсказки по решению.

По итогам обучения выдается электронный сертификат. Для его получения необходим зачет по всем учебным модулям, кроме лекционных. Условие получения зачета по модулю — успешное выполнение не менее 70% упражнений. Сертификаты могут учитываться при отборе на очные программы по направлению «Наука». 

Если ученик не успеет получить зачет по отдельным модулям, то он не сможет получить сертификат, но сможет возобновить обучение, когда курс стартует в следующий раз. При этом выполнять пройденные модули заново не потребуется (но может быть предложено, если соответствующие учебные материалы обновятся).

В следующий раз курс будет открыт осенью 2020 года.

Урок "Сила тока. Амперметр" - физика, уроки

Физика 8а---    ,8-б-            ,8-в

Урок30

Тема: Сила тока. Амперметр.

Цели урока:

1. Образовательная:

  • сформировать у учащихся понятие, что электрический ток характеризуется физической величиной, называемой сила тока;
  • продолжить формирование умения собирать электрические цепи по схеме, измерять силу тока в различных участках последовательной цепи.

2. Развивающая:

  • развитие речи;
  • коммуникативных способностей;
  • развитие познавательного интереса учащихся.

3. Воспитательная:

  • содействовать формированию у учащихся умения совместной работе в группе, умения внимательно слушать учителя и друг друга;
  • содействовать формированию у учащихся умения осознавать совместную учебную деятельность, осуществлять самоконтроль;
  • содействовать формированию у учащихся устойчивого интереса к изучению физики.

План урока

  1. Организационный момент.
  2. Подготовка к восприятию нового материала.
  3. Проверка ранее - изученного.
  4. Постановка цели занятия перед учащимися.
  5. Организация восприятия новой информации.
  6. Первичная проверка понимания.
  7. Организация усвоения нового материала путем закрепления информации.
  8. Творческое применение и добывание знаний.
  9. Физическая пауза.
  10. Обобщение изучаемого на уроке и введение его в систему ранее усвоенных знаний.
  11. Домашнее задание к следующему уроку.
  12. Подведение итогов урока.

Оборудование: презентация, карточки-задания.

 

 Ход урока

 

  1. Организационный момент

 

 Ребята! Изучая физику, мы с вами каждый урок открываем для себя что-то новое. Интерес к учебе, возникает тогда, когда человек трудиться сам, т.е. происходит:

индивидуальная
напряженная
творческая
ежедневная
работа
естественно
с юмором.

А о том, какова тема нашего урока, вы узнаете, выполнив первое задание.

 

2.Актуализация знаний учащихся.

«Изучите азы науки, прежде чем взойти на её вершины. Никогда не беритесь за последующее, не повторив предыдущее»

Иван Петрович Павлов

На прошлых уроках вы познакомились с основными понятиями темы «Электрические явления». Давайте вспомним эти  вопросы, чтобы продолжить изучение темы дальше. Предлагаю вам ответить на следующие вопросы:

Что такое электрический ток?

Что является носителем тока в металлах?

Что такое проводники и не проводники?

Какие действия электрического тока вам известны?

Из каких элементов состоит простейшая электрическая цепь?

Отлично, теперь к доске приглашаются 2 желающих для того, чтобы поработать с обозначениями на схемах различных устройств.(кто быстрее).

 

Два ученика у доски работают с карточками:

Карточка №2 Какие приборы входят в электрическую цепь? Что произойдёт при замыкании ключа? Что не хватает на схеме?

Карточка 1. Начертите схему электрической цепи, содержащей батарею аккумуляторов, два звонка и ключ, который управляет обеими звонками.

  1. Изучение нового материала. 

Вопрос к классу
Расскажи – и я забуду…
Покажи – и я запомню…
Дай мне возможность действовать самому – и я научусь.

Памятка по технике безопасности при работе с электрическим током.

  • Не используйте при сборке электрических цепей провода с повреждённой изоляцией с видимыми повреждениями.
  • Следите за исправностью всех креплений в приборах и приспособлениях.
  • При сборке электрических цепей избегайте пересечения проводов.
  • Источники тока подключайте в последнюю очередь.
  • Все исправления в цепях проводите при отключенном источнике тока.
  • Не определяйте наличие тока в цепи на ощупь.
  • Цель: собрать электрическую цепь из приборов, которые есть у каждого на столах так, чтобы лампочка загорелась.
  • Задание 1. На рисунке представлена электрическая цепь. Перечислите её составные части. Начертите схему этой электрической цепи.

 

  • Задание 2. Соберите электрическую цепь по этой схеме.
  • Задание 3. Сделайте вывод.

Подготовка учащихся к восприятию нового учебного материала (5-7 мин). Практическое задание На слайде изображена схема электрической цепи. Пользуясь приборами, стоящими у вас на столах, соберите электрическую цепь по схеме.

Учащиеся собирают электрическую цепь (последовательно подключают источник тока, две электрические лампочки и ключ при помощи соединительных проводов).

Схема остается собранной до конца урока.

Эвристическая беседа:

  • Что мы наблюдаем при замыкании цепи?

Ответ учащихся: обе лампочки загораются

  • Какое действие тока мы наблюдаем?

Ответ учащихся: тепловое

  • Что можно сказать о яркости, с которой горят лампочки?

Ответ учащихся: обе горят тускло

Учитель: однако, мы знаем, что действия электрического тока могут проявляться в разной степени - сильнее или слабее.

  • Как можно усилить свечение лампочек?

Ответ учащихся: усилить действие тока, поменяв источник тока на более сильный.

  • Мы сказали о действии электрического тока, а какой физической величиной характеризуется любое действие? (силой).
  •  А тогда какой физической величиной характеризуется действие электрического тока (силой тока).

4. Изучение нового материала.

Объяснение нового материала: Электричество сегодня неотъемлемая часть бытности населения, без которой дальнейшее существование человечества не представимо. Поэтому каждый из нас должен иметь хоть минимальное понятие о таком разделе физики как сила тока.

1. Ка мы уже сказали электрический ток - это упорядоченное движение заряженных частиц. Когда свободно заряженная частица движется по электрической цепи, то вместе с ней происходит и перемещение заряда. Чем больше электрический заряд, перенесенный частицами через поперечное сечение проводника за какое-то время, тем интенсивнее действие тока 

Т.е. интенсивность (степень действия) электрического тока зависит от заряда, прошедшего по цепи в 1 с, т.е. силу тока в цепи определяет электрический заряд, проходящий через поперечное сечение проводника в 1 с.

Запись в тетрадь: Сила тока – это физическая величина, показывающая, какой заряд проходит через поперечное сечение проводника за 1 с ).

. А значит, сила тока равна отношению электрического заряда, прошедшего через поперечное сечение проводника, ко времени его прохождения
 

Диапазон (границы) значений силы тока, с которыми приходится встречаться в физике: от 10-6 до 105 А. Кратные единицы силы тока 1кА=1000 А=103А: 1 мА=0,001 А=10-3А; 1мкА=0,000001 А=10-6А
За единицу силы тока определяют единицу электрического заряда 1Кл:
1Кл=1А*1с

За единицу электрического заряда 1Кл принимают заряд, проходящий сквозь поперечное сечение проводника за 1с при силе тока 1А.

Велик ли ток в 1 ампер?

Посмотрите на таблицу, вы видите данные технического справочника

Сила тока

  •  
    • в электрической бритве 0,08 А
    • в карманном радиоприемнике 0,1 А
    • в фонарике 0,3 А
    • в велосипедном генераторе 0,3 А
    • в электрической плитке 3-4 А
    • в двигателе троллейбуса 160-200 А

Молодцы! Давайте оценим значение силы тока 1А, то есть выясним большая это сила тока или нет. Для человеческого организма - это очень большая величина. Для человека безопасной считается сила тока до 1 мА. В бытовой электрической сети нормальной считается сила тока до 6 А.

Еще одна важная особенность силы тока состоит в том, что сила тока во всех участках проводника, по которому течет ток, одинакова. Это следует из того, что заряд, проходящий через поперечное сечение проводников цепи одинаков, то есть он нигде не накапливается.

Сила тока, проходящая через тело человека, считающая безопасной 1 мА(0,001 А) 
Сила тока, приводящая к серьезным поражениям организма – 100 мА (0,1 А). 
Через единицу силы тока определяется единица электрического заряда – 1 Кл.

1 кулон – это электрический заряд, проходящий через поперечное сечение проводника, при силе тока 1 ампер за время 1 секунд


Для измерения силы тока используют прибор, который называется амперметром

Амперметр включают в круг последовательно с тем прибором, силу тока в котором измеряют. Клемму со знаком “+” надо соединять с проводом, отходящим от положительного полюса источника тока. 
Определить максимальное значение прибора, для которого тока можно использовать его, определить цену деления шкалы амперметра.
- Амперметр показывает одинаковую силу тока независимо , где он находится.
- Вывод: в замкнутом круге через любое сечение переносится одиночек заряд за промежуток времени.

 

  1. Обобщение нового материала.

Организация усвоения нового материала путем закрепления информации.

Учитель: Используя, определение силы тока решим задачи.

Сила тока в цепи электрической плитки равна 1,5 А. Какой электрический заряд проходит через поперечное сечение ее спирали за 20 мин? ( Ответ: q = 1800 Кл.)

Сила тока в спирали электрической лампы равна 0,2 А. Сколько электронов проходит через поперечное сечение спирали за 5 мин? (Ответ: N =37,5*1019 електронов.)

Домашнее задание к следующему уроку.

Подведение итогов урока, оценки работы учащихся.

Учитель: Молодцы ребята, очень хорошо потрудились, хорошо решали задачи, внимательно слушали и принимали активное участие в освоении новых знаний. Как для каждого прошел урок, мы сейчас увидим по результатам самодиагностики. 

Самодиагностика ( учащиеся поднимают одну из трех карточек, лежащих у них на парте(новогодние шарики )).

  • Красная карточка - удовлетворен уроком, урок полезен для меня, я работал и получил заслуженную оценку; я понимал все, о чем говорилось.
  • Желтая карточка - урок был интересен, я отвечал с места, сумел выполнить ряд заданий. Мне на уроке достаточно комфортно.
  • Зеленая карточка - пользы от урока я получил мало, я не очень понимал, о чем идет речь, к ответу на уроке я был не готов.


 

 

 

Законы постоянного тока в физике

Основные законы постоянного тока

Для того чтобы существовал электрический ток необходимо наличие его свободных носителей, которые могут перемещаться упорядоченно и электрического поля, которое имеет восполняемую энергию, заставляющую двигаться свободные заряды. Количественно электрический ток измеряют при помощи силы тока.

Сила тока- это физическая величина, равная заряду (q), который проходит через поперечное сечение в единицу времени:

   

Если сила тока постоянна во времени (по величине и направлению), то ток называют постоянным. Для постоянного тока его сила вычисляется как:

   

Закон Ома для однородного участка цепи

Эмпирически было установлено, что сила тока (), текущая по однородному проводнику прямо пропорциональна напряжению () на концах проводника:

   

где — сопротивление проводника, зависящее от материала ( — удельное сопротивление проводника), размеров и геометрии проводника ( — длина проводника, S — площадь поперечного сечения проводника). Однородным участком цепи называют участок цепи, который не имеет источника тока (), — потенциалы на концах участка цепи; — ЭДС источника.

При последовательном соединении сопротивлений выполняются следующие соотношения:

В случае параллельного соединения проводников имеем:

Закон Ома можно записать в дифференциальной форме:

   

где — плотность тока в точке проводника; — напряженность электрического поля в той же точке, что и плотность тока (данный закон выполняется и для переменных полей).

Закон Ома для неоднородного участка цепи

Если на участке цепи имеется ЭДС (), разность потенциалов на концах участка , то сила тока на таком участке равна:

   

где — полное сопротивление цепи; — внутреннее сопротивление источника; — внешнее сопротивление цепи.

Закон Джоуля — Ленца

Если ток идет по неподвижному проводнику, то количество тепла, выделяемое данным элементом проводника () равно:

   

Выражение (12) закон Джоуля — Ленца в интегральном виде.

В дифференциальной форме этот закон запишется как:

   

Примеры решения задач

Открытая Физика. Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt, где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы RI = U, выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике. ΔQ = ΔA = R I2 Δt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена: P=ΔAΔt=UI=I2R=U2R.

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ℰ и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде (R + r) I = ℰ.

Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока: R I2Δt + r I2Δt = ℰ IΔt = ΔAст.

Первый член в левой части ΔQ = R I2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = r I2Δt – тепло, выделяющееся внутри источника за то же время.

Выражение ℰ IΔt равно работе сторонних сил ΔAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист). ΔQ + ΔQист = ΔAст = ℰ IΔt .

Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи.

Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.

Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна Pист=ℰI=ℰ2R+r. Во внешней цепи выделяется мощность P=RI2=ℰI-rI2=ℰ2R(R+r)2. Отношение η=PPист, равное η=PPист=1-rℰI=RR+r, называется коэффициентом полезного действия источника.

На рис. 1.11.1 графически представлены зависимости мощности источника Pист, полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной ℰ, и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при R=∞) до I=Iкз=ℰr (при R = 0).

Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока

Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax, равная Pmax=ℰ24r, достигается при R = r. При этом ток в цепи Imax=12Iкз=ℰ2r, а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, т. е. при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.

Electric Current - The Physics Hypertextbook

Обсуждение

определений

текущий

Электрический ток определяется как скорость, с которой заряд протекает через поверхность (например, поперечное сечение провода). Несмотря на то, что оно относится ко многим различным вещам, слово ток часто используется само по себе вместо более длинного, более формального «электрического тока». Прилагательное «электрический» подразумевается контекстом описываемой ситуации.Фраза «ток через тостер», несомненно, относится к потоку электронов через нагревательный элемент, а не к потоку ломтиков хлеба через прорези.

Как и все величины, определяемые как скорость, есть два способа записать определение электрического тока - средний ток для тех, кто заявляет о незнании вычислений…

и мгновенный ток для тех, кто не боится вычислений…

I = q = dq
т дт

Единица измерения тока - ампер [A], названная в честь французского ученого Андре-Мари Ампера (1775–1836).В письменных языках без диакритических букв (а именно в английском) принято писать единицу измерения как ампер , а при неформальном общении сокращать это слово до amp . У меня нет проблем с любым из этих вариантов написания. Только не используйте заглавную букву «А» в начале. Ампер относится к физику, а ампер (или ампер, или ампер) относится к единице.

Поскольку заряд измеряется в кулонах, а время измеряется в секундах, ампер равняется кулону в секунду.



А = С

с

Элементарный заряд определен как ровно…

e = 1,602176634 × 10 −19 C

Количество элементарных зарядов в кулонах будет обратной величине этого числа - повторяющейся десятичной дроби с периодом 778 716 цифр. Я напишу первые 19 цифр, это максимум, что я могу написать (поскольку произвольных долей элементарного заряда не существует).

C ≈ 6,241,509,074,460,762,607 e

А потом напишу еще раз с более разумным количеством цифр, чтобы было легче читать.

C ≈ 6,2415 × 10 18 e

Ток в один ампер - это передача примерно 6,2415 × 10 18 элементарных зарядов в секунду. Для любителей случайностей это примерно десять микромолей.

плотность тока

Когда я визуализирую ток, я вижу, как что-то движется.Я вижу, как они движутся в каком-то направлении. Я вижу вектор. Я вижу не то. Ток не является векторной величиной, несмотря на мою хорошо развитую научную интуицию. Ток - это скаляр. И причина в том ... потому что это так.

Но подождите, становится еще страннее. Отношение силы тока к площади для данной поверхности называется плотностью тока.

Единица измерения плотности тока - ампер на квадратный метр , не имеющая специального названия.



А = А

м 2 м 2

Несмотря на отношение двух скалярных величин, плотность тока является вектором.И причина в том, что это так.

Ну… на самом деле, это потому, что плотность тока определяется как произведение плотности заряда и скорости для любого места в космосе…

Дж = ρ v

Два уравнения эквивалентны по величине, как показано ниже.

Дж = ρ в
Дж = q DS = с dq = 1 Я
В дт SA дт А
Дж = Я
А

Есть еще кое-что, что нужно учесть.

I = JA = ρ v A

Читатели, знакомые с механикой жидкостей, могли бы узнать правую часть этого уравнения, если бы оно было написано немного иначе.

I = ρ Av

Это произведение является величиной, которая остается постоянной в уравнении неразрывности массы .

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

Точно такое же выражение применяется к электрическому току с символом ρ, меняющим значение между контекстами.В механике жидкости ρ означает массовую плотность, а в электрическом токе - плотность заряда.

микроскопическое описание

Ток - это поток заряженных частиц. Это дискретные сущности, а значит, их можно сосчитать.

Н = Н / В

q = нкВ

В = Ad = Av т

I = q = nqAv т
т т

I = нкАв

Аналогичное выражение можно записать для плотности тока.Вывод начинается в скалярной форме, но в окончательном выражении используются векторы.

Дж = нк в

твердых

проводимость и валентные электроны, проводники и изоляторы

Дрейфовое движение, наложенное на тепловое движение

Увеличить

Мостовой текст.

Тепловая скорость электронов в проводе довольно высока и случайным образом изменяется из-за столкновений атомов.Поскольку изменения хаотичны, средняя скорость равна нулю.

Когда провод помещается в электрическое поле, свободные электроны равномерно ускоряются в промежутках между столкновениями. Эти периоды ускорения поднимают среднюю скорость выше нуля. (Эффект на этой диаграмме сильно преувеличен.)

тепловая скорость электрона в меди при комнатной температуре (классическое приближение)…

v среднеквадратичное значение = √ 3 (1.38 × 10 −23 Дж / К) (300 К)
(9,11 × 10 −31 кг)
v среднеквадратичное значение 100 км / с

Ферми-скорость электрона в меди (квантовая величина)…

v fermi = √ 2 E Ферми
м e
v fermi = √ 2 (7.00 эВ) (1,60 × 10 −19 Дж / эВ)
(9,11 × 10 −31 кг)
v fermi 1500 км / с

Скорость дрейфа электрона на 10 м медного провода, подключенного к автомобильному аккумулятору 12 В при комнатной температуре (среднее время свободного пробега между столкновениями при комнатной температуре τ = 3 × 10 −14 с)…

v дрейф = 1 v = 1 а τ = 1 Ф τ = 1 eE τ
2 2 2 м e 2 м e
v дрейф = (1.60 × 10 −19 C) (12 В) (3 × 10 −14 с)
2 (10 м) (9,11 × 10 −31 кг)
v смещение 3 мм / с

Тепловая скорость на несколько порядков превышает скорость дрейфа в типичной проволоке. Время на прохождение круга - около часа.

жидкости

ионы, электролиты

газы

ионов, плазма

  • 14:02 - Отключение линии электропередачи на юго-западе Огайо
    4. Стюарт - Атланта 345 кВ
    Эта линия является частью пути передачи из юго-западного Огайо в северный Огайо. Он отключился от системы из-за возгорания кисти под частью линии. Горячие газы от пожара могут ионизировать воздух над линией электропередачи, заставляя воздух проводить электричество и закорачивать проводники.
    Источник

исторический

Символ I был выбран французским физиком и математиком Андре-Мари Ампером для обозначения силы силы тока.

Увеличить
Pour exprimer en nombre l'intensité d'un courant quelconque, on Concevra Qu'on ait choisi un autre courant арбитраж для сравнения терминов…. Désignant donc par i et i ' раппортов интенсивных деяний двух партнеров, не связанных с интенсивностью, связанной с объединением…. Чтобы выразить интенсивность силы тока в виде числа, предположим, что для сравнения выбран другой произвольный ток…. Используем i и i для отношения интенсивностей двух заданных токов к интенсивности опорного тока, взятого за единицу….
Андре-Мари Ампер, 1826 Андре-Мари Ампер, 1826 г. (платная ссылка)

Термин «интенсивность» теперь не имеет никакого отношения к физике. Ток - это скорость, с которой заряд протекает через поверхность любого размера - например, клеммы батареи или штыри электрической вилки. Интенсивность - это средняя мощность на единицу площади, передаваемая каким-либо явлением излучения - например, звуком оживленного шоссе, светом Солнца или частицами брызг, испускаемыми радиоактивным источником.Ток и интенсивность теперь - разные величины с разными единицами измерения и разным использованием, поэтому (конечно) они используют одинаковые символы.

текущий интенсивность
I = q

А = С

т с
I = P

Вт

А м 2

Начало таблицы

  • 12000 А ток через магниты LHC в ЦЕРН

Заряд и ток - Ток, напряжение и сопротивление - GCSE Physics (Single Science) Revision - Other

Электрический ток - это ставка потока электрического заряда.Ток не может течь, если цепь разорвана, например, когда выключатель разомкнут.

Электрический ток течет, когда электроны движутся через проводник, например металлический провод. Металлы - хорошие проводники электричества.

Электричество проходит через металлические проводники в виде потока отрицательно заряженных электронов. Электроны могут свободно перемещаться от одного атома к другому. Мы называем их морем делокализованных электронов .

Ток изначально определялся как поток зарядов от положительного к отрицательному.Позже ученые обнаружили, что ток на самом деле представляет собой поток отрицательно заряженных электронов от отрицательного к положительному. Они назвали исходное определение «обычным током», чтобы не путать его с более новым определением тока.

Расчетный ток

Величина электрического тока показывает скорость протекания электрического заряда. Вы можете рассчитать величину тока, используя следующее уравнение:

\ [ток ~ в ~ амперах = \ frac {заряд ~ ~ в ~ кулонах} {время ~ в ~ секундах} \]

или:

\ [I = \ frac {Q} {t} \]

где:

I - ток в амперах (амперах), A

Q - заряд в кулонах, C

t - время в секундах, с

Вопрос

Какой ток если 20 Кл заряда переходит за 5 с?

Показать ответ

Текущий = 20 ÷ 5 = 4 A

Какой текущий? - Определение от WhatIs.com

От

См. Также напряжение, сопротивление и закон Ома.

Ток - это поток носителей электрического заряда, обычно электронов или электронно-дефицитных атомов. Обычным символом тока является заглавная буква I. Стандартной единицей измерения является ампер, обозначаемый буквой A. Один ампер тока представляет собой один кулон электрического заряда (6,24 x 10 18 носителей заряда), проходящего мимо определенной точки за одну секунду. . Физики считают, что ток течет от относительно положительных точек к относительно отрицательным точкам; это называется обычным током или током Франклина.Электроны, наиболее распространенные носители заряда, заряжены отрицательно. Они перетекают от относительно отрицательных точек к относительно положительным.

Электрический ток может быть постоянным или переменным. Постоянный ток (DC) течет в одном и том же направлении во все моменты времени, хотя мгновенная величина тока может варьироваться. В переменном токе (AC) поток носителей заряда периодически меняет направление на противоположное. Количество полных циклов переменного тока в секунду - это частота, которая измеряется в герцах.Примером чистого постоянного тока является ток, производимый электрохимической ячейкой. Выход выпрямителя источника питания до фильтрации является примером пульсирующего постоянного тока. Выход из розеток общего пользования - переменный ток.

Ток на единицу площади поперечного сечения известен как плотность тока . Он выражается в амперах на квадратный метр, в амперах на квадратный сантиметр или в амперах на квадратный миллиметр. Плотность тока также можно выразить в амперах на круговой мил. Как правило, чем больше ток в проводнике, тем выше плотность тока.Однако в некоторых ситуациях плотность тока варьируется в разных частях электрического проводника. Классическим примером является так называемый скин-эффект , при котором плотность тока высока около внешней поверхности проводника и низкая - около центра. Этот эффект возникает при переменном токе на высоких частотах. Другой пример - ток внутри активного электронного компонента, такого как полевой транзистор (FET).

Электрический ток всегда создает магнитное поле.Чем сильнее ток, тем сильнее магнитное поле. Пульсирующий постоянный ток или переменный ток обычно создает электромагнитное поле. Это принцип, по которому происходит распространение беспроводного сигнала.

Последний раз обновлялся в августе 2007 г.

Что такое электрический ток »Электроника

Электрический ток возникает при движении электрических зарядов - это могут быть отрицательно заряженные электроны или положительные носители заряда - положительные ионы.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока - Ампер ПЕРЕМЕННЫЙ ТОК


Электрический ток - одно из самых основных понятий, существующих в науке об электричестве и электронике. Электрический ток лежит в основе науки об электричестве.

Будь то электрический нагреватель, большая электросеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным для его работы.

Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно увидеть, услышать и почувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.

Удар молнии - впечатляющее зрелище электрического тока.
Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия

Определение электрического тока

Определение электрического тока:

Электрический ток - это поток электрического заряда в цепи.Более конкретно, электрический ток - это скорость прохождения заряда через заданную точку в электрической цепи. Зарядом могут быть отрицательно заряженные электроны или положительные носители заряда, включая протоны, положительные ионы или дырки.

Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».

Ампер или усилитель широко используется в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.

Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.

Что такое электрический ток: основы

Основная концепция тока состоит в том, что это движение электронов внутри вещества. Электроны - это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.

Одно очень важное замечание относительно электронов - это то, что они заряженные частицы - они несут отрицательный заряд. Если они перемещаются, то перемещается некоторое количество заряда, и это называется током.

Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность конкретного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.

Движение свободных электронов обычно очень случайное - оно случайное - столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.

Случайное движение электронов в проводнике со свободными электронами

Если на электроны действует сила, перемещающая их в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.

Сила, действующая на электроны, называется электродвижущей силой или ЭДС, а ее величина - это напряжение, измеряемое в вольтах.

Электронный поток под действием приложенной электродвижущей силы

Чтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.

Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Количество воды пропорционально давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.

Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.

Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.

Обычный ток и поток электронов

Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.

Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.

Электронный и обычный ток

Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь называем носителями положительного заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.

Итого:

  • Обычный ток: Обычный ток идет от положительного к отрицательному выводу и указывает направление, в котором будут протекать положительные заряды.
  • Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу так же, как притягиваются разные заряды.

Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.

Скорость движения электрона или заряда

Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон подпрыгивает в проводнике и, возможно, движется по проводнику только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

Возьмем другой пример. В почти вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.

Последствия тока

Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.

  • Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако, если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь - яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
  • Магнитный эффект: Другой эффект, который можно заметить, заключается в том, что вокруг проводника создается магнитное поле. Если в проводнике течет ток, это можно обнаружить.Поместив компас близко к проводу, по которому проходит достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле меняется слишком быстро, чтобы игла могла реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.

    Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.

Как измерить ток

Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных схемах, очень важно знать, какой ток протекает.

Есть много разных способов измерения тока. Один из самых простых - использовать мультиметр.

Как измерить ток с помощью цифрового мультиметра:

Используя цифровой мультиметр, цифровой мультиметр, легко измерить ток, поместив цифровой мультиметр в цепь, по которой проходит ток. После этого цифровой мультиметр даст точные показания тока, протекающего в цепи

.

Узнайте, , как измерить ток с помощью цифрового мультиметра.

Хотя существуют и другие методы измерения тока, это наиболее распространенный.

Ток - один из самых важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
Вернуться в меню «Основные понятия электроники».. .

9.2: Электрический ток - Physics LibreTexts

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:

  • Опишите электрический ток
  • Определите единицу измерения электрического тока
  • Объясните направление тока

До сих пор мы рассматривали в основном статические заряды. Когда заряды действительно двигались, они ускорялись в ответ на электрическое поле, создаваемое разностью напряжений.Заряды теряли потенциальную энергию и приобретали кинетическую энергию, когда они проходили через разность потенциалов, где электрическое поле действовало на заряд.

Хотя заряды не требуют прохождения материала, большая часть этой главы посвящена пониманию движения зарядов через материал. Скорость, с которой заряды протекают мимо места, то есть количество заряда в единицу времени, известна как электрический ток . Когда заряды протекают через среду, ток зависит от приложенного напряжения, материала, через который протекают заряды, и состояния материала.Особый интерес представляет движение зарядов в проводящем проводе. В предыдущих главах заряды ускорялись из-за силы, создаваемой электрическим полем, теряя потенциальную энергию и приобретая кинетическую энергию. В этой главе мы обсуждаем ситуацию силы, создаваемой электрическим полем в проводнике, когда заряды теряют кинетическую энергию в материале, достигая постоянной скорости, известной как « дрейфовая скорость ». Это аналогично тому, как объект, падающий через атмосферу, теряет кинетическую энергию в воздух, достигая постоянной конечной скорости.

Если вы когда-либо проходили курс по оказанию первой помощи или технике безопасности, вы, возможно, слышали, что в случае поражения электрическим током именно ток, а не напряжение, является важным фактором, влияющим на силу удара и количество ударов. повреждение человеческого тела. Ток измеряется в единицах, называемых амперами; Возможно, вы заметили, что автоматические выключатели в вашем доме и предохранители в автомобиле рассчитаны на токи (или амперы). Но что такое ампер и что он измеряет?

Определение тока и ампер

Электрический ток определяется как скорость, с которой течет заряд.При наличии большого тока, например, используемого для работы холодильника, большое количество заряда перемещается по проводу за небольшой промежуток времени. Если ток небольшой, например, используемый для работы портативного калькулятора, небольшое количество заряда перемещается по цепи в течение длительного периода времени.

Электрический ток

Средний электрический ток \ (I \) - это скорость протекания заряда,

\ [I_ {ave} = \ dfrac {\ Delta Q} {\ Delta t}, \ label {Iave} \]

, где \ (\ Delta Q \) - это количество чистого заряда, проходящего через заданную площадь поперечного сечения за время \ (\ Delta t \) (рисунок \ (\ PageIndex {1} \)).Единица СИ для тока - ампер (А), названная в честь французского физика Андре-Мари Ампера (1775–1836). Поскольку \ (I = \ dfrac {\ Delta Q} {\ Delta t} \), мы видим, что ампер определяется как один кулон заряда, проходящий через заданную область в секунду:

\ [1 A \ Equiv 1 \ dfrac {C} {s}. \]

Мгновенный электрический ток, или просто электрический ток , является производной по времени протекающего заряда и определяется путем принятия предела среднего электрического тока как \ (\ Delta t \ rightarrow 0 \).{18} \) электроны, текущие через область A каждую секунду.

выращивание среднего тока

Основное назначение аккумуляторной батареи в легковом или грузовом автомобиле - запускать электрический стартер , который запускает двигатель. Для запуска двигателя требуется большой ток, подаваемый аккумулятором. После запуска двигателя устройство, называемое генератором переменного тока, берет на себя подачу электроэнергии, необходимой для работы транспортного средства и для зарядки аккумулятора.

  1. Какой средний ток включается, когда аккумулятор грузовика приходит в движение, 720 C заряда за 4.00 с при запуске двигателя?
  2. Сколько времени требуется 1,00 C для зарядки от аккумулятора?

Стратегия

Мы можем использовать определение среднего тока в уравнении \ ref {Iave}, чтобы найти средний ток в части (а), поскольку даны заряд и время. Что касается части (b), когда мы знаем средний ток, мы используем уравнение \ ref {Iave}, чтобы найти время, необходимое для того, чтобы заряд 1,00 C прошел от батареи.

Раствор

а.Ввод данных значений заряда и времени в определение тока дает

\ [\ begin {align *} I & = \ dfrac {\ Delta Q} {\ Delta t} \\ [5pt] & = \ dfrac {720 \, C} {4. {- t / \ tau}) \).Здесь \ (Q_M \) - это заряд после длительного периода времени, когда время приближается к бесконечности, в кулонах, а \ (\ tau \) - это постоянная времени в секундах (рис. \ (\ PageIndex {2 } \)). Какой ток в проводе?

Рисунок \ (\ PageIndex {2} \): график движения заряда через поперечное сечение провода во времени.

Стратегия

Ток через поперечное сечение можно найти из \ (I = \ dfrac {dQ} {dt} \). Обратите внимание на рисунок, что заряд увеличивается до \ (Q_M \), а производная уменьшается, приближаясь к нулю с увеличением времени (рисунок \ (\ PageIndex {2} \)).{-t / \ tau}. \ end {align *} \]

Рисунок \ (\ PageIndex {3} \): График изменения тока, протекающего по проводу, с течением времени.

Значение

Ток через рассматриваемый провод уменьшается экспоненциально, как показано на рисунке \ (\ PageIndex {3} \). В следующих главах будет показано, что ток, зависящий от времени, появляется, когда конденсатор заряжается или разряжается через резистор. Напомним, что конденсатор - это устройство, накапливающее заряд. Вы узнаете о резисторе в разделе «Модель проводимости в металлах».

Упражнение \ (\ PageIndex {1A} \)

В портативных калькуляторах

часто используются небольшие солнечные элементы для обеспечения энергии, необходимой для выполнения расчетов, необходимых для сдачи следующего экзамена по физике. Ток, необходимый для работы вашего калькулятора, может составлять всего 0,30 мА. Сколько времени потребуется, чтобы заряд 1,00 C потек из солнечных элементов? Можно ли использовать солнечные элементы вместо батарей для запуска традиционных двигателей внутреннего сгорания, которые в настоящее время используются в большинстве легковых и грузовых автомобилей?

Ответ

Время для 1.3 \, с. \]

Это чуть меньше часа. Это сильно отличается от 5,55 мс для аккумулятора грузовика. Калькулятор требует очень мало энергии для работы, в отличие от стартера грузовика. Есть несколько причин, по которым в автомобилях используются батареи, а не солнечные элементы. Помимо очевидного факта, что источник света для запуска солнечных элементов в автомобиле или грузовике не всегда доступен, большое количество тока, необходимого для запуска двигателя, не может быть легко обеспечено современными солнечными элементами.Солнечные элементы могут быть использованы для зарядки батарей. Зарядка аккумулятора требует небольшого количества энергии по сравнению с энергией, необходимой для работы двигателя и других аксессуаров, таких как обогреватель и кондиционер. Современные автомобили на солнечных батареях питаются от солнечных батарей, которые могут приводить в действие электродвигатель, а не двигатель внутреннего сгорания.

Упражнение \ (\ PageIndex {1B} \)

Автоматические выключатели

в доме имеют номинал в амперах, обычно в диапазоне от 10 до 30 ампер, и используются для защиты жителей от повреждений, а их электроприборы - от повреждений из-за больших токов.Один автоматический выключатель на 15 А можно использовать для защиты нескольких розеток в гостиной, а один автоматический выключатель на 20 А можно использовать для защиты холодильника на кухне. Что вы можете сделать из этого о токе, используемом различными приборами?

Ответ

Суммарный ток, необходимый всем приборам в гостиной (несколько ламп, телевизор и ваш ноутбук), потребляет меньше тока и потребляет меньше энергии, чем холодильник.

Ток в цепи

В предыдущих параграфах мы определили ток как заряд, который проходит через площадь поперечного сечения в единицу времени. Для прохождения заряда через устройство, такое как фара, показанная на рисунке \ (\ PageIndex {4} \), должен быть полный путь (или цепь , ) от положительной клеммы к отрицательной. Рассмотрим простую схему автомобильного аккумулятора, выключателя, лампы фары и проводов, обеспечивающих ток между компонентами.Для того, чтобы лампа загорелась, должен быть полный путь прохождения тока. Другими словами, заряд должен иметь возможность покинуть положительную клемму батареи, пройти через компонент и вернуться к отрицательной клемме батареи. Переключатель предназначен для управления цепью. На части (а) рисунка показана простая схема автомобильного аккумулятора, выключателя, токопроводящей дорожки и лампы фары. Также показана схема схемы [часть (b)]. Схема - это графическое представление схемы, которое очень полезно для визуализации основных характеристик схемы.В схемах используются стандартные символы для обозначения компонентов в цепях и сплошные линии для обозначения проводов, соединяющих компоненты. Батарея показана в виде серии длинных и коротких линий, представляющих историческую гальваническую батарею. Лампа изображена в виде круга с петлей внутри, что представляет собой нить накаливания. Переключатель показан в виде двух точек с токопроводящей перемычкой для соединения этих двух точек, а провода, соединяющие компоненты, показаны сплошными линиями. Схема в части (c) показывает направление тока, когда переключатель замкнут.

Рисунок \ (\ PageIndex {4} \): (а) Простая электрическая схема фары (лампы), батареи и переключателя. Когда переключатель замкнут, непрерывный путь для прохождения тока обеспечивается проводящими проводами, соединяющими нагрузку с выводами батареи. (b) На этой схеме батарея представлена ​​параллельными линиями, которые напоминают пластины в оригинальной конструкции батареи. Более длинные линии указывают на положительную клемму. Проводящие провода показаны сплошными линиями. Переключатель показан в разомкнутом положении в виде двух клемм с линией, представляющей токопроводящую шину, которая может контактировать между двумя клеммами.Лампа представлена ​​кружком, охватывающим нить накаливания, как если бы это была лампа накаливания. (c) Когда переключатель замкнут, цепь замыкается, и ток течет от положительной клеммы к отрицательной клемме батареи.

Когда переключатель замкнут на рисунке \ (\ PageIndex {4c} \), существует полный путь для прохождения зарядов: от положительной клеммы аккумулятора через переключатель, затем через фару и обратно к отрицательной клемме. батареи. Обратите внимание, что направление тока - от положительного к отрицательному.Направление обычного тока всегда представлено в направлении протекания положительного заряда от положительного вывода к отрицательному.

Обычный ток течет от положительной клеммы к отрицательной, но в зависимости от реальной ситуации положительные заряды, отрицательные заряды или и то, и другое могут перемещаться. В металлических проводах, например, ток переносится электронами, то есть движутся отрицательные заряды. В ионных растворах, таких как соленая вода, движутся как положительные, так и отрицательные заряды.То же самое и с нервными клетками. Генератор Ван де Граафа, используемый для ядерных исследований, может производить ток чисто положительных зарядов, таких как протоны. В ускорителе Тэватрон в Фермилабе, до его закрытия в 2011 году, сталкивались пучки протонов и антипротонов, движущихся в противоположных направлениях. Протоны положительны, и поэтому их ток направлен в том же направлении, в котором они движутся. Антипротоны заряжены отрицательно, и, следовательно, их ток идет в направлении, противоположном направлению движения реальных частиц.

Более пристальный взгляд на ток, протекающий по проводу, показан на рисунке \ (\ PageIndex {5} \). На рисунке показано движение заряженных частиц, составляющих ток. Тот факт, что обычный ток считается направленным в направлении протекания положительного заряда, можно проследить до американского ученого и государственного деятеля Бенджамина Франклина 1700-х годов. Не зная о частицах, составляющих атом (а именно о протоне, электроне и нейтроне), Франклин полагал, что электрический ток течет от материала, в котором больше «электрической жидкости», и к материалу, в котором этого «меньше». электрическая жидкость.Он ввел термин положительный для материала, в котором больше этой электрической жидкости, и отрицательный для материала, в котором отсутствует электрическая жидкость. Он предположил, что ток будет течь от материала с большим количеством электрической жидкости - положительного материала - к отрицательному материалу, в котором меньше электрической жидкости. Франклин назвал это направление тока положительным током. Это было довольно продвинутое мышление для человека, который ничего не знал об атоме.

Рисунок \ (\ PageIndex {5} \): Ток I - это скорость, с которой заряд движется через область A , такую ​​как поперечное сечение провода.Обычный ток определяется движением в направлении электрического поля. (а) Положительные заряды движутся в направлении электрического поля, которое совпадает с направлением обычного тока. (б) Отрицательные заряды движутся в направлении, противоположном электрическому полю. Обычный ток идет в направлении, противоположном движению отрицательного заряда. Поток электронов иногда называют электронным потоком.

Теперь мы знаем, что материал является положительным, если в нем больше протонов, чем электронов, и отрицательным, если в нем больше электронов, чем протонов.В проводящем металле ток в основном возникает из-за того, что электроны текут от отрицательного материала к положительному, но по историческим причинам мы рассматриваем положительный ток, и ток, как показано, течет от положительного вывода батареи к положительному. отрицательный терминал.

Важно понимать, что электрическое поле присутствует в проводниках и отвечает за выработку тока (рисунок \ (\ PageIndex {5} \)). В предыдущих главах мы рассматривали случай статического электричества, когда заряды в проводнике быстро перераспределяются по поверхности проводника, чтобы нейтрализовать внешнее электрическое поле и восстановить равновесие.В случае электрической цепи заряды никогда не достигают равновесия с помощью внешнего источника электрического потенциала, такого как батарея. Энергия, необходимая для перемещения заряда, обеспечивается электрическим потенциалом от батареи.

Хотя электрическое поле отвечает за движение зарядов в проводнике, работа, совершаемая над зарядами электрическим полем, не увеличивает кинетическую энергию зарядов. Мы покажем, что электрическое поле отвечает за поддержание движения электрических зарядов с «дрейфовой скоростью».”

Авторы и авторство

  • Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Электрический ток

Единица электрического заряда - кулон (сокращенно C). Обычная материя состоит из атомов, которые имеют положительно заряженные ядра и окружающие их отрицательно заряженные электроны.Заряд квантуется как кратное заряду электрона или протона:


Влияние зарядов характеризуется силами между ними (закон Кулона) и создаваемым ими электрическим полем и напряжением. Один кулон заряда - это заряд, который будет проходить через лампочку мощностью 120 ватт (120 вольт переменного тока) за одну секунду. Два заряда одного кулона каждый, разделенный метром, будет отталкивать друг друга с силой около миллиона тонн!

Скорость прохождения электрического заряда называется электрическим током и измеряется в амперах.

Представляя одно из фундаментальных свойств материи, возможно, уместно указать, что мы используем упрощенные наброски и конструкции, чтобы представить концепции, и в истории неизбежно гораздо больше. Не имеет значения следует прикрепить к кружкам, представляющим протон и электрон, в чувство подразумевая относительный размер, или даже что они являются твердой сферой объекты, хотя это полезная первая конструкция. Самое важное начальная идея, электрически, состоит в том, что они обладают свойством, называемым "заряд", который тоже самое размер, но противоположные по полярности для протона и электрона.В протон имеет 1836 раз больше массы электрона, но точно такого же размера стоимость только скорее положительный, чем отрицательный. Даже термины «положительный» и "отрицательные" произвольные, но прочно укоренившиеся исторические ярлыки. Жизненноважный значение в том, что протон и электрон будут сильно притягивать друг друга. другое - исторический архетип клише «противоположности притягиваются». Два протоны или два электрона сильно отталкиваются друг от друга. Однажды ты имеют установил эти основные представления об электричестве, "как заряды отталкивать и в отличие от обвинений привлекают ", то у вас есть основание для электричество и можно строить оттуда.

Из точной электрической нейтральности объемного вещества, а также из детальных микроскопических экспериментов мы знаем, что протон и электрон имеют одинаковую величину заряда. Все заряды, наблюдаемые в природе, кратны этим фундаментальным зарядам. Хотя стандартная модель протона изображает его состоящим из дробно заряженных частиц, называемых кварками, эти дробные заряды не наблюдаются изолированно - всегда в комбинациях, которые производят +/- заряд электрона.

Изолированный одиночный заряд можно назвать «электрическим монополем». Равные положительный и отрицательный заряды, помещенные близко друг к другу, составляют электрический диполь. Два противоположно направленных диполя, расположенных близко друг к другу, называются электрическим квадруполем. Вы можете продолжить этот процесс для любого количества полюсов, но здесь упоминаются диполи и квадруполи, потому что они находят важное применение в физических явлениях.

Одна из фундаментальных симметрий природы - сохранение электрического заряда.Ни один из известных физических процессов не приводит к чистому изменению электрического заряда.

Текущее электричество - Science World

Цели

  • Опишите компоненты, необходимые для замыкания электрической цепи.

  • Продемонстрируйте различные способы завершения цепи (параллельной или последовательной).

  • Определите, как электричество используется в бытовых приборах.

  • Опишите взаимосвязь между электроном и текущим электричеством.

Материалы

Фон


Электричество используется для работы вашего мобильного телефона, силовых поездов и кораблей, для работы холодильника и двигателей в таких машинах, как кухонные комбайны. Электрическая энергия должна быть заменена на другие формы энергии, такие как тепловая, световая или механическая, чтобы быть полезной.

Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами. Атом обычно имеет одинаковое количество протонов (имеющих положительный заряд) и электронов (имеющих отрицательный заряд). Иногда электроны можно отодвинуть от своих атомов.

Электрический ток - это движение электронов по проводу. Электрический ток измеряется в ампер, (ампер) и относится к количеству зарядов, которые перемещаются по проводу за секунду.

Для протекания тока цепь должна быть замкнута; Другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.

Параллельная цепь (вверху)

Цепь серии (внизу)

Напряжение иногда называют электрическим потенциалом и измеряется в вольт . Напряжение между двумя точками в цепи - это полная энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.

Сопротивление измеряется в Ом и относится к силам, которые противодействуют потоку электронного тока в проводе. Мы можем использовать сопротивление в своих интересах, преобразовывая электрическую энергию, потерянную в резисторе, в тепловую энергию (например, в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит). Если мы хотим, чтобы ток протекал напрямую из одной точки в другую, мы должны использовать провод с минимально возможным сопротивлением.

Аккуратная аналогия, помогающая понять эти мс: система водопроводных труб.

  • Напряжение эквивалентно давлению воды, которая выталкивает воду в трубу
  • Ток эквивалентен расходу воды
  • Сопротивление похоже на ширину трубы - чем тоньше труба, тем выше сопротивление и тем труднее протекает вода.

В этой серии заданий учащиеся будут экспериментировать с проводами, батареями и переключателями, чтобы создать свои собственные электрические цепи, одновременно изучая напряжение, ток и сопротивление.

Интересный факт!

Вы можете заметить, что символы для некоторых единиц СИ (Международная система единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, к которым вы привыкли. используя (м, кг). При названии единицы в честь человека принято использовать заглавную букву. В этих случаях подразделения были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица измерения сопротивления также была названа в честь человека (Георг Симон Ома), но использует символ Ω, который представляет греческую букву омега.Эти правила важно соблюдать, поскольку строчные и прописные буквы могут означать разные единицы измерения, такие как тонна (т) и тесла (Т). Единственным исключением является то, что для литров допустимо использовать L, поскольку букву «l» часто путают с цифрой «1»!

Словарь

амперметр : прибор для измерения электрического тока в цепи; единица измерения - амперы или амперы (А).
схема : путь прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче проходить через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электрических устройств; измеряется в амперах или амперах (A).
электрохимическая реакция : Реакция, которая чаще всего включает перенос электронов между двумя веществами, вызванный или сопровождаемый электрическим током.
электрод : проводник, по которому ток входит или выходит из объекта или вещества.
электрон : субатомная частица с отрицательным электрическим зарядом.
изолятор : Вещество, состоящее из атомов, которые очень прочно удерживают электроны, что не позволяет электронам легко проходить сквозь них.
параллельная цепь : Тип схемы, которая позволяет току течь по параллельным путям. Электрический ток распределяется между разными путями.Если лампочки подключены в параллельную цепь, и одна из лампочек удалена, ток все равно будет течь, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, которые удерживают электроны с силой между проводником и изолятором.
Последовательная цепь : Схема, в которой все компоненты соединены одним путем, так что одинаковый ток течет через все компоненты. Если вынуть одну из лампочек, цепь разорвется, и ни одна из других лампочек не будет работать.
напряжение : Разность потенциалов между двумя точками в цепи, например, положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно иметь напряжение без тока (например, если цепь неполная и электроны не могут течь), но невозможно иметь ток без напряжения. Он измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками в цепи.

Прочие ресурсы

г. до н.э. Hydro | Power Smart для школ

г. до н.э. Hydro | Изучение простых схем

г. до н.э. Hydro | Изучение последовательных и параллельных цепей

г. до н.э. Hydro | Электробезопасность

Как работает материал | Как работают светодиоды

Для покупки елочных мини-лампочек: Home Depot, Canadian Tire

Для приобретения небольших учебных лампочек (номиналом не более 2 вольт каждая): Boreal Science

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *