Содержание

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия

Электрический зарядэто физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных.
    Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const 

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

 

Силы взаимодействия подчиняются третьему закону Ньютона:Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис.  4.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы

основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

 

где – электрическая постоянная. 

Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

 

Напряженность электрического поля – векторная физическая величина. Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

 

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис.  4.2.1). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

HРабота поля по замкнутому полю равна 0

Ai=q*e*di*cosα

A=0, то поле потенциальное.

Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Понятие потока вектора аналогично понятию потока вектора скорости при течении несжимаемой жидкости. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 4.3.1):

ΔΦ = EΔS cos α = EnΔS,

где – модуль нормальной составляющей поля  

1

Рисунок 4.3.1.

К определению элементарного потока ΔΦ.

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 4.3.2):

 

В случае замкнутой поверхности всегда выбирается внешняя нормаль.

2

Рисунок 4.3.2.

Вычисление потока Ф через произвольную замкнутую поверхность S.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 4.3.5).

5

Рисунок 4. 3.5.

Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда, то есть заряд, приходящийся на единицу площади. 

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

 

Электрический заряд – это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·10

9H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др. -греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрический заряд – это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др. -греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрический заряд – это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрические заряды

Если потереть стеклянную палочку о лист бумаги, то палочка приобретёт способность притягивать к себе листочки «султана» (см. рис. 1.1), пушинки, тонкие струйки воды. При расчёсывании сухих волос пластиковой расчёской волосы притягиваются к расчёске. В этих простых примерах мы встречаемся с проявлением сил, которые получили название электрических.

Рис. 1.1. Притягивание листочков «султана» наэлектризованной стеклянной палочкой.

Тела или частицы, которые действуют на окружающие предметы электрическими силами, называют заряженными или наэлектризованными. Например, упомянутая выше стеклянная палочка после того, как её потереть о лист бумаги, становится наэлектризованной.

Частицы имеют электрический заряд, если они взаимодействуют друг с другом посредством электрических сил. Электрические силы уменьшаются с увеличением расстояния между частицами. Электрические силы во много раз превышают силы всемирного тяготения.

Электрический заряд – это физическая величина, которая определяет интенсивность электромагнитных взаимодействий. Электромагнитные взаимодействия – это взаимодействия между заряженными частицами или телами.

Электрические заряды делятся на положительные и отрицательные. Положительным зарядом обладают стабильные элементарные частицы – протоны и позитроны, а также ионы атомов металлов и т.д. Стабильными носителями отрицательного заряда являются электрон и антипротон.

Существуют электрически незаряженные частицы, то есть нейтральные: нейтрон, нейтрино. В электрических взаимодействиях эти частицы не участвуют, так как их электрический заряд равен нулю. Бывают частицы без электрического заряда, но электрический заряд не существует без частицы.

На стекле, потёртом о шёлк, возникают положительные заряды. На эбоните, потёртом о мех – отрицательные заряды. Частицы отталкиваются при зарядах одинаковых знаков (одноимённые заряды), а при разных знаках (разноимённые заряды) частицы притягиваются.

Все тела состоят из атомов. Атомы состоят из положительно заряженного атомного ядра и отрицательно заряженных электронов, которые движутся вокруг ядра атома. Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц – нейтронов. Заряды в атоме распределены таким образом, что атом в целом является нейтральным, то есть сумма положительных и отрицательных зарядов в атоме равна нулю.

Электроны и протоны входят в состав любого вещества и являются наименьшими устойчивыми элементарными частицами. Эти частицы могут неограниченно долго существовать в свободном состоянии. Электрический заряд электрона и протона называется элементарным зарядом.

Элементарный заряд – это минимальный заряд, которым обладают все заряженные элементарные частицы. Электрический заряд протона равен по абсолютной величине заряду электрона:

е = 1,6021892(46) * 10-19 Кл
Величина любого заряда кратна по абсолютной величине элементарному заряду, то есть заряду электрона. Электрон в переводе с греческого electron – янтарь, протон – от греческого protos – первый, нейтрон от латинского neutrum – ни то, ни другое.

Проводники и диэлектрики

Электрические заряды могут перемещаться. Вещества, в которых электрические заряды могут свободно перемещаться, называются проводниками. Хорошими проводниками являются все металлы (проводники I рода), водные растворы солей и кислот – электролиты (проводники II рода), а также раскалённые газы и другие вещества. Тело человека также является проводником. Проводники обладают высокой электропроводностью, то есть хорошо проводят электрический ток.

Вещества, в которых электрические заряды не могут свободно перемещаться, называются диэлектриками (от английского dielectric, от греческого dia – через, сквозь и английского electric – электрический). Эти вещества также называют изоляторами. Электропроводность диэлектриков очень мала по сравнению с металлами. Хорошими изоляторами являются фарфор, стекло, янтарь, эбонит, резина, шёлк, газы при комнатных температурах и другие вещества.

Разделение на проводники и изоляторы условно, так как проводимость зависит от различных факторов, в том числе от температуры. Например, стекло хорошо изолирует только в сухом воздухе и становится плохим изолятором при большой влажности воздуха.

Проводники и диэлектрики играют огромную роль в современном применении электричества.


Электрический заряд: положительный, отрицательный. Элементарный, дискретность, электрон, протон, точечный. Модель атома. Закон сохранения

Тестирование онлайн

  • Электрический заряд. Основные понятия

Электрический заряд

Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.

Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством элементарных частиц. Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, – отрицательным.

Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).

.

Носителем отрицательного заряда является электрон, положительного – протон. Нейтрон – нейтральная частица, не имеет заряда.

Величина элементарного заряда – электрона или протона, имеет постоянное значение и равна

Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом. А если присоединится один электрон лишний – получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.

Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.

Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).

Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим – это свойство называется дискретностью

Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) – притягиваются

Точечный заряд – это материальная точка, которая имеет электрический заряд.

Закон сохранения электрического заряда

Замкнутая система тел в электричестве – это такая система тел, когда между внешними телами нет обмена электрическими зарядами.

Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.

На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.

В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.

Главное запомнить

1) Элементарный электрический заряд – электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда

Урок 26. электрический заряд. закон кулона – Физика – 10 класс

Физика, 10 класс

Урок 26. Электрический заряд. Закон Кулона

Перечень вопросов, рассматриваемых на уроке:

1) электродинамика;

2) электризация;

3) два рода зарядов;

4) закон Кулона;

5) применение электризации;

6) вредные действия электризации.

Глоссарий по теме:

Электродинамика это наука о свойствах и закономерностях поведения особого вид материи – электромагнитного поля, осуществляющего взаимодействие между электрически заряженными телами или частицами.

Электрический заряд – физическая величина, характеризующая электрические свойства частиц.

Элементарный заряд – заряд электрона (или протона).

Электрон – частица с наименьшим отрицательным зарядом.

Электризация – явление приобретения телом заряда.

Кулоновская силасила взаимодействия зарядов

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 277 – 282.

2. Тульчинский М.Е. Сборник качественных задач по физике. – М.: Просвещение, 1965. С.81.

3. Алексеева М. Н. Физика юным. – М.: Просвещение, 1980. С. 68-78.

Теоретический материал для самостоятельного изучения

Элементарные частицы – это мельчайшие частицы, которые не делятся на более простые, из которых состоят все тела.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд, а частицы называются заряженными.

Взаимодействие заряженных частиц называется электромагнитным.

Заряды одного знака отталкиваются друг от друга, а разного знака – притягиваются.

При электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

При электризации тел выполняется закон сохранения электрического заряда:

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

Заряженные тела, размерами и формой которых можно пренебречь при их взаимодействии, называются точечными зарядами.

Силу взаимодействия зарядов называют кулоновской силой.

Сила, с которой взаимодействуют заряды, прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона:

где – это электрическая постоянная.

– заряд электрона

– заряд протона

Единица измерения электрического заряда – Кулон.

Заряд в 1 Кл очень велик. Сила взаимодействия двух точечных зарядов по1 Кулон каждый, расположенных на расстоянии 1 км друг от друга, чуть меньше силы, с которой Земля притягивает груз массой 1т.

Примеры и разбор решения заданий:

1. Два заряда q1 и q2 взаимодействуют в вакууме с силой F. Если заряд каждой частицы увеличить в два раза и расстояние между ними уменьшить в два раза, то как изменится сила их взаимодействия?

Решение:

Используя закон Кулона можем рассчитать, что сила взаимодействия между зарядами увеличится в 16 раз.

2. Два шарика, расположенные на расстоянии 10 см друг от друга, имеют одинаковые отрицательные заряды и взаимодействуют с силой 0,23 мН. Найти число избыточных электронов на каждом шарике.

Решение:

Число избыточных электронов:

Сила взаимодействия между двумя заряженными шариками:

Отсюда выражаем заряд шарика:

Заряд электрона равен e =|-1,6·10-31| Kл

Вычисления:

Ответ: .

Что такое заряд (электрический заряд)?

В физике заряд, также известный как электрический заряд, электрический заряд или электростатический заряд и обозначаемый q , является характеристикой единицы вещества, которая выражает степень, в которой у нее больше или меньше электронов, чем протонов. В атомах электрон несет отрицательный элементарный или единичный заряд; протон несет положительный заряд. Эти два типа заряда равны и противоположны.

В атоме вещества электрический заряд возникает всякий раз, когда количество протонов в ядре отличается от количества электронов, окружающих это ядро.Если электронов больше, чем протонов, атом имеет отрицательный заряд. Если электронов меньше, чем протонов, атом имеет положительный заряд. Количество заряда, переносимого атомом, всегда кратно элементарному заряду, то есть заряду, переносимому одним электроном или одним протоном. Говорят, что частица, атом или объект с отрицательным зарядом имеют отрицательную электрическую полярность; считается, что частица, атом или объект с положительным зарядом имеют положительную электрическую полярность.

В объекте, состоящем из многих атомов, чистый заряд равен арифметической сумме зарядов всех атомов вместе взятых с учетом полярности.В массивном образце это может составлять большое количество элементарных зарядов. Единицей электрического заряда в Международной системе единиц является кулон (обозначенный буквой C), где 1 Кл приблизительно равен 6,24 x 10 18 элементарных зарядов. В реальных объектах нет ничего необычного в том, что они содержат заряды в множество кулонов.

Электрическое поле, также называемое электрическим полем или электростатическим полем, окружает любой заряженный объект. Напряженность электрического поля на любом заданном расстоянии от объекта прямо пропорциональна количеству заряда на объекте.Вблизи любого объекта, имеющего фиксированный электрический заряд, напряженность электрического поля уменьшается пропорционально квадрату расстояния от объекта (то есть подчиняется закону обратных квадратов).

Когда два объекта, обладающие электрическим зарядом, подносятся друг к другу, между ними возникает электростатическая сила. (Эту силу не следует путать с электродвижущей силой, также известной как напряжение.) Если электрические заряды имеют одинаковую полярность, электростатическая сила является отталкивающей.Если электрические заряды имеют противоположную полярность, электростатическая сила притягивается. В свободном пространстве (в вакууме), если заряды двух соседних объектов в кулонах равны q 1 и q 2 и центры объектов разделены расстоянием r в метрах, Чистая сила F между объектами в ньютонах определяется по следующей формуле:

F = ( q 1 q 2 ) / (4 o r 2 )

, где o – диэлектрическая проницаемость свободного пространства, физическая константа, и – отношение длины окружности к ее диаметру, безразмерная математическая константа.Положительная результирующая сила отталкивает, а отрицательная результирующая сила притягивает. Это соотношение известно как закон Кулона.

Электрический заряд – образование в области энергетики

Рис. 1. Рисунок, изображающий внешний вид атома. Электрон имеет отрицательный заряд. Ядро содержит протоны с положительным зарядом и нейтроны с нейтральным зарядом. Обратите внимание, насколько большую площадь занимает электронное облако по сравнению с ядром. [1]

Электрический заряд , или для краткости заряд , является фундаментальным физическим свойством, которое заставляет объекты чувствовать силу притяжения или отталкивания по отношению друг к другу.Основная единица заряда – кулон (Кл). Есть два типа заряда: положительный заряд (проявляемый протонами) и отрицательный заряд (проявляемый электронами). Закон Кулона описывает электрические силы между заряженными частицами; если заряды движутся, электромагнитная сила усложняется.

Движение или поток заряженных частиц – это то, что производит электричество и магнетизм. Фактически, движущийся поток электрического заряда – это электрический ток. Это движение заряда может быть вызвано относительным движением магнита и катушки с проволокой – это основная конструкция электрических генераторов.

Когда количество электронов в атоме не равно количеству протонов, считается, что атом имеет чистый заряд. Заряды складываются точно так же, как положительные и отрицательные числа, поэтому заряд +1 в точности отменяет заряд -1. Вот почему положительные и отрицательные числа используются для обозначения заряда, а заряды отменяются так же, как положительные и отрицательные числа. Когда конкретный атом имеет чистый заряд, этот атом называется ионом (на странице с ионами есть симуляция PhET об этом). Процесс добавления или снятия заряда с атома называется ионизацией, а когда это делается с помощью излучения, это называется ионизирующим излучением.

Заряд также можно отделить от атомов (в результате чего образовалось некоторое количество ионов) путем трения друг с другом материалов разных типов. Это то, что создает электрическое поле вокруг воздушного шара, который натерли о чьи-то волосы или полотенце. По этой же причине статическое электричество накапливается на одежде, которая валялась в сушилке для одежды. Ниже представлена ​​симуляция PhET разделения заряда трением.

Чтобы узнать больше о зарядке, см. Гиперфизику.

Моделирование PhET заряда от трения

Университет Колорадо любезно разрешил нам использовать следующее моделирование PhET.Статическое электричество возникает в результате разделения положительного и отрицательного заряда посредством трения (это происходит в сушилке для одежды, поэтому необходимы листы для сушки). Чистые заряды вызывают электрическую силу; обратите внимание на поляризацию стены. Посмотрите анимацию PhET ниже, чтобы узнать, как это работает.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Ссылки

Что такое электрический заряд? | Живая наука

Большая часть электрического заряда переносится электронами и протонами внутри атома.Считается, что электроны несут отрицательный заряд, а протоны несут положительный заряд, хотя эти обозначения совершенно произвольны (подробнее об этом позже). Протоны и электроны притягиваются друг к другу, архетип клише «противоположности притягиваются», согласно веб-сайту HyperPhysics Университета Джорджии. И наоборот, два протона отталкиваются друг от друга, как и два электрона.

Протоны и электроны создают электрические поля, которые создают силу, называемую кулоновской силой, которая распространяется во всех направлениях.По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле излучается наружу от заряженной частицы так же, как свет излучается наружу от электрической лампочки. Так же, как и яркость света, напряженность электрического поля уменьшается пропорционально квадрату расстояния от источника (1/ r 2 ). Если вы отодвинетесь вдвое дальше, сила поля уменьшится до одной четвертой, а если вы переместитесь в три раза дальше, поле уменьшится до одной девятой.

Поскольку протоны обычно ограничены ядрами, заключенными внутри атомов, они не могут двигаться так же свободно, как электроны. Поэтому, когда мы говорим об электрическом заряде, мы почти всегда имеем в виду избыток или недостаток электронов. Когда существует дисбаланс зарядов и электроны могут течь, создается электрический ток.

Локальный и постоянный дефицит или избыток электронов в объекте вызывает статическое электричество. Ток может принимать форму внезапного разряда статического электричества, такого как молния или искра между вашим пальцем и заземленной пластиной выключателя света; устойчивый поток постоянного тока (DC) от батареи или солнечного элемента; или колебательный ток, например, от генератора переменного тока (AC), радиопередатчика или аудиоусилителя.

Электрическая вселенная

Мы обычно не знаем об электрическом заряде, потому что большинство объектов содержат равные количества положительного и отрицательного заряда, которые эффективно нейтрализуют друг друга, по словам Майкла Дубсона, профессора физики из Университета Колорадо в Боулдере. Обычно считается, что чистый заряд Вселенной нейтрален. Если бы соотношение положительного и отрицательного заряда было меньше всего в 10 – 40 900 10 раз, кулоновская сила была бы более мощной, чем гравитация, что сделало бы Вселенную совершенно отличной от той, которую мы наблюдаем, – сказал Дубсон Live Science.Тем не менее, некоторые исследователи, такие как Майкл Дюрен из Университета Юстуса Либиха в Гиссене в Германии, высказывали предположения о возможности электрически заряженной Вселенной.

Ранние исследования в области электричества

Положительные и отрицательные значения заряда были первоначально присвоены американским государственным деятелем и изобретателем Бенджамином Франклином, который начал изучать электричество в 1742 году. До тех пор большинство людей думали, что электрические эффекты являются результатом смешения двух различных электрических жидкости, одна положительная и одна отрицательная.Однако Франклин убедился, что существует только одна электрическая жидкость и что у объектов может быть избыток или недостаток этой жидкости. Поэтому, согласно данным Университета Аризоны, он изобрел термины «положительный» и «отрицательный» для обозначения избытка или недостатка соответственно.

Единицей измерения электрического заряда является кулон (C), названный в честь Шарля-Огюстена Кулона, французского физика XVIII века. Кулон разработал закон, гласящий, что «одинаковые заряды отталкиваются, а разные заряды притягиваются».«Кулон определяется как количество заряда, переносимого током в один ампер за одну секунду. Хотя это звучит как небольшая величина, согласно HyperPhysics,« два заряда в один кулон, каждый, разделенные метром, будут отталкивать друг друга с помощью силой около миллиона тонн! » Инженеры-электрики часто предпочитают использовать для заряда более крупную единицу заряда – ампер-час, который равен 3600 C.

Кулоновская сила – одна из двух фундаментальных сил, заметных в макроскопическом масштабе, вторая – сила тяжести.Однако электрическая сила намного сильнее гравитации. Кулоновская сила отталкивания между двумя протонами из-за их заряда в 4,1 × 10 42 раз сильнее, чем сила притяжения между ними из-за их массы. Это верно на любом расстоянии, поскольку расстояние сокращается с обеих сторон уравнения.

Насколько велико это число? Сравнение величины этих двух сил похоже на сравнение массы Земли с массой одной молекулы пенициллина! Однако гравитация по-прежнему доминирует во Вселенной в больших масштабах, потому что, в отличие от заряда, можно собрать большие количества массы.Большое скопление одинаково заряженных частиц невозможно из-за их взаимного отталкивания и их сродства к разным зарядам.

Другие свойства заряда

Электрический заряд квантуется, что означает, что он возникает в дискретных единицах. Протоны и электроны несут заряды размером ± 1,602 × 10 −19 C. Каждое накопление заряда является четным кратным этому числу, и дробные заряды не могут существовать. Квантовая хромодинамика (КХД) утверждает, что протоны и нейтроны состоят каждый из трех кварков с зарядами +2/3 или -1/3 от единичного заряда протона, и два кварка одного и один другой объединяются, чтобы сформировать частицы с зарядами ноль или +1 единица заряда.

Однако эти частицы не могут существовать отдельно. Всякий раз, когда вы пытаетесь разделить протон или нейтрон на составляющие его кварки, для этого требуется столько энергии, что энергия преобразуется в материю в соответствии со знаменитым уравнением Эйнштейна E = mc 2 , а вместо одиночный кварк, в итоге получается нейтрально заряженная кварк-антикварковая пара, называемая мезоном. Однако электроны считаются действительно фундаментальными, то есть их нельзя разделить на более мелкие части.

Электрический заряд – это сохраняемая величина. Это означает, что он не может быть создан или разрушен, а чистое количество электрического заряда во Вселенной постоянное и неизменное. Положительные и отрицательные заряды могут нейтрализовать друг друга, или нейтральные частицы могут расщепляться, образуя положительно и отрицательно заряженные пары частиц, но чистое количество заряда всегда остается неизменным.

Дополнительные ресурсы

Самый быстрый словарь в мире: Vocabulary.com

  • Электрический разряд, электрическая проводимость через газ в приложенном электрическом поле

  • электрический заряд количество несбалансированного электричества в теле (положительного или отрицательного), рассматриваемое как избыток или недостаток электронов

  • электрический разряд Разряд электричества

  • электрическая энергия энергия, предоставляемая потоком электрического заряда через проводник

  • электрическая дуга Проведение электрической дуги через газ в приложенном электрическом поле

  • электромонтажные работы ремесло электрика

  • электрический кабель кабель, обеспечивающий электрическое соединение для телефона или телевидения или электростанций

  • Электрический стул – орудие казни электрическим током

  • плита электрическая кухонная плита, в которой тепло для приготовления пищи обеспечивается за счет электроэнергии

  • электростатический заряд электрический заряд, покоящийся на поверхности изолированного тела (который создает и прилегающее к нему электростатическое поле)

  • электромобиль Автомобиль, работающий от электричества

  • электрогитара гитара, звук которой усиливается электрическими средствами

  • молоток электрический молоток с приводом от электродвигателя

  • электробритва бритва с электродвигателем

  • лампа электрическая разрядная электрическая лампа, в которой свет исходит от электрического разряда между двумя электродами в стеклянной трубке

  • электрокамин небольшой электрический обогреватель

  • шнур электрический световод бытовой

  • электрокардиограмма графическая запись сердечного цикла, производимая электрокардиографом

  • электрическая цепь: электрическое устройство, обеспечивающее путь для прохождения электрического тока

  • поражение электрическим током рефлекторная реакция на прохождение электрического тока через тело

  • Какое определение для электрического заряда

    Этот пост отвечает на вопрос «Что такое электрический заряд?».Понятие заряда является основным для объяснения явлений электричества. Количество электричества , электрический заряд . Электрический заряд – это свойство вещества, которое вызывает силу при помещении в электромагнитное поле. Заряд измеряется кулонами (С).

    Электрический ток – это поток электрического заряда. Электрический ток в металлах – это поток отрицательно заряженных частиц (электронов). Протоны и нейтроны – положительно заряженные частицы. Ток – это векторный параметр, имеющий собственное направление.Вообще говоря, электрический ток – это движение как отрицательных, так и положительных зарядов в противоположных направлениях. Однако предполагается, что направление тока должно быть в направлении потока положительного заряда и противоположно направлению потока электронов. Величина тока – это количество электрического заряда, который проходит через поперечное сечение проводника за определенный момент времени.

    я = dqdtA

    Следовательно, математическая формула, выражающая заряд, который проходит по поверхности металла в течение периода времени t0 – t , имеет следующий вид:

    Q = ∫ttoi * dt, C

    Электрический ток измеряется в амперах (А) и обозначается буквой I.Электрический заряд Q измеряется в куоломбах (Кл) или в амперах в секунду (А / сек), время – t измеряется в секундах.

    Хорошо известно, что электроны – это частицы, создающие электрический ток. Электрон несет заряд 1,602 * 10–19C.

    Ток может быть постоянным и альтернативным. Постоянный ток (DC), остается постоянным. Переменный ток (AC) меняется со временем.

    Дополнительные образовательные и технические сообщения вы можете прочитать в нашем сообществе Reddit r / ElectronicsEasy .

    # 3 Напряжение питания Теги: электрический зарядэлектрический ток

    Факты об электрическом заряде для детей

    Электрический заряд – это основное свойство электронов, протонов и других субатомных частиц. Электроны заряжены отрицательно, а протоны – положительно. Вещи, заряженные отрицательно, и предметы, заряженные положительно, притягивают (притягивают) друг друга. Это заставляет электроны и протоны слипаться, образуя атомы.Вещи с одинаковым зарядом отталкивают друг друга (они отталкивают друг друга ). Это называется «Закон о сборах » . Его открыл Шарль-Огюстен де Кулон. Закон, который описывает, насколько сильно заряды притягивают и толкают друг друга, называется законом Кулона.

    Вещи с равным числом электронов и протонов нейтральны . Вещи, в которых электронов больше, чем протонов, заряжены отрицательно, а предметы с меньшим количеством электронов, чем протоны, заряжены положительно.Вещи с одинаковым зарядом отталкивают друг друга. Вещи с разным зарядом притягиваются друг к другу. Если возможно, тот, у которого слишком много электронов, даст достаточно электронов, чтобы соответствовать количеству протонов в том, у которого слишком много протонов для его загрузки электронами. Если электронов достаточно, чтобы соответствовать дополнительным протонам, то эти две вещи больше не будут притягивать друг друга. Когда электроны перемещаются из места, где их слишком много, в место, где их слишком мало, это называется электрическим током.

    Когда человек шаркает ногами по ковру, а затем касается латунной дверной ручки, он может получить удар электрическим током. Если имеется достаточно дополнительных электронов, тогда силы, с которой эти электроны отталкивают друг друга, может быть достаточно, чтобы заставить некоторые электроны перепрыгнуть через зазор между человеком и дверной ручкой. Длина искры является мерой напряжения или «электрического давления». Количество электронов, которые перемещаются из одного места в другое за единицу времени, измеряется как сила тока или «скорость потока электронов».«

    Если человек получает положительный или отрицательный заряд, это может заставить его волосы встать дыбом, потому что заряды в каждом волосе отталкивают их от других.

    Электрический заряд, ощущаемый при ударе дверной ручкой или другим предметом, обычно составляет от 25 до 30 тысяч вольт. Однако электрический ток протекает непродолжительное время, поэтому поток электронов через тело человека не причиняет физического вреда. С другой стороны, когда облака накапливают электрические заряды, они имеют еще более высокое напряжение, а сила тока (количество электронов, которые будут течь при ударе молнии) может быть очень высокой.Это означает, что электроны могут прыгать с облака на землю (или с земли на облако). Если эти электроны проходят через человека, поражение электрическим током может вызвать ожог или смерть.

    Исторический эксперимент

    Следующий эксперимент описан Джеймсом Клерком Максвеллом в его работе Трактат об электричестве и магнетизме (1873). Обычно стекло и смола заряжены нейтрально. Однако, если их потереть друг о друга, а затем разделить, они смогут притягиваться друг к другу.

    Если протереть второй кусок стекла вторым куском смолы, будут видны следующие вещи:

    1. Два куска стекла отталкиваются друг от друга.
    2. Каждый кусок стекла притягивает каждый кусок смолы.
    3. Два куска смолы отталкиваются друг от друга.

    Если соединить заряженный и незаряженный предметы, притяжение будет очень слабым.

    Тела, которые могут притягивать или отталкивать предметы таким образом, называются «наэлектризованными» или «заряженными электричеством».Когда два разных вещества трутся друг о друга, возникает электрический заряд, потому что одно из них отдает электроны другому. Причина в том, что атомы в двух веществах обладают неодинаковой способностью притягивать электроны. Таким образом, тот, который более способен притягивать электроны, будет забирать электроны у того, у которого сила притяжения ниже. Если стекло трется о что-то еще, оно может отдавать или принимать электроны. Что произойдет, зависит от другого.

    Вещи, которые приняли электроны, называются «отрицательно заряженными», а вещи, которые потеряли электроны, называются «положительно заряженными».Для этих названий нет особой причины. Это просто произвольное (случайный выбор) соглашение (соглашение).

    Помимо того, что тела наэлектризованы трением, тела могут быть наэлектризованы многими другими способами.

    Связанные страницы

    Картинки для детей

    • Весы кулоновские

    Электрический заряд | Факты, резюме и определение

    Основная информация и резюме

    • Электрический заряд – это физическое свойство материи, которое заставляет объекты испытывать силу, когда они помещаются в электрическое поле
    • Протоны несут положительный заряд, а электроны – отрицательный
    • Ион – это атом, который приобрел или потерял электроны
    • Кулоны – единицы заряда
    • Общее количество электрического заряда всегда сохраняется в изолированной системе

    Что такое электрический заряд?

    Проще говоря, электрический заряд является физическим свойством материи – он заставляет материю испытывать силу , когда она находится в электромагнитном поле .Есть два типа электрических зарядов:

    1. Положительный заряд , который переносят субатомные частицы, называемые протонами
    2. Отрицательный заряд , который переносят субатомные частицы, называемые электронами

    Нейтроны – это субатомные частицы с без заряда . Заряды, которые являются одинаковыми, отталкивают друг друга, а заряды, которые являются разными, притягивают друг друга.

    Если что-то содержит и такое же количество протонов и электронов , это считается нейтральным в целом.Что-то с на больше протонов имеет чистый положительный заряд, и, как таковое, что-то с электронами больше имеет чистый отрицательный заряд .

    Что такое ион?

    Ион – это атом, который совершил одно из двух:

    • Потерян один или несколько электронов и, следовательно, теперь чистый положительный заряд равен – это называется катионом

    или

    • Получил один или несколько электронов и, следовательно, теперь имеет чистый отрицательный заряд – это называется анионом

    Это поясняется на изображении ниже.

    Как обсуждалось ранее, разные обвинения притягиваются друг к другу. По этой причине катионов и анионов притягиваются друг к другу с образованием ионных соединений .

    Ионы, образованные из одного атома , называются одноатомными ионами . Ионы, образованные из двух или более атомов , называются многоатомными ионами . Есть несколько специальных имен для определенных ионов, которые имеют множественных зарядов :

    • Ион с зарядом -2 называется дианионом
    • Ион с зарядом +2 называется дикцией
    • Ион с как положительными, так и отрицательными зарядами в одной и той же молекуле (например, аминокислотах) называется цвиттерионами

    Единицы заряда

    Единица заряда называется кулоном и обозначается C .Чаще всего его определяют как количество заряда, которое проходит через поперечное сечение электрического проводника, несущего один ампер за одну секунду. 1 кулон – количество заряда в 6,24 x 10 18 электронов .

    Количество заряда, которое имеет объект, может быть , измеренное с помощью кулонметра . Также можно использовать нанокулонметр , который может измерять электростатический заряд вплоть до нанокулонов.

    Закон Кулона

    Закон Кулона , попросту говоря, гласит, что по мере увеличения расстояния между двумя заряженными объектами силы и электрических полей уменьшаются .Кроме того, чем больше зарядов на объектах, тем больше силы между ними. Это показано на схеме ниже.

    Это связано с тем, что электрические заряды образуют электрическое поле – это в основном показывает направление, в котором будет двигаться частица с положительным зарядом, когда ее помещают в электрическое поле. Если два из этих полей существуют в одном и том же месте в одно и то же время (например, когда отрицательно заряженная частица и положительно заряженная частица находятся рядом друг с другом), они будут воздействовать друг на друга силой .Это хорошо показано на изображении ниже – вы сможете увидеть, как положительно заряженные частицы и отрицательно заряженные частицы взаимодействуют друг с другом.

    Вы должны помнить, что этот закон распространяется только на стационарные заряды и был утвержден для расстояний до нескольких километров. Ученые, однако, до сих пор не уверены, справедлив ли этот закон для расстояний менее 10 -15 м.

    Сохранение электрического заряда

    Сохранение – это принцип, согласно которому общее количество электрического заряда в изолированной системе не будет никогда не изменится .Это означает, что чистое количество заряда (то есть положительный заряд минус отрицательные заряды) Вселенной всегда будет оставаться неизменным – это будет сохраненных .

    Консервация – это не то же самое, что сказать, что положительные и отрицательные заряды не могут быть созданы (и, следовательно, также уничтожены). Это просто означает, что в реакциях создается равных количеств положительных и отрицательных частиц , что, таким образом, помогает поддерживать чистое количество заряда на том же уровне . То же самое и с частицами, которые разрушаются.

    Таким образом, считается, что чистый заряд Вселенной равен нулю – это означает, что количества как положительных, так и отрицательных зарядов во Вселенной одинаковы.

    Электрический потенциал

    Электрические силы и электрические поля оба являются векторами – это означает, что они имеют величину и направление . Электрический потенциал имеет только звездную величину .

    Электрическая потенциальная энергия – это свойство заряженного объекта.Если есть заряженный объект в определенном месте , говорят, что этот объект имеет электрическую потенциальную энергию.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *