Содержание

Нулевой защитный и нулевой рабочий проводники

Переделка старой системы питания TN-C под соответствие с системой TN-C-S


Проводник РЕ дополнительно подключается к заземляющему устройству дома (выполняется повторное заземление).

Для того, чтобы перевести систему питания на более совершенную TN-C-S разделяют PEN проводник на PE — защитный и N – нейтральный. По своему принципу система TN-C-S заключается в том, что подходящий к дому проводник PEN на вводно-распределительном устройстве (ВРУ) разделяется на два раздельных и в таком виде подходит к конечному потребителю.

Розетка с заземляющими контактами

Конструкция розеток такова, что при включении сначала замыкаются заземляющие клеммы, а уже затем клеммы с фазным и нулевым проводниками. Нейтральный (нулевой проводник служит для передачи электрической энергии потребителю, а защитный для обеспечения безопасности.

Обозначения на схемах

На электрических схемах заземляющее устройство обозначается так:


Знак заземляющего устройства на схемах

В настоящее время существует пять способов соединения электрооборудования с заземляющим устройством.

Каждая из таких систем имеет собственное обозначение. Все они показаны далее на изображении:


Системы заземления

Проводник PE на изображении выше обозначен желчным цветом. При этом в системе:

  • TN-C проводник PE выполняет роль рабочего проводника;
  • TN-S проводник PE сделан отдельно от рабочего по всей своей длине;
  • TN-C-S проводник PE, начиная от электрогенератора или трансформатора, частично до определенного места выполняет роль рабочего.

Смысловую нагрузку в обозначениях систем заземления несут буквы. Первые из них – T и N – обозначают:

  • T – оборудование заземлено независимо от разновидности нейтрали.
  • N – глухо заземленная нейтраль и оборудование соединены.
  • Последующие буквы обозначают:
  • S – рабочий и защитный проводники отделены друг от друга как два отдельных провода.
  • С – рабочий и защитный проводники совмещены в одном проводе.

С начала прошлого века широко применялась система TN-C. Заземление делалось на стороне генератора или трансформатора, питающего сеть. Но если рабочий, а соответственно, он же и защитный, РЕ провод по какой-либо причине отсоединялся или разделялся, для персонала удар током становился реальностью. Более дорогая система TN-S с отдельным РЕ проводником лишена этого недостатка. При этом становится возможным использование коммутаторов, основанных на дифференциальной защите контроля токов рабочего и РЕ провода. Это обеспечивает электросети наивысший уровень безопасности.

Вариант TN-C-S как бы промежуточный между двумя рассмотренными выше системами. До присоединения к шинам в здании провод РЕ выполняет роль рабочего проводника. Но дальше по всем помещениям прокладываются два провода – РЕ защитный и N рабочий. Однако по надежности этот вариант лишь немногим лучше TN-C. Если отгорит или повредится провод РЕ (он же рабочий, или РЕN) между зданием и питающим трансформатором (генератором) на стороне потребителей в здании на проводах РЕ появится фазное напряжение.

Это наглядно показано далее:


Аварийная ситуация при обрыве провода РЕ

Для предотвращения таких аварийных ситуаций провод между источником питания и зданием необходимо дополнительно механически усилить или применить дополнительные заземления, которые при обрыве заменят установленные на подстанции. При этом эти заземления должны размещаться друг от друга не далее ста – двухсот метров, в зависимости от частоты грозовых часов, наблюдаемых в данной местности за год. Если их число менее сорока – выбирается большее расстояние, свыше – меньшее.

Особенности разделения PEN проводника

В частных домах и в городских квартирах в целях исключения воровства электроэнергии представители контролирующей организации вправе требовать, чтобы провод PEN был протянут до счетчика. И лишь после учетного прибора они разрешают разделять его на защитную шину PE и рабочую N. Такое подключение не противоречит требования ПУЭ, но гораздо естественней смотрится разделение, выполненное до счетчика.

Если сначала сделать разделение, а потом опломбировать вводной автомат, никаких возражений со стороны представителей «Энергосбыта» и инспекторов быть не может.

  • Как определить обрыв электропроводки в стене под штукатуркой
  • Источники питания для светодиодных светильников — расчет и схемы
  • Виды и технические характеристики ответвительных коробок

Зачем гадать и переводить с иностранного буквенное обозначение систем распределения электроэнергии, когда расшифровка приводится в ПУЭ (см. п. 1.7.3). Причём, расшифровка буквы Т разная, зависит от того какая буква Т по счёту в аббревиатуре. Из той же расшифровки можно понять, что защитное заземление проводящих корпусов электрооборудования используется только в системах IT и TT. А это редко используемые системы, особенно система IT. В основном для питания потребителей используют систему TN (TN-C, TN-C-S, TN-S). Это система с глухозаземлённой нейтралью трансформатора, где проводящие электрический ток корпуса электрооборудования электрически присоединяются к глухозаземлённой нейтрали трансформатора, т.е. зануляются (выполняется защитное зануление; см. ПУЭ, п. 1.7.31). Защитное зануление никто ещё не отменял и его определение (что это такое) есть в ПУЭ. Вывод: в системах TN заземление корпусов не используется совсем в виду его бесполезности (при пробое изоляции на корпус не обеспечивает безопасный ток через человека). Основная мера защиты в системах TN это автоматическое отключение питания, которое как раз и обеспечивается защитным занулением. Дополнительная мера защиты – применение УЗО. Поэтому никаких договоров с соседями и устройств заземляющих контуров делать не надо, всё уже сделано как надо. Единственное, что можно сделать, это преобразовать систему TN-C (у кого такая) в систему TN-C-S.

Но здесь также используется зануление.

{SOURCE}

Подключение PE проводника к розеткам

Чтобы подключить PE проводник к розетке правильно, вам необходимо сделать ответвление от магистрали защитного нуля через установочную коробку. Для обеспечения качественного соединения, вам потребуется использовать соединители, которые выпускает компания Wago, Went или Scotchlok. Благодаря использованию подобных соединений вы сможете подключить розетки к защищенному нулю ответвлением, а к фазе с помощью шлейфа. Увидеть этот вид соединения вы сможете на фото ниже.

Схема подключения PE проводника к розетке

Если изучить соединительное устройство более детально, тогда можно понять, что оно имеет небольшие габариты. Поэтому его можно будет спрятать в установочной коробке. Соединение проводов будет иметь следующий вид.

Подключение PE проводника с помощью соединительного зажима

Для монтажа соединителя, вам также потребуется предусмотреть величину свободного пространства между днищем установочной коробки и розеточным механизмом. Оно должно равняться или быть чуть больше толщины сжима с подключенными проводами.

Монтаж розетки с подключением PE проводника

Многие специалисты сообщают о том, что есть еще один способ коммутации нулевого защитного проводника к розеткам. Для этого, вам потребуется использовать дополнительную ответвительную коробку. Ее лучше всего устанавливать рядом с подключаемыми розетками.

арматура для монтажа розеток и выключателей.

Теперь о заземлении, заземлителе и заземляющем проводнике частного дома

Повторное заземление нейтрального проводника при воздушном запитывании дома можно произвести на опорном столбе или возле дома.

Заземление на опоре воздушной линии электропередач

При установке вводного устройства на бетонной опоре, от которой ответвляется питание дома, вполне оправдано, да и рекомендовано делать повторное заземление, используя естественные заземлители. В качестве естественного заземлителя можно использовать подземную часть самой опоры или ее молнезащитный контур (пункт 1. 7.109-110,ПУЭ).

Важно! Делать повторное заземление на железобетонном столбе можно, только в том случае, если воздушная линия электропередач сделана изолированными, самонесущими проводами типа СИП. Так как они механически более прочные, чем провода без изоляции

Но все-таки если вы хотите более надежное, безопасное и независимое заземляющее устройство для дома лучше сделать его при помощи искусственных заземлителей.

Заземление дома искусственно сделанными заземлителями

Заземление дома это заземляющее устройство, которое состоит из следующих элементов: заземлителя и заземляющего проводника.

Заземлитель это проводник или несколько проводников соединенные между собой и имеющий контакт с землей. К заземлителю подключается заземляющий проводник, который аккуратно выводится возле дома и подключается к главной заземляющей шине (ГЗШ). Сечение заземляющего проводника должно быть не меньше сечения PEN проводника.

Заземлители могут исполняться в разных вариантах и быть разных типов.

  • По типу, заземлители можно разделить на: Вертикальный; Рядный; Контур заземления.
  • По виду заземлители можно описать как: Штырьевой, Модульно-штырьевой, Контурный и Фундаментный заземлители.

Кратко описать заземлители можно следующим образом:

Вертикальный заземлитель представляет из себя сборный медный или стальной стержень. Заземлитель забивается в грунт на глубину 15-40 метров. По-другому он называется заземлитель глубокого залегания. Самый современный тип заземления дома. Не требует больших землеройных работ. (Подробно о глубинном заземлении)

Рядный заземлитель. Это сборная конструкция, состоящая из отдельных металлических штырей забитых в грунт на глубину 3-4 метра и соединенных металлической полосой. Расстояние между штырями должно быть не менее 3метров. Штыри могут располагаться в ряд и в треугольник. Применяется только для вторичного заземления. (Подробно как сделать рядное заземлении)

Контур заземления делается вокруг дома в виде замкнутой конструкции.

Конструкция контура заземления также предполагает вбивание штыре в грунт. Штыри располагаются по периметру фундамента на расстоянии 1 метра от него. Соединяются штыри заземлителя стальной полосой. Рекомендуется при двух молниеотводах с крыш и более одного ввода электропитания в дом. (Подробно о контурах заземления)

Фундаментный заземлитель делается на начальном этапе строительства дома. Заземлитель размещают в фундаменте дома. Из всех заземлителе фундаментный заземлитель, пожалуй, самый эффективный. (Подробно о фундаментном заземлении)

Важно! Какой бы заземлитель вы не использовали в устройстве заземления дома сопротивление, растеканию тока, заземлителя не должно превышать 10 Ом для линейного напряжения 380 вольт и 20 Ом для линейного напряжения 220 вольт при трехфазном электропитании. А при однофазном электропитании сопротивление растеканию тока не должно превышать 5 Ом для 380 вольт и 10 Ом для электропитания 220 вольт

(Подробно о замере сопротивления заземлителя)

А при однофазном электропитании сопротивление растеканию тока не должно превышать 5 Ом для 380 вольт и 10 Ом для электропитания 220 вольт. (Подробно о замере сопротивления заземлителя)

Читая строительные форумы я вижу, что многие обходятся без вторичного заземления в загородных домах. Считают достаточным заземление подводящей воздушной линии. Но все-таки руководствоваться нужно не только экономией, а и техникой безопасности для своей семьи и имущества.

Elesant.ru

Нормативные ссылки

  • ПУЭ,Правила устройства электроустановок,издание 7
  • ГОСТ 121.030-81,Электробезопасность. Защитное заземление. Зануление.

Другие статьи раздела: Электропроводка дома

  • 26 Правил электроснабжения и электропроводки деревянного дома. часть1, правила 1-7
  • 26 Правил электроснабжения и электропроводки деревянного дома. часть2, правила 8-13
  • 26 Правил электроснабжения и электропроводки деревянного дома. часть3, правила14-26
  • Анкерные зажимы и кронштейны
  • Арматура для СИП 2
  • Ввод кабеля из траншеи в дом
  • Вводное устройство. ВУ в частный дом
  • ВРУ. Вводно-распределительное устройство дома
  • ГЗШ. Главная Заземляющая Шина
  • Глубинный заземлитель

В каких случаях необходимо заземление?

Так зачем нужно заземление? Для наглядности стоит рассмотреть несколько примеров:

1. К примеру, в квартире установлена посудомоечная машина. Но по какой-то причине в определенный момент на корпусе появилась фаза, и корпус не заземлен. Но нейтраль линии электропередачи, которая ведет к дому и дает электричество — заземлена, также под заземлением краны и батареи.

Если надеты резиновые тапочки, то при соприкосновении никаких неприятных ощущений и даже малейшего удара не будет. Но вот если нет обуви, и при этом человек еще и схватился за кран, а вторая рука расположена на корпусе, то он становится проводником электрического тока, который подается через корпус на человека, и далее в землю на нейтраль, и на подстанцию.

2. Если посудомоечная машина заземлена? Что произойдет в такой ситуации? Если по каким-то причинам на корпусе появится ноль, то ток сразу уйдет в грунт. Хоть человек босой, хоть в тапочках, ничего не произойдет, заземление сработало, никакого поражения электрическим током все целы и невредимы. Один недостаток, посудомоечную машину нужно будет ремонтировать, но все равно это будет дешевле и лучше.

3. В помещении поломалась стиральная машина, и корпус оборудования находится под напряжением. При соприкосновении с корпусом в таком случае человек получит удар током. Вот зачем нужно заземление, тогда ток уходит в землю и с человеком все хорошо.

Дело в том, что сопротивление человеческой кожи намного выше, чем сопротивление провода, и тогда ток идет по пути наименьшего сопротивления, попадает в землю, и человек остается в целостности. Это один из наиболее простых примеров, который и показывает, зачем нужно заземление в доме или другой постройке. Без такой системы риск получить удар электрическим током возрастает.

Мнение эксперта
Евгений Попов
Электрик, мастер по ремонту

Стоит брать в расчет еще один момент, особенно для владельца частного дома это крайне важная информация. Даже если сооружение построено из натурального материала, количество электрической проводки остается тем же что и в многоэтажном жилом здании, но натуральный материал отлично воспламеняется. Именно исходя из этого, система заземления в частном доме может предотвратить возникновение неприятных ситуаций и пагубных последствий.

Наиболее страшным событием, которое может произойти – это пожар, он возникает вследствие короткого замыкания или выхода из строя электрооборудования. То есть если возникает сомнения и вопросы по поводу того, зачем нужно заземление в частном доме, нужно осознавать, что подобная система защищает не только от возгораний, но и предотвращает от удара электрическим током каждого члена семьи.

Мнение эксперта
Евгений Попов
Электрик, мастер по ремонту

Ситуации могут быть довольно жуткими, но они являются наглядным примером того, к чему может привести халатность и пренебрежение техникой безопасности. Как видно, иногда последствия могут быть действительно самыми серьезными и пагубными.

Подключение PE проводника к розеткам

Чтобы подключить PE проводник к розетке правильно, вам необходимо сделать ответвление от магистрали защитного нуля через установочную коробку. Для обеспечения качественного соединения, вам потребуется использовать соединители, которые выпускает компания Wago, Went или Scotchlok. Благодаря использованию подобных соединений вы сможете подключить розетки к защищенному нулю ответвлением, а к фазе с помощью шлейфа. Увидеть этот вид соединения вы сможете на фото ниже.

Схема подключения PE проводника к розетке

Если изучить соединительное устройство более детально, тогда можно понять, что оно имеет небольшие габариты. Поэтому его можно будет спрятать в установочной коробке. Соединение проводов будет иметь следующий вид.

Подключение PE проводника с помощью соединительного зажима

Для монтажа соединителя, вам также потребуется предусмотреть величину свободного пространства между днищем установочной коробки и розеточным механизмом. Оно должно равняться или быть чуть больше толщины сжима с подключенными проводами.

Монтаж розетки с подключением PE проводника

Многие специалисты сообщают о том, что есть еще один способ коммутации нулевого защитного проводника к розеткам. Для этого, вам потребуется использовать дополнительную ответвительную коробку. Ее лучше всего устанавливать рядом с подключаемыми розетками.

Системы заземления

Основой конструкции систем безопасности от удара током является схема включения обмоток электрической машины на электростанции или подстанции. Несмотря на то, что источником электроэнергии является электрический генератор, он отделен от потребителей целой системой электропередачи. Она состоит из трансформатора, проводников и дополнительного оборудования. Но поскольку электрогенератор трехфазный, вся последующая электросеть передачи электроэнергии также трехфазная. Но ее конфигурацию задают обмотки трансформаторов.

Для оптимального использования мощности каждой фазы, в том числе и с возможностью построения однофазных электросетей, обмотки трансформатора соединяются звездой. Из точки соединения всех трех обмоток исходит проводник, именуемый нейтралью. Существуют электрические сети, в которых она соединена с заземляющим устройством. В этом случае получается глухо заземленная нейтраль. Также существуют сети, в которых отсутствует специальное соединение с заземляющим устройством. В этом случае получается изолированная нейтраль.

Но ее изолированность условная. Существует емкость проводников относительно земли, а также эквивалентное сопротивление относительно земли прочих элементов электрической сети. Поэтому для изолированной нейтрали характерно сопротивление относительно земли с той или иной величиной. Когда электрооборудование присоединяется к электросети с напряжением до 1000 В с одной из двух типов нейтрали применяются дополнительные защитные проводники:

  • PE (от английских слов Protective Earth),
  • заземляющий,
  • уравнивания потенциалов.

Также используются рабочие проводники, предназначенные для прохождения токов нагрузки между потребителями и нейтралью:

  • нулевой нейтральный (N),
  • совмещенные нулевые защитный рабочий (PEN).


Так выглядит заземляющее устройство. Комбинация желтого и зеленого цветов изоляции обязательна только для провода РЕ и прочих защитных проводов

Обозначение фазы и нуля в электрике

В процессе самостоятельной установки и подключения электрооборудования (этом могут быть различные светильники, вентиляция, электроплитка и т.п.) можно заметить, что коммутационные клеммы обозначены буквами L, N, PE. Особое значение здесь имеет маркировка L и N. Кроме обозначения проводов в электрике по буквам, их помещают в изоляцию различного цвета.

Это значительно упрощает процедуру определения, где находится фаза, земля или нулевой провод. Чтобы устанавливаемый прибор смог работать в нормальном режиме, каждый из этих проводов должен быть подключен на соответствующую клемму.

Схема и способ разделения проводника на pe и n

Разделение проводника в частном доме и в квартире должно осуществляться по разным схемам. Владельцам частных домов повезло больше, так как замена защитной установки не требует каких-либо дополнительных затрат и усилий.

В квартире

В новостройках с системой заземления TN-C-S разделять провод необходимо по схеме, изображенной на рисунке.

Как видно разделение осуществляется в ГРЩ, от которого идут два отдельных провода: один – на этажный щит, а второй – в квартиры.

Многоэтажные дома старой постройки имеют определенную особенность: PEN-проводник в таких зданиях подключается поочередно – с этажа на этаж. Если в этажном щитке перегорит ноль, в квартире возникнет эффект второй фазы и многие элетроприборы окажутся под напряжением. Таким образом, помещение может стать крайне опасным местом.

В частном доме

В своем доме можно самостоятельно реконструировать систему заземления. Для этого не требуется каких-либо профессиональных навыков и денежных затрат.

Правила разделения проводника описываются в главе 1.7 и 7.1 ПУЭ. Следует выделить несколько основных моментов:

  1. Разделять проводник необходимо до вводного щитка.
  2. У проводов PE и N должно быть одинаковое сечение.
  3. Нельзя объединять нейтральный и защитный провода после точки расщепления.
  4. Использование общей шины для разъединения N и PE проводников запрещено (на фото пример того, как должно быть).

  1. На вводе необходимо сделать повторное заземление PEN проводника.

  1. В цепи PEN и PE проводников нельзя устанавливать коммутационные аппараты.

Зная эти правила, можно с легкостью и без последствий осуществить расщепление и модернизировать систему защиты частного дома. На приведенной ниже схеме изображен пример правильного подключения.

Основные требования к разделению PEN проводника

Все, что необходимо знать для грамотного выполнения таких работ, прописано в положениях ПУЭ. В частности про необходимость осуществления такого подключения говорится в пункте 7.1.13

Как подключение должно выглядеть на схеме, описано в пункте 1.7.135 – когда в каком-либо месте РЕН проводник разделен на нулевой и заземляющий провода в последующем их объединения не допускается.

После разделения шины считаются разными и должны быть соответствующим образом промаркированы – нулевая синим цветом, а PE помечается желто-зеленым.

Перемычка между заземляющей шиной и нулевой, делается из материала сечение не меньше чем сами шины от которых дальше идут провода PE и N. При этом шина защитного проводника PE может контактировать с корпусом трансформатора, а шина n отдельно устанавливается на изоляторах. PE шина должно быть заземлена – в идеальном варианте для неё должен быть отдельный контур (ПУЭ – 1.7.61).

При использовании устройств УЗО, ноль, использующийся для подключения электрооборудования, никак не должен контактировать с нолем, который приходит на вводной автомат и счётчик. По такому принципу подключаются все эти устройства.

Место разделения PEN проводника на PE и N провод, по ряду причин, осуществляется в ВРУ, который стоит на входе в многоквартирный или частный дом.

Провод PEN, который будет разделяться на рабочий ноль и заземление, должен иметь сечение не меньше 10 мм² если это медь, и 16 квадратов если это алюминий. В противном случае, делать разделение запрещено.

Почему нельзя разделять PEN проводник в этажном щите

Такой вариант нельзя применять по целому ряду причин:

Если принимать во внимание исключительно положения ПУЭ, то в них говорится что разделение проводов должно происходить на вводном автомате многоквартирного или частного отдельного дома.
Даже если квартирный щиток считать водным автоматом (что сделать довольно-таки проблематично), такое подключение будет неправильным согласно другому требованию, а именно – PE проводник должен быть повторно заземлен, чего в этажном щитке добиться невозможно.
Даже если исхитриться и подвести заземление к этажному щитку, то есть еще одно препятствие, грозящее большими штрафами. Дело в том что электрическая схема при строительстве дома утверждается в нескольких инстанциях и ее самовольное изменение это грубейшее нарушение всех существующих правил – по сути это изменение проекта по которому дом был подключен к сети

Такими делами должна заниматься исключительно организация обслуживающая этот дом или район.

Разумеется, если таковая организация и будет планировать какие-либо работы по разделению Pen проводника, то нет смысла возиться с каждым этажном щитком в отдельности. Самым оптимальным вариантом будет разделения его на вводном автомате, что и будет делаться.

Дополнительный довод в пользу разделения Pen проводника на одном автомате жилого дома является требование ПУЭ (п. 7.1.87) монтировать в этом месте система уравнивания потенциалов.

В любом другом месте ее делать запрещено, а это означает, что разделение PEN проводника в этажном щите в любом случае будет сделано без соблюдения всех необходимых правил и мер предосторожности. Как итог единственный правильный метод сделать в доме заземление это коллективное обращение к организации обслуживающей дом или район

Как итог единственный правильный метод сделать в доме заземление это коллективное обращение к организации обслуживающей дом или район.

Разделение PEN-проводника в электроустановке ВРУ и ГРЩ. « ЭлектроХобби

Электроснабжение домов в деревне (посёлках), дачных домов обычно осуществляется по воздушным линиям электропередач. Это значит, что потребитель принимает электрическую энергию по системе заземления «TN-C». Данная система в наше время считается наиболее опасной из всех существующих. В этой статье пойдёт речь о том, как правильно делать разделение PEN-проводника на N-проводник и PE-проводник в соответствии с ПТЭЭП и ПУЭ. Для начала следует напомнить, что же такое «PEN», «PE» и «N» проводники и какие функции они несут в себе.

«PEN» – это совмещенный защитный нулевой и рабочий нулевой проводники.

«РЕ» – это защитный проводник (нулевой защитный проводник, заземляющий проводник, защитный электрический проводник системы уравнивания потенциалов).

«N» – это рабочий нулевой проводник (нейтраль).

Почему же возникает потребность в разделении PEN-проводника на вводе? Это нужно делать для повышения безопасности при работе с различным электрическим оборудованием, а также повышения защиты от случайного поражения электротоком. Учтите, что данной разделение «PEN»-проводника не может полностью обеспечить 100% электрическую безопасность при экспуотации электрооборудования, хотя и помогает защитным устройствам заранее отключить подачу электричества в случае неисправности проводки либо электрического оборудования.

Прежде чем начать непосредственное разделение проводника «PEN» на «PE» и «N», нужно ввести вводной электропитающий кабель либо провод в электрическую установку, то есть ввести питание в водно-распределительное устройство (ВРУ, ГРЩ). Сечение данного вводимого проводника «PEN» должна быть не меньше 10 кв.мм. (медь) и 16 кв.мм. (алюминий).

Следует обязательно учесть то, что вводное отверстие в металлической конструкции вводно-распределительного устройства должно быть снабжено диэлектрической втулкой, которая является дополнительной защитой вводного кабеля от различных механических повреждений. После завершения укладки кабеля в «ВРУ», его нужно жестко закрепить к конструкции «ВРУ».

Замете, в «ВРУ» должны быть заранее вмонтированы два шины (медные). Данная защитная шина «РЕ» и нулевая шина «N», должна крепится, непосредственно, к металлической конструкции вводно-распределительного устройства через изоляторы. Ещё обязательным условием является маркировка всех шин, в целях предотвращения случайных ошибочных действия при включении проводов и кабелей, выходящих из вводно-распределительное устройство.

Теперь можно приступать к самому разделению и подключению жил кабеля. Учтите, что перед снятием внешней изоляционной оболочки с кабеля, не лишним будет измерить длину кабеля, дабы его конец смог достать до самой отдалённого места соединения аппаратов защиты и клемм шин. Возможна некоторая разница в длине токоведущих проводников, поскольку фазные провода необходимо будет включать к основному рубильнику либо же устройству защиты, а PEN-проводник нужно подключать к клемме на шине защиты «PE».

При электромонтаже вводного кабеля в электроустановку довольно распространённой ошибкой является ситуация, когда монтажник меряет длину кабеля до самих клемм вводного устройства защиты и просто обрезает его. Далее он вынужден делать наращивание, прибегая к скруткам (пряча свой «косяк» за обшивку идущей стены). Данное соединение, естественно, со временем будет окисляется, а это приводит к разогреву в местах соединения. Итогом становится пожар.

Вначале следует удалить поверхностную изоляцию кабеля, далее проложите фазные провода до рубильника либо устройства защиты с обязательным запасом для разделки токоведущих жил и возможности повторного присоединения. Крепить токоведущие проводники кабеля к конструкции вводно-распределительного устройства необходимо специальными пластмассовыми стяжками (хомутами). PEN-проводник нужно проложить по конструкции вводно-распределительного устройства до шины защиты «РЕ», что будет играть роль основной шины заземления в вашем «ВРУ». Сечение PEN не менее 10 мм² медь и 16 мм² алюминий.

После завершения монтажа всех проводников вводного кабеля по конструкции «ВРУ» следует зачистить «PEN» для последующего монтажа наконечника, то есть, предварительно подготовить токоведущую жилу для прессовки наконечника на совмещённый проводник «PEN». Сделав монтаж этого наконечника, подсоедините его к клемме на шине защиты «РЕ». Наиболее надёжным креплением проводника «PEN» к шине защиты «РЕ» считается болтовое соединение, поскольку данное крепление проводника защищает от непроизвольного ослабления контакта.

P.S. Учтите, что правильное исполнение работы ведёт к последующей высокой надёжности в работе самого электрооборудования. Данная тема также не исключение, сделав всё качественно и по схеме Вы, тем самым, обезопасите себя, своих близких и имеющееся электрооборудование в доме от различных проблем и неприятностей, связанных с электричеством.

Разделения PEN на PE и N

Прогресс идет вперед в ногу со временем. Говорят, что иногда он опережает свое время, а иногда – безнадежно отстает. Но если прогресс и время – понятия не особо материальные, то техника – вещь весьма ощутимая и не очень изменчивая. «К чему эти метафизические рассуждения в статье про электрические сети?» – возможно, спросите вы. Но они имеют самое непосредственное отношение к предмету обсуждения – как и, главное, зачем разделить PEN проводник на PE и N.

В 1913 году в целях экономии металла и по некоторым другим причинам была предложена система TN-C, то есть схема нейтрали в сетях до 1 кВ, при которой нулевой рабочий N и нулевой защитный PE проводники объединены (Combined) в один общий проводник PEN. Электробезопасность в таких системах осуществляется отключением КЗ предохранителями или автоматами. В СССР (и не только) с такой системой заземления было построено огромное количество жилых, общественных и промышленных зданий. Однако явные недостатки такой системы – опасность эксплуатации электроустановок при обрыве нуля или при замыкании на корпус – привели к необходимости создания и применения других систем заземления.

Итак, здания построены, потенциально опасные сети проложены, а ТНПА (например, ТКП 339-2011, п. 4.3.20) справедливо регламентируют применение более современных и безопасных систем заземления, допускающих использование устройств, повышающих электробезопасность и надежность электроснабжения. Такой системой как раз является TN-S, при которой защитный и рабочий нули разделены (Separated) сразу на подстанции. Как правило, в новостройках применяют именно такую систему. В такой сети возможно применение устройств защитного отключения (УЗО), что является главным преимуществом перед системой TN-C: УЗО или дифавтомат защищает от поражения током человека и электропроводку от перегрузок.

Конечно, проводить реконструкцию каждой подстанции для создания системы TN-S нерационально, однако применять безопасные и надежные системы необходимо. Здесь появился компромисс – заземление по схеме TN-C-S, то есть «среднее арифметическое» между двумя системами, о которых было сказано выше. Такую систему заземления применяют при капремонтах зданий или реконструкции их сетей. От подстанции к зданию подводят четырехжильный кабель и в вводном щите здания – ВРУ (вводном распредустройстве) производят разделение проводника PEN на PE и N, причем придерживаются схемы разделения PEN проводника:

  1. PEN со стороны кабеля подключаются к главной заземляющей шине (ГЗШ) PE, которая электрически соединена с корпусом шкафа или щита.
  2. ГЗШ соединяют с нулевой рабочей шиной N, установленной на изоляторах. Эти две шины соединяются между собой перемычкой такого же сечения, как у самих шин.
  3. К шине PE подключаются проводники PE, идущие к розеткам и электроприемникам, к шине N – рабочие нули розеток и электроприемников.

Часто возникают вопросы про место разделения PEN проводника. Разделение PEN-проводника осуществляют до вводного устройства в здание или дачный дом, то есть до вводного автомата или рубильника. Проводник N, идущий от шины N, подключают к счетчику электроэнергии. Отдельно хочется отметить, что после разделения PEN в направлении от источника энергии к электроприемнику повторное соединение PE и N недопустимо, как недопустимо и использование предохранителей или автоматов в PEN, PE и N-проводниках.

При наличии системы TN-C, TN-S или их комбинаций рекомендуется применять повторное заземление (главным образом состоящее из естественных заземлителей) PE- и PEN-проводников на вводе в здания. И, конечно же, какой бы совершенной ни была система заземления, если не произведена проверка сопротивления заземляющего устройства (ЗУ), нет гарантии, что данная система будет функционировать должным образом. Измерение сопротивлений могут провести специалисты нашей лаборатории электрофизических измерений.

 

 

Зачем нужно разделять PEN проводник? – Мои статьи – Каталог статей

Зачем нужно разделять PEN проводник?

Сначала определимся, для чего нам нужно разделять PEN проводник. Для этого обратимся к последнему 7 изданию ПУЭ, п.7.1.13, где сказано, что:

7.1.13. Питание электроприемников должно выполняться от сети 380/220 (В) с ситемой заземления TNS или TNCS. При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 (В) или 3х220 (В), следует предусматривать перевод сети на напряжение 380/220(В) с системой заземления TNS или  TNCS.

Это значит, что все электроустановки напряжением 380/220 (В) должны иметь систему заземления ТN-S, ну или в крайнем случае ТN-С-S. А что делать, когда у нас в России еще до сих пор электропроводка в старом жилищном фонде выполнена по устаревшим нормам с системой заземления TN-C.

Таким образом, при любой реконструкции (изменении) или модернизации электроустановки, а также если Вам не безразлична электробезопасность Вашей семьи, необходимо переходить от системы заземления TN-C на более современные ТN-S или ТN-С-S, но при этом необходимо выполнить разделение PEN проводника на нулевой рабочий N и нулевой защитный РЕ, и причем правильно. Вот здесь то и начинаются путаницы и постоянные разногласия.

Как разделить PEN проводник на PE и N?

Чтобы нагляднее представить написанное ниже, я буду приводить примеры из своей практики с реальными фотографиями. В качестве примера рассмотрим питание многоквартирного жилого дома, типа «хрущевки».

ПУЭ, п.1.7.135:

 

Поясняю: c места разделения PEN проводника на нулевой рабочий N и нулевой защитный РЕ, дальнейшее их соединение (объединение) запрещено.

В месте разделения, в нашем примере это ВРУ-0,4 (кВ), устанавливаются две шины (или зажимы), которые должны быть соединены между собой и промаркированы:

Когда нулевой рабочий и нулевой защитный провдники разделены, начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения электроэнергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенных между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине  нулевого защитного PE-проводника.

В качестве перемычки может служить любой провод или шинка такого же сечения и материала. Некоторые мои коллеги-электрики устанавливают две перемычки по краям этих шин, что в принципе не противоречит требованиям ПУЭ.

Акцентирую внимание на том, что шины или зажимы должны иметь отдельные точки подключения для соответствующих проводников РЕ и N, а не подключаться в одном месте под один болт или зажим.

Шина N устанавливается на специальных изоляторах, а шина РЕ (ГЗШ) — закреплена прямо на корпус ВРУ-0,4 (кВ).

Читаем ПУЭ, п.1.7.61:

При применении системы TN рекомендуется выполнять повторное заземление PE и PEN– проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземленияв первую очередь следует использовать естественные заземлители.

А сейчас нам нужно выполнить повторное заземление шины РЕ (ГЗШ), к которой подключен PEN проводник вводного кабеля. В приведенном выше пункте сказано, что в качестве повторного заземления можно использовать естественные заземлители. Я же рекомендую Вам выполнить монтаж заземляющего устройства, сокращенно — З.У. После монтажа заземляющего устройства (З.У.) необходимо проверить его сопротивление. Сегодня мы узнаем какое сопротивление заземляющего устройства удовлетворяет требованиям нормативных документов.Но для каждого контура заземления имеется свое требование к сопротивлению.

Сопротивление заземляющего устройства, еще его называют сопротивление растекания электрического тока — это величина, которая прямо пропорциональна напряжению на заземляющем устройстве, и обратно пропорциональна току растекания в «землю».

Единица измерения — Ом.

И чем меньше это значение, тем лучше.  В идеальном случае — сопротивление заземляющего устройства должно быть равно нулю. Но реально добиться такого сопротивления просто невозможно.

И как всегда, по нормам сопротивления заземлений, обратимся к нормативному документу ПУЭ 7 издания, к главе 1.7.

ПУЭ. Раздел 1. Глава 1.7.

Для каждой электроустановки и ее уровня напряжения, в ПУЭ четко определены сопротивления заземления. 

В данной статье мы рассмотрим нормативы сопротивлений только тех электроустановок, которые нам интересны, т.е. бытового напряжения 380 (В) и 220 (В).

Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2,4 и 8 Ом соответственно при линейных напряжениях 660,380,220 В источника трехфазного тока или 380,220,127 В источника однофазного тока.Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN или  PE– проводника ВЛ напряжением до 1КВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источникаоднофазного тока, должно быть не более 15,30,60 Ом соответственно при линейных напряжениях  660,380 и 220 В источника трехфазного тока или 380,220,127 В источника однофазного тока.При удельном сопротивлении земли ρ>100 Ом x м допускается увеличивать указанные нормы в 0,01р раз, но не более десятикратного

Вышеперечисленные нормы сопротивления заземляющих устройств относятся к грунтам, идеально подходящим для монтажа контура заземления (глина, суглинок, торф).

В этом Вам поможет электротехническая лаборатория по месту жительства.

Если сопротивление смонтированного заземляющего устройства удовлетворяет требованиям ПТЭЭП и ПУЭ, то соединяем шину РЕ (ГЗШ) с нашим заземляющим устройством с помощью заземляющего проводника. Ну вот и все, с этой точки электроустановки вводной PEN проводник разделен на  нулевой рабочий N и нулевой защитный РЕ проводники.

 

Схемы разделения PEN проводника

Приведу пример схемы трехфазного ввода с счетчиком непосредственного (прямого) включения в сеть:

 

Компоновка вышеприведенной схемы может немного отличаться. Например, вместо вводного автомата может быть установлен трехполюсный рубильник, а после счетчика установлены вводные предохранители и УЗО. Аналогично и по автоматам групповых нагрузок — вместо них могут быть установлены предохранители.

Перейдем к наглядному примеру: жилой многоквартирный 4-этажный дом питается от трансформаторной подстанции (ТП), расположенной во дворе, кабелем АВБбШв (4х70).

 

В таком случае фазные жилы (А,В,С) вводного кабеля мы подключаем на коммутационный аппарат — трехполюсный рубильник, а совмещенный PEN проводник вводного кабеля – на шину РЕ (ГЗШ). Смотрим схему:

Вот еще один наглядный пример — это схема трехфазного ввода с счетчиком, подключенного через трансформатор тока:

Вводной кабель марки АВБбШв 2(3х70) проложен до ВРУ двумя нитками.

Три жилы кабеля — это фазные проводники (А, В, С) подключены на вводной трехполюсный рубильник. В качестве PEN проводника используется металлическая оболочка вводного кабеля, которая подключается непосредственно на шину РЕ (ГЗШ).

После вводного рубильника установлены вводные предохранители ППН-35 с номиналом 250 (А) и трансформаторы тока с коэффициентом трансформации 200/5. Для защиты от коротких замыканий и перегрузок групповых нагрузок, в нашем примере это магистральная электропроводка (стояки) подъездов, применяются предохранители ППН-33 с номиналом 50 (А).

Вот пример схемы однофазного ввода для частного дома или коттеджа, получающего питание от двухпроводной воздушной линии СИП с дальнейшем разделением PEN проводника в вводном щитке:

Здесь хочу добавить то, что вводной автомат должен быть установлен в пластиковом боксе для возможности его опломбировки, иначе могут возникнуть проблемы с энергоснабжающей организацией при вводе электроустановки и прибора учета в эксплуатацию. И еще прошу заметить, что нулевые шины N1 и N2 НЕ соединены между собой.

Я все таки больше склоняюсь именно к такой схеме однофазного питания дома с разделением PEN проводника в вводном щитке и всегда рекомендую и советую ее.

Но многие специалисты, в том числе мои коллеги «по цеху», частенько ссылаются на еще существующий в настоящее время ГОСТ Р 51628-2000, который, кстати, редактировался последний раз аж в марте 2004 года. А там рекомендуется применять вот такую схему для однофазного питания одноквартирных и сельских жилых домов:

Мое мнение по этому поводу следующее: обе схемы правильные, но лучше все таки ссылаться на более новые выпуски НТД (я имею ввиду ПУЭ) и придерживаться их норм и требований, о которых я рассказывал в начале этой статьи.

Забыл сказать: не забывайте защищать свое «жилище» от перенапряжений, возникающих от грозовых разрядов или коммутаций различного электрооборудования, с помощью УЗИП или ОПН. В следующих статьях я расскажу об этом более подробнее — подписывайтесь на получение новостей на почту.

После рассмотренных вариантов схем хотелось бы напомнить ПУЭ, п.1.7.145:

 

После того, как Вы произвели модернизацию своего вводного щитка, установили там шины PE (ГЗШ) и N, выполнили монтаж З.У. (контура заземления), то следует обратить внимание на следующий п.7.1.87 и п.7.1.88 7-ого издания ПУЭ, в котором говорится следующее:

 

Как видно из пункта 7.1.87, систему уравнивания потенциала необходимо выполнять на вводе в здание, т.е. это еще один аргумент в пользу разделения PEN на нулевой рабочий N и нулевой защитный РЕ на вводе в здание, т.е. в ВРУ. Об этом читайте чуть ниже.

Более подробно о системах уравнивания потенциалов я рассказывал здесь: СУП.

Надеюсь, что тему разделения PEN проводника я раскрыл полностью, но я решил в конце статьи ответить на самые распространенные вопросы, которые все таки могут возникнуть в процессе прочтения.

 

Место разделения PEN проводника на PE и N

Самый распространенный (наверное) вопрос, который постоянно заставляет активно общаться на тематических форумах — это место разделения PEN проводника. Есть два варианта ответа — один правильный, а другой — не совсем.

Начнем с правильного.

1. Вводное распределительное устройство (ВРУ)

Самым правильным местом для разделения PEN проводника на PE и N является вводное распределительное устройство ВРУ-0,4 (кВ) или ВРУ-0,23 (кВ) отдельно стоящего здания. Отдельно стоящее здание в нашем понимании — это жилой многоквартирный дом, коттедж, садовый или дачный деревянный домик и т.п.

Существует одно условие, про которое я не могу не сказать: питание отдельного стоящего здания должно осуществляться кабелем сечение которого должно быть не меньше, чем 10 кв.мм по меди или 16 кв.мм по алюминию. Об этом отчетливо говорится в ПУЭ, п.1.7.131:

 

Как это понять: если у Ваш коттедж, дом или другое отдельное строение питается кабелем сечение которого меньше, чем указано в п.1.7.131, то его питание должно осуществляться уже по системе TN-C-S, т.е. с отдельными проводниками РЕ и N. Бывают случаи, когда отдельное строение (например, баня) питается по системе TN-C кабелем меньшим сечением, чем допускает п.1.7.131 – в таком случае PEN проводник необходимо разделить в другом месте — ближе к источнику питания, например, в распределительном щите, откуда это строение (баня) питается.

Вот еще один весомый аргумент в пользу норм и требований ПУЭ по разделению PEN проводника — это ГОСТ Р 50571.1-2009. В п.312.2.1 отчетливо сказано где и как именно должен разделяться PEN проводник. Цитирую:

 

Вводом электроустановки для жилого многоквартирного дома или частного дома является вводное распределительное устройство (ВРУ).

А сейчас — не очень правильный вариант…

2. Этажный щит

Очень часто посетители моего сайта, а также различных форумов, настойчиво интересуются вопросом про разделение PEN проводника в этажном (подъездном) щитке.

Отвечаю: см. пункт 1.

Если не убедил, то знайте, что разделение PEN проводника на этажном щитке является грубым нарушением существующего проекта электропроводки жилого дома. Поэтому у Вас нет никакого права вмешиваться в существующую схему со своим монтажом. Не дай Бог, если что то случится после вмешательств, то в первую очередь Вы понесете за это полную ответственность: штраф, административную или уголовную ответственность.

Поэтому настоятельно рекомендую разделение PEN проводника на PE и N выполнять только на вводе в здание и точка!!!

Ладно, с этим определились (я надеюсь), но что же делать и как перейти с системы TN-C на систему TN-C-S?

 

Пути решения для перехода с системы TN-C на систему TN-C-S

Что я могу Вам здесь посоветовать?

1. Ждать возможности включения Вашего жилого многоквартирного дома в список на проведение капитального ремонта, согласно действующей федеральной программы. В таком случае Вам обойдется все бесплатно. Вопрос остается в том, а внесут ли вообще Ваш дом в эту программу. Узнать это можно в офисе Вашей управляющей компании.

2. Оплатить услуги специалистов, которые составят проект, согласуют его во всех инстанциях и выполнят капитальный ремонт электропроводки всего жилого дома, ну или в крайнем случае, переведут Ваш дом на систему TN-C-S, установят новое ВРУ, проложат новые провода магистралей (стояков) и заведут Вам в квартиру полноценную «трехпроводку»: фазу, ноль и «землю».

Данный вариант по финансам получится достаточно затратный, поэтому читаем третий вариант, который тоже имеет право на жизнь.

3. Обратиться всеми жильцами дома (хотя бы большинством) в управляющую компанию (УК) с предложением плодотворного и плотного сотрудничества. Например, Вы можете  выполнить монтаж заземляющего устройства (контура заземления), про это я подробно рассказывал, или посодействовать в помощи при прокладке магистралей (стояков) электропроводки по этажам. Так сказать действовать «сообща»…Ну а проект на все изменения, естественно, ляжет на плечи УК.

Возможно такой вариант больше подойдет для участников ТСЖ, но тем не менее попробовать можно. В итоге, совместными усилиями Ваш дом возможно переведут на систему TN-C-S, по этажам или шахтам проложат пятипроводную магистраль (стояк), а Вам лишь останется при удобном случае завести к себе в квартиру трехпроводный ввод.

 

Что делать, когда проводка в квартире выполнена по современным требованиям ПУЭ, а питающая линия еще двухпроводная?

Отвечаю: в таком случае все очень просто. В квартирном щитке все защитные проводники РЕ подключаете на свою шину РЕ, но саму шину РЕ никуда не подключаете и оставляете «в воздухе», до тех пор пока Ваш дом не переведут на систему TN-C-S.

Почему заземление шлейфом запрещено | Статьи ЦентрЭнергоЭкспертизы

Электробезопасность один из главных вопросов, который приходится рассматривать при создании и эксплуатации электрических сетей. Меры, направленные на снижение риска возгораний или поражения человека электрическим током увеличивают стоимость современных электросетей, усложняют проведение электромонтажных работ, однако это достойная плата за главное условие – электробезопасность. Согласно стандартам, применяемым ныне в строительстве, минимизация вероятности поражения электрическим током от случайного пробоя на корпус электроприбора обеспечивается защитным заземлением. Именно поэтому современные электрические розетки оснащены третьим контактом, позволяющим посредством нулевых защитных проводников подключать корпуса защищаемых приборов к контуру заземления. Использование трехжильных кабелей состоящих из фазных проводников, нулевых проводов и «земляной» жилы кабеля усложняет:

  • проведение электромонтажных работ;
  • процедуру подключения розеток;

но самое главное обеспечивает электробезопасность сети.

Опасность подключения розеток шлейфом

В настоящий момент не утихают споры в отношении того каким образом подключать электрические розетки:

  • звездой, когда к каждой из них от распределительного щита подводится отдельная линия;
  • шлейфом, в этом случае на отдельную линию параллельно устанавливается группа розеток (при этом соединение каждого из контактов розетки, в том числе защитный ноль, получается последовательным с аналогичным контактом остальных розеток).

Решение спора подсказывают правила установки электрооборудования (ПУЭ) пунктом 1.7.144 запрещающие соединение защитных проводников шлейфом, тем не менее, стремление сэкономить на дорогостоящем кабеле и монтажных работах толкает многих электриков на их нарушение. Так в чем же опасность? Почему ПУЭ так бескомпромиссны в отношении подключения шлейфом?

Это вопрос безопасности. Когда контакты розеток подключены непосредственно к распределительному щиту обрыв защитного провода, обеспечивающего контакт корпуса прибора и общей шины PE, угрожает только этой розетке. При соединении группы розеток шлейфом, заземляющий проводник подводится к ближайшей в группе розетке, затем ко второй и так далее, а в качестве транзитного контакта используется зачастую винтовые клеммы розеток.

Надежность такого соединения доверия не внушает, со временем оно может ослабевать и контакт с подводящим PE проводником нарушаться. В случае, когда контакт с PE проводником нарушается на ближайшей к щиту розетке:

  • исчезает защита всех розеток группы;
  • при пробое на корпус одного из включенных приборов, напряжение прикосновения появляется на корпусах всех приборов включенных в розетки группы.

Это значительно увеличивает угрозу поражения электрическим током, поэтому подключение защитных нулевых проводников недопустимо.

Поиск компромиссов

Так можно подключать розетки шлейфом или нет, и если да, как это сделать? Решение все же имеется, правда его скорее следует называть параллельным. В рассматриваемом пункте ПУЭ речь идет о заземляющем проводнике, поэтому параллельно соединяют жилы кабеля идущего к щитку и ко всем розеткам (фазный и нулевой), при этом суммарный ток нагрузок шлейфа должен соответствовать сечению жил кабеля. Кроме того следует позаботиться о качестве их соединения. Для этого ни в коем случае не использовать контакты розетки, контакты проводов лучше опрессовать гильзами и изолировать термоусадочной трубкой. Все соединения можно делать в распределительных коробках, а лучше использовать подрозетники увеличенной глубины.

При подключении к PE проводнику следует делать отвод от последнего, ни в коем случае не нарушая целостности его токопроводящей жилы, с аналогичной опрессовкой и изоляцией. Это обеспечит надежное соединения розеток с шиной РЕ, но самое главное нисколько не противоречит ПУЭ.

Смотрите также другие статьи :

Для чего применяются магнитные пускатели

По своему назначению электромагнитные пускатели делятся на обычные и реверсивные. В конструкции реверсивных магнитных пускателей заложено два обычных (в спаренном корпусе) с взаимной блокировкой друг друга, исключающей их одновременное включение и обеспечивающей электрическую блокировку.

Подробнее…

Transmission vs Reconductor – в чем разница?

Как существительное

передача – это акт передачи, например данных или электроэнергии.

В качестве глагола

рекондуктор означает (электроника) для замены кабеля или провода в электрической цепи, обычно высоковольтной линии передачи, обычно для обеспечения большей пропускной способности электрического тока.

Английский

Существительное

( ru имя существительное )
  • Акт передачи, e.грамм. данные или электроэнергия.
  • Факт передачи.
  • То, что передается, например сообщение, изображение или болезнь; отправка такой вещи.
  • (биология) Прохождение нервного импульса по синапсам.
  • (автомобильный) Комплект шестерен, через которые мощность передается от двигателя на карданный вал легкового автомобиля / автомобиля; коробка передач.
  • (юридически) Право, которым обладает наследник или наследник, передать своему преемнику (ам) любое наследство, наследство, право или привилегию, на которые он имеет право, даже если он умрет, не воспользовавшись им или не воспользовавшись им.
  • (медицина, биология) Передача инфекционного заболевания от индивидуума или группы инфицированных хозяев к тому же индивиду или группе.
  • Синонимы
    * ( л ) * ( сборка шестерен ) коробка передач

    Производные термины
    * автоматическая коробка передач * криопередача * механическая коробка передач * стандартная трансмиссия * синхронизированная передача * линия передачи * среда передачи * просвечивающий электронный микроскоп * Протокол управления передачей

    Связанные термины
    * передаваемый * пропускающий

    Английский

    Глагол

    ( en глагол )
  • (электроника) Для замены кабеля или провода в электрической цепи, обычно высоковольтной линии передачи, обычно для обеспечения большей пропускной способности электрического тока.
  • * Чтобы новый генератор мог удовлетворить потребности новых потребителей, электроэнергетическая компания решила провести реконструкцию линии электропередачи 115 кВ вместо строительства другой линии электропередачи 115 кВ.
  • что такое re, rm, se, sm для проводников кабеля?

    Автор Тема: что такое re, rm, se, sm для кабельных жил? (Прочитано 32395 раз)

    что такое re, rm, se, sm для кабельных жил?

    re: сплошной одинарный круглый провод
    rm: многопроволочный круглый провод
    se: сплошной секторный провод
    sm: многопроволочный секторный провод

    « Последнее редактирование: 25 июля 2014 г., 09:30:28, Cable Genie »

    Зарегистрировано

    « Последнее редактирование: 22 января 2015 г., 10:27:15, автор: Cable Genie »

    Зарегистрировано
    Зарегистрировано
    Зарегистрировано
    Зарегистрировано
    Зарегистрировано

    « Последнее редактирование: 15 декабря 2017 г., 09:24:11, автор: Marsilia Savia NERA »

    Зарегистрировано

    « Последнее редактирование: 15 декабря 2017 г., 09:21:41, Марсилия Савиа NERA »

    Зарегистрировано
    Зарегистрировано

    Теги:


    Определение и значение проводника | Словарь английского языка Коллинза

    Примеры ‘дирижёр’ в предложении

    кондуктор

    Эти примеры были выбраны автоматически и могут содержать конфиденциальный контент.Подробнее… Требуется, чтобы у всех поездов был кондуктор.

    Times, Sunday Times (2016)

    Он говорит о сложном моменте, когда дирижер встречается с оркестром.

    Times, Sunday Times (2016)

    На протяжении многих лет на международной арене она работала с ведущими дирижерами.

    Times, Sunday Times (2011)

    Провода в цепи сделаны из меди, которая является очень хорошим проводником электричества.

    Чэпмен, К. и Хорсли, М. и Смолл, Э. Основные факты о технологиях (1990)

    Этот интерес усилился после того, как два лета проработал кондуктором автобуса, когда он был студентом.

    Times, Sunday Times (2006)

    Партнерство этого оркестра и дирижера продолжает приносить успех.

    Times, Sunday Times (2012)

    Он был кондуктором грузового поезда, но не мог работать.

    The Sun (2013)

    Постоянные дружеские отношения сложились со многими ведущими певцами и дирижерами того времени.

    Times, Sunday Times (2011)

    Такой провод сделан из металла, который является проводником электричества несколько хуже, чем медь.

    Schneider, Hermann & Schneider, Leo The Harper Dictionary of Science in Everyday Language (1988)

    Сейчас это единственные автобусы с кондукторами.

    Times, Sunday Times (2006)

    Подробнее …

    Химия между дирижёрами и оркестрами таинственна.

    Times, Sunday Times (2010)

    Или утка, мечтающая стать кондуктором автобуса.

    The Sun (2008)

    Это одна из самых больших революций в отрасли с тех пор, как кончился автобусный кондуктор.

    Times, Sunday Times (2011)

    Его консультант по вопросам карьеры посоветовал ему стать хорошим кондуктором.

    Times, Sunday Times (2015)

    Хороший проводник тепла и электричества.

    Чепмен, К. и Хорсли, М. и Смолл, Э. Основные факты о технологиях (1990)

    Они рискнули бы с кондуктором в поезде.

    Times, Sunday Times (2012)

    Сложите вместе слишком много искусственных волокон, и вы просто станете проводником статического электричества.

    Times, Sunday Times (2008)

    Вы дирижер оркестра, а не солируете.

    Times, Sunday Times (2014)

    А когда полузащита «Юнайтед» все еще явно оркестр, ожидающий дирижера?

    Солнце (2013)

    И задача дирижеров балансирования оркестров в этом замкнутом пространстве, безусловно, помогла нам отделить овец от козлов!

    Times, Sunday Times (2007)

    Это одна из его партийных работ, и он понимает ее совокупную силу не хуже, чем любой ведущий дирижер современности.

    Times, Sunday Times (2008)

    Проводники поездов стали нам полезными.

    Times, Sunday Times (2012)

    Мой отец был дирижером, а я по образованию скрипач.

    Times, Sunday Times (2012)

    Пение без дирижера, настройка и взаимопонимание хора безупречны.

    Times, Sunday Times (2010)

    Проводник поезда, которому поручено проверить человека на линии, на самом деле мертв.

    The Sun (2010)

    Если вы поете какое-то время, подумайте о курсе уроков или присоединитесь к хору, дирижер и тренеры которого могут повысить вашу вокальную уверенность.

    Times, Sunday Times (2013)

    Но как одаренный преподаватель и дирижер хоров, он посвятил больше всего усилий хоровой музыке, которую считал своей естественной территорией.

    Times, Sunday Times (2011)

    Что такое дирижер? – Определение с сайта WhatIs.com

    К

    Электрический проводник – это вещество, в котором носители электрического заряда, обычно электроны, легко перемещаются от атома к атому под действием напряжения. В общем, проводимость – это способность передавать что-либо, например электричество или тепло.

    Чистое элементарное серебро – лучший проводник, встречающийся в повседневной жизни. Медь, сталь, золото, алюминий и латунь также являются хорошими проводниками. В электрических и электронных системах все проводники состоят из твердых металлов, отформованных в провода или вытравленных на печатных платах.

    Некоторые жидкости являются хорошими электрическими проводниками. Меркурий – отличный тому пример. Насыщенный раствор соленой воды действует как хороший проводник. Газы обычно являются плохими проводниками, потому что атомы расположены слишком далеко друг от друга, чтобы обеспечить свободный обмен электронами.Однако, если образец газа содержит значительное количество ионов, он может действовать как хороший проводник.

    Вещество, не проводящее электричество, называется изолятором или диэлектрическим материалом. Общие примеры включают большинство газов, фарфор, стекло, пластик и дистиллированную воду. Материал, который достаточно хорошо проводит, но не очень хорошо, известен как резистор. Наиболее распространенный пример – комбинация углерода и глины, смешанных вместе в определенном соотношении для создания постоянного и предсказуемого противодействия электрическому току.

    Вещества, называемые полупроводниками, в одних условиях действуют как хорошие проводники, а в других – как плохие. Кремний, германий и различные оксиды металлов являются примерами полупроводниковых материалов. В полупроводнике как электроны, так и так называемые дырки (отсутствие электронов) действуют как носители заряда.

    При очень низких температурах некоторые металлы проводят электричество лучше, чем любые известные вещества при комнатной температуре. Это явление называется сверхпроводимостью, а вещество, которое ведет себя таким образом, называется сверхпроводником.

    Последнее обновление: май 2012 г.

    Читать о дирижере

    Conductor – обзор | Темы ScienceDirect

    Электрические и магнитные поля описывают силы, действующие на электрические заряды

    «Магнитные поля» (MF) – это название одного типа взаимодействия, наблюдаемого между электрически заряженными объектами.MF описывает силу на единицу тока. Другой тип взаимодействия между заряженными объектами включает «электрические поля» (ЭП), которые также будут упомянуты в этой статье в качестве контраста с магнитными полями. EF описывает силу на единицу заряда. Электрические заряды присутствуют во всем веществе, и большинство объектов электрически нейтральны, потому что положительные и отрицательные заряды обычно присутствуют в равных количествах. Когда баланс электрических зарядов изменяется, возникают электрические эффекты, такие как притяжение между расческой и нашими волосами или образование искр после ходьбы по синтетическому коврику зимой.Напряжение на электрическом проводе возникает из-за электрических зарядов, которые могут воздействовать на другие близлежащие заряды через «электрическое поле». Когда заряды движутся, они производят электрический ток, который может воздействовать на другие электрические токи через «магнитное поле». Электрические и магнитные поля (часто сокращенно «ЭМП») представляют собой невидимые силовые линии, окружающие статические или движущиеся электрические заряды, например, в проводах, проводящих электричество, или двигателях в электрических приборах. Все люди подвергаются воздействию электрических и магнитных полей как в природе, так и в результате использования нами электроэнергии, например, при включении лампы или вентилятора или при использовании электрической духовки для приготовления обеда.

    Электрические и магнитные поля являются выражением давних и фундаментальных наблюдений физиков, согласно которым электрические заряды, даже если они разделены расстоянием, (1) оказывают друг на друга силы притяжения или отталкивания (через электрическое поле) и (2) когда он находится в движении (например, как в электрическом токе) оказывает силу на другие электрические токи и движущиеся электрические заряды (через магнитное поле). Кроме того, (3) изменяющиеся во времени магнитные поля могут индуцировать изменяющиеся во времени электрические поля и электрические токи (закон Фарадея).Из-за взаимосвязи между изменяющимися во времени магнитными полями и индуцированными электрическими полями и токами в этой главе часто будут упоминаться электрические поля, а также магнитные поля.

    Все мы сталкиваемся с широким спектром ЭМП природного и антропогенного происхождения. Атмосфера Земли создает медленно изменяющиеся электрические поля, а грозы создают очень сильные электрические поля, которые иногда разряжаются разрядом молнии. Ядро Земли создает постоянное магнитное поле, что можно продемонстрировать стрелкой компаса.Магнитное поле Земли в Северной Америке имеет напряженность около 55 микротесла (мкТл) (или 550 миллигаусс [мГ]). Земля, постоянные магниты и постоянные электрические (или «постоянные») токи создают устойчивые магнитные поля. Магнитные поля земли или небольших магнитов действуют на электрические токи или другие магнитные объекты, как если бы стрелка компаса была направлена ​​в сторону магнита. Бытовые магниты, например те, которые используются для удерживания предметов на металлических поверхностях, имеют близлежащие магнитные поля примерно 10–50 мТл. Обычная медицинская диагностическая процедура, магнитно-резонансная томография (МРТ), использует устойчивые поля примерно 2–4 Тл (примерно в 10 000 раз больше магнитного поля Земли), которые не наносят вреда биологической функции.Движущиеся магниты или провода, по которым проходят переменные токи («переменные» токи), создают изменяющиеся во времени магнитные поля. Если, например, вы должны вращать магнит со скоростью 60 раз в секунду, вы получите переменное магнитное поле, которое невозможно отличить от магнитных полей с частотой 60 Гц, создаваемых электрическими токами в линии электропередач. Изменяющиеся во времени магнитные поля также индуцируют ток в электропроводящих материалах, поэтому электрическая энергия генерируется из механической энергии.

    В нашей статье представлен обзор научных исследований биологических эффектов низкочастотных магнитных полей (МП).Живые организмы, как правило, «прозрачны» (т.е. слабо взаимодействуют с) низкочастотными МП, и не следует ожидать наличия биологических эффектов (кроме ориентации компаса). Однако с 1980-х годов существуют разногласия относительно того, может ли воздействие МП промышленной частоты способствовать пагубным последствиям, таким как повышение риска рака у человека. И электрические, и магнитные поля создаются токами и напряжениями, связанными с использованием электроэнергии нашим обществом, и эти поля иногда обозначаются как чрезвычайно низкочастотные (СНЧ) или ЭДС 60-цикла переменного тока (60 Гц).Значительная часть последующего обсуждения касается этого продолжающегося спора о том, наносят ли СНЧ-ЭМП вред здоровью.

    Электрический потенциал (например, на электрических проводниках) выражается в вольтах (В) или киловольтах (1 кВ = 1000 В). Напряжение можно рассматривать как электрическое «давление», а разница напряжений между проводниками приводит к возникновению между ними электрического поля, обычно выражаемого в киловольтах на метр (кВ / м). Величина электрического поля зависит от напряжения на проводнике, расстояния между проводниками и землей и других факторов (например,g., конфигурации и расстояние между проводниками, характеристики проводов). «Электрическое поле» по существу является мерой силы, приходящейся на единицу электрического заряда, при этом сила имеет противоположные направления для положительных и отрицательных зарядов, а величина силы пропорциональна количеству заряда, на которое действует электрический заряд. поле.

    Проводники, передающие движущиеся заряды (электрический ток), создают магнитное поле. Единицами измерения электрического тока являются амперы (А), которые являются мерой потока электричества.«Величина магнитного поля пропорциональна величине электрического тока, но изменяется в зависимости от расстояния от провода и расположения провода. Подобно электрическим полям, магнитные поля быстро уменьшаются с увеличением расстояния от источника, такого как линия передачи. Магнитное поле по существу является мерой силы на единицу тока, причем направление силы зависит от направления электрического тока, а величина силы пропорциональна величине электрического тока, на который действует магнитное поле. .Для магнитного поля используются 2 единицы измерения, и они могут быть взаимно преобразованы следующим образом:

    Тип единицы
    CGS (Гаусс) MKS (Tesla)
    1 G 0,0001 T
    1 G = 1000 мкГ 0,1 мТл
    10 мкГ 1 мкТл
    10 мкГ 1 нТ

    Типы научных исследований которые использовались для исследования возможных последствий воздействия электрических и магнитных полей на здоровье, можно разделить на три основные категории.Понимание силы и основы возможных последствий для здоровья требует интеграции этих трех основных линий научных данных:

    1.

    Эпидемиология,

    2.

    Исследования на лабораторных животных и

    3.

    Механизмы действия.

    Одно из центральных направлений исследований магнитных полей промышленной частоты и конечных точек здоровья было связано с возможным риском рака, особенно детской лейкемии.Следующее обсуждение представляет собой резюме этих основных линий научных данных и объясняет, как понимание воздействия магнитного поля на здоровье менялось с течением времени.

    Хотя эффекты магнитных полей из различных источников изучались в биологических системах в течение длительного периода времени, значительный импульс для беспокойства о влиянии магнитного поля на здоровье возник в 1979 году, когда эпидемиологическое исследование, проведенное Вертхаймером и Липером, сообщило о том, что статистическая связь между «телефонными кодами» и онкологическими заболеваниями у детей в некоторых жилых районах Денвера, штат Колорадо.Эти исследователи выявили случаи лейкемии у детей и сопоставили каждый случай с ребенком контрольной группы, у которого не было лейкемии. Затем следователи визуально осмотрели конструкции линий электропередач в непосредственной близости от дома каждого ребенка и присвоили «код провода», в котором предполагалось, что увеличивающиеся числа обозначают схемы электропроводки, которые становятся все более мощными. Их статистический анализ показал, что шансы найти мощные линии электропередач вблизи жилых домов были выше, чем шансы найти такие линии поблизости от домов контрольных детей.С дополнительным предположением, что «код провода» был суррогатом магнитных полей линии электропередачи переменного тока, Вертхаймер и Липер предположили, что эта корреляция может быть вызвана воздействием магнитного поля линии электропередачи, увеличивающим риск рака у детей.

    Отчет Вертхаймера и Липера послужил поводом для лабораторных исследований, а также дальнейших эпидемиологических исследований. С 1979 года множество лабораторных экспериментальных и корреляционных эпидемиологических исследований исследовали вопросы, поднятые гипотезой Вертхаймера и Лепера о том, что конфигурация линии электропередачи связана с риском рака у детей.В 1992 году Конгресс США утвердил Программу исследований электрических и магнитных полей и распространения общественной информации (EMF-RAPID). В программе RAPID Национальный институт наук об окружающей среде (NIEHS), Национальный институт здравоохранения (NIH) и Министерство энергетики (DOE) были уполномочены финансировать, направлять и управлять исследованиями и анализом, направленными на предоставление научных данных для прояснить потенциальные риски для здоровья от воздействия. Большое количество научных данных было представлено, собрано, проанализировано, проанализировано и часто повторно проверено многими независимыми научными консенсусными группами исследователей, правительствами и экспертами в области общественного здравоохранения.

    Что такое проводник? [Кабель 101]

    Независимо от того, разрабатываете ли вы одноразовое медицинское устройство, массовое производство потребительского зарядного кабеля или разрабатываете жгут проводов для основного оборудования, для соединения различных компонентов необходимо уделять особое внимание деталям. Это соединение чаще всего достигается с помощью какой-либо разновидности проволоки. Большинство широкой публики не знает, сколько дизайна и инженерных разработок вложено в каждый из этих типов проводов. В основе провода лежит проводник. Вопрос в том, нужен ли вам один, два, 8 или даже больше проводников в проводе, чтобы ваш продукт функционировал?

    Прежде чем мы обсудим, что такое «проводник», давайте установим самую основную анатомию провода.Внутри «простого» провода, идущего изнутри наружу;

    1. Проводник
    2. Изоляция
    3. Щит
    4. Куртка

    Что такое «проводник»?

    Будь то питание небольшого устройства или линии электропередач, обеспечивающие электричеством весь город, проводник – это материал, который обеспечивает свободное протекание электрического тока. В случае системы электрических цепей «проводник» конкретно относится к части, которая переносит электрический ток от источника к его нагрузке.

    Бесплатная загрузка электронной книги: Дизайн кабеля: не ограничиваясь компонентами, чтобы построить успешное соединение

    Из чего сделан проводник?

    Когда применяется электрический заряд, металлы обладают лучшими проводящими свойствами. Это причина, по которой металлы являются предпочтительным проводником в электрических проводах. Хотя мы все привыкли рассматривать медь как наиболее используемый проводник, лучший металлический проводник – это на самом деле серебро. Но из-за завышенной цены на этикетке чаще всего используется медь.Другие металлы, такие как алюминий, золото, сталь и латунь, также являются проводниками, но они не считаются такими эффективными, как медь и серебро, и использование этих металлов может вызвать другие сложности.

    Как выбрать размер жилы?

    Базовые токопроводящие провода варьируются от подставки или проволоки размером меньше человеческого волоса до 0000. Американский калибр * (AWG) – это стандартизированная система для измерения диаметра проволоки, которая определяет диаметры круглой, сплошной, цветной и электропроводящей проволоки.Таким образом, выбор токопроводящей жилы для вашего продукта зависит от того, насколько большим или маленьким он должен быть, в сочетании с требованиями к питанию продукта или устройства.

    Сколько проводов мне нужно в проводе?

    Мы бы хотели рассказать вам, но ответить на этот вопрос было бы все равно, что посмотреть в хрустальный шар и мгновенно превратить ATL в единорога, но мы не знаем вашего дела – и, к сожалению, у нас нет хрустального шара. На самом деле все зависит от того, для чего вам нужно устройство или продукт.

    Обычный провод, о котором знает большинство из нас, – это провода, проходящие через наши дома. Этот провод имеет три проводника: горячий, нейтральный и заземляющий. Производимые сегодня провода варьируются от одного проводника до буквально сотен проводников.

    В качестве примера давайте обсудим анатомию кабеля USB 3.0. В состав этого кабеля входят следующие жилы:

    • 2 силовых проводника от 20 до 28 AWG

    • 1 комплект неэкранированной витой пары 28-34 AWG

    • 2 комплекта экранированных витых пар от 26 до 34 AWG

    • 1 дренажный провод

    Всего для изготовления кабеля USB необходимо девять проводников (мы обычно описываем этот кабель как 8 проводников и заземляющий провод, даже несмотря на то, что дренажный провод технически также является проводником).Любому устройству может потребоваться меньше или значительно больше – все зависит от того, для чего вам нужен разъем.

    Мы только поцарапали поверхность компонентов провода. Это первый из четырех компонентов, в которых разбираются компоненты проводной сети и то, что нам, в ATL, необходимо для создания лучшего коннектора для вашего приложения.

    Следующая запись в серии: Изоляция

    * W&M Wire Gauge, US Steel Wire Gauge и Music Wire Gauge – разные системы

    Переоценка требований к прозрачным проводникам для тонкопленочных солнечных элементов

    Потребности в тонкопленочных солнечных элементах являются важной движущей силой в исследованиях прозрачных проводников, что делает жизненно важным правильное понимание этих требований.Здесь мы демонстрируем, что часто цитируемая потребность в сопротивлении листа менее 10 Ом sq −1 возникает только тогда, когда добавление металлической сетки невозможно, и для ячеек определенного размера. Кроме того, мы показываем, что характеристики высокопрозрачного слоя с металлической сеткой обычно лучше, чем у однослойного, удовлетворяющего требованию 10 Ω sq -1 без сетки. Чтобы прояснить эти вопросы, мы вводим простые меры производительности электродов, которые напрямую соответствуют эффективности ячейки.Эти специализированные показатели качества могут применяться к электродам с металлической сеткой или без нее, а также к электродам, встроенным в тандемную ячейку, где хорошие характеристики электродов часто являются обязательными. Для сравнения мы показываем, что отношение постоянного тока к оптической проводимости, наиболее широко используемый показатель качества для прозрачных проводников, является плохим показателем характеристик солнечного элемента. Наша совместная работа мотивирует разработку масштабируемых методов включения тонких металлических проводов в электроды на лицевой стороне и исследования прозрачных проводников, в которых прозрачность важнее сопротивления листа.

    Эта статья в открытом доступе

    Подождите, пока мы загрузим ваш контент… Что-то пошло не так.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *