Содержание

Что можно сделать из мотора от микроволновой печи


Большое количество отработанных микроволновых печей без труда можно найти на любой свалке. Одной из ценных деталей, которую можно извлечь из микроволновки является двигатель привода тарелки.
Это синхронный электродвигатель на 220 В с редуктором внутри корпуса. На его базе можно смастерить много самоделок и четыре идея будет приведено ниже.
Если у вас нет данного мотора в наличии, то его просто приобрести на Алиэкспресс за небольшую цену.

Карманный генератор на 220 В


Из этого двигателя можно сделать полностью полноценный генератор переменного тока на 220 В. С помощью него можно зажечь светодиодную лампу, зарядить мобильник и т.п.

Делается элементарно: к крестовине, на которой лежит тарелка в микроволновке, прикручивается рычаг. В данном случае это корпус канцелярского ножа. На конце рычага из болта сделана ручка для вращения.
Устанавливаем крестовину на мотор, вращаем ручку. Скорости большой не требуется. К выводам подключается любая нужная нагрузка.

Гравитационный генератор


Данный генератор пригоден для освещения на непродолжительное время.

Суть его такова: на вал двигателя от микроволновой печи наматывается веревка. На конце привязана бутылка с водой, которая служит грузом.
Отпускаем бутылку и она постепенно опускается вниз, веревка разматывается из-за того что вал вращается.
Нагрузкой служит светодиодная лампа. Время свечения такого генератора зависит от длины веревки. Примерно 30 секунд.

Вращающаяся подставка


Сделать качественную фотосессию «3D», видео кругового обзора товара, тортов, вещей не возможно без вращающейся подставки. Сделать ее можно просто на базе электродвигателя и двух круглых подставок из дерева.
В одну вкручивается мотор.

А другая лежит сверху и упирается на вал движка.

Вращается все очень плавно, все как надо.

Привод для гриля


Автоматическое приготовление курочки-гриль на костре будет в разы проще с этим приводом, который можно сделать из мотора от микроволновки.

Никаких подшипников не требуется. Шампур имеет две опоры по сторонам, к одной из которых подключен электродвигатель для вращения.

Смотрите видео


что можно сделать из моторчика?

С каждым днем создание чего-то своими руками становится все популярнее. Так почему бы и не сотворить особенную вещь, когда всё располагает к этому? В то время, когда женщины усердно занимаются вышивкой, шитьем, вязанием, квиллингом, мужчинам остается только мастерить, чинить, совершенствовать.

Что сделать из моторчика?

Некоторые детали в поломанной и непригодной для дальнейшего использования технике можно применять в домашних условиях. Довольно часто у мужчин возникает вопрос о том, что можно сделать из моторчика. На самом деле вариантов очень много, главное – терпение, умение работать с техникой и воображение.

Как один из вариантов, можно сделать отличный вентилятор из моторчика. Также из этой детали люди делают машинки, вертолеты и другие интересные вещи. Все, что нужно для полноценной работы (особенно новичкам), – это специальные электронные схемы и радиозапчасти. Конечно же, не обойтись в этом деле без веры в себя и терпения. Не факт, что всё получится с первого раза, но если постараться, результат будет долгое время радовать мастера.

Вертолет из моторчика

Определившись с тем, что можно сделать из моторчика, стоит задуматься о том, как создается эта вещь. В магазинах продаются специальные схемы и запчасти, которые помогут справиться с этой нелегкой задачей и разобраться в мелочах. Иногда даже в голове не укладывается, как сделать вертолет из моторчика, но на самом деле всё очень просто, нужно лишь уделить этому делу должное внимание.

Итак, чтобы сделать солидный вертолет, необходимо запастись следующими материалами: моделями с чертежами, инструментами, моторчиком, клеем, блоком питания и пультом управления. Если корпус уже готов, то остается лишь поместить в него моторчик и соединить с пультом управления. После этого необходимо попытаться запустить вертолет, и тогда станет ясно, готов он к использованию или имеет некоторые неполадки, которые нужно устранять. В случае возникновения трудностей с подсоединением проводов лучше обратиться к знающему человеку, иначе детали могут повредиться.

Мужчины часто интересуются тем, что можно сделать из моторчика, кроме вертолета. Рассмотрим еще один вариант.

Машинка из моторчика

Сделать машинку из моторчика очень просто. Для этого нужны схемы и платы, которые продаются в специальных магазинах. После приобретения всего необходимого можно приступать к делу. Существует два варианта изготовления машинки: корпус можно сделать самостоятельно либо купить готовый, который облегчит работу мастера. Приобретая набор, человек получает детали автомобиля, колеса, проводки, запчасти, пульт управления и сам моторчик (если такового не имеется). Стоит отметить, что это будет стоить дороже, чем купить обычную готовую машинку, но и от самого процесса можно получить огромное удовольствие.

Таким образом, совершенно очевидно, как сделать из моторчика машинку – достаточно лишь приобрести готовый корпус и поместить туда главную деталь автомобиля. Не стоит забывать о пульте управления, который нужно качественно подсоединить к игрушке. В итоге человек получит самодельную машинку, которая будет круче любой покупной. Кроме того, ее можно усовершенствовать, перекрасить и оформить так, как душе угодно.

Помимо всего вышеперечисленного, прелесть изготовления машинки из моторчика заключается в том, что ребенок непременно оценит все усилия родителя, после чего будет безмерно счастлив. Соорудить чудо-автомобиль можно вместе с детьми. Это очень занимательное и интересное занятие. Рассмотрим, что можно сделать из моторчика еще.

Вентилятор

Самоделы (именно так называют себя некоторые мужчины) постоянно пытаются впитать как можно больше новой информации, чтобы смастерить что-то новенькое. Совершенно неудивительно, что они интересуются тем, как сделать вентилятор из моторчика. Для успешного проведения этой операции понадобится главная деталь конструкции, аккумулятор, гильза, колба и две старые болванки.

Вначале используются болванки (разрезаются по радиусу), затем аккуратно с применением огня нужно загнуть лопасти. Для дальнейшего этапа работы прекрасно подойдет пробка от шампанского, которую нужно натянуть на ось моторчика. После этого к ней необходимо прикрепить лопасти и соорудить подставку для вентилятора. К последней будет приклеен моторчик и все остальные детали. Вот такой легкий и интересный способ сделать вентилятор.

Заключение

Таким образом, совершенно очевидно, что можно сделать из моторчика множество потрясающих вещей. Главное – желание и терпение. Кроме того, не стоит недоверчиво относиться к фантазии и интуиции. Не нужно бояться испортить изделие! Новичкам посоветуем использовать старые ненужные вещи (как в случае с вентилятором). Экспериментируйте, всё у вас получится!

КАК СДЕЛАТЬ НАСОС ИЗ МОТОРЧИКА

Родилась идея сделать самому мини фонтанчик. Сама конструкция фонтана – это отдельная история, а в этой статье пойдет речь о том, как сделать насос для циркуляции воды своими руками. Эта тема не нова и уже не раз описывалась в интернете. Я лишь показываю свое воплощение в жизнь этой конструкции. Если кому лень делать, то такие насосы продаются на Алиэкспресс в районе 400р (цена на февраль 2016).

Итак, приступим. В качестве корпуса был использован пузырек от каплей для носа. Кому интересно, буду писать размеры некоторых деталей. Так вот, внутренний диаметр пузырька 26,6 мм, глубина 20 мм. В нем с задней стороны сверлится отверстие чуть больше, чем диаметр вала двигателя, а сбоку отверстие для  выхода воды (диаметром 4 мм). К нему сначала на суперклей, а потом на термоклей крепится трубка, по которой впоследствии будет подниматься вода на вершину фонтана. Ее диаметр 5 мм.

Также нам понадобится передняя крышка. В ней по центру просверлил отверстие 7 мм. Все корпус готов.

Далее приступаем к внутренностям. В качестве основы крыльчатки была использована шестерня с самого двигателя. Ее приклеил на основание, вырезанное из коробки «tic tac».

В основании сверлится отверстие для вала. Диаметр основания, сами понимаете, должен быть меньше, чем диаметр корпуса. У меня примерно 25 мм. По сути, оно вообще не нужно и используется только для прочности. Сами лопасти можно увидеть на фото. Сделаны из той же коробки и обрезаны по диаметру основания. Клеил все суперклеем.

Приводить во вращение крыльчатку будет двигатель. Вынут был, скорее всего, из какой-то игрушки. Параметров его не знаю, поэтому напряжение больше 5 В не поднимал. Главное чтобы двигатель был «пошустрее».

Пробовал другой со скоростью 2500 об/мин, так он очень низко поднимал столб воды. Далее нужно все собрать и хорошо загерметизировать.

А теперь испытания. При питании 3 В ток потребления 0,3 А в режиме нагрузки (то есть погруженный в воду), при 5 В – 0,5 А. Высота подъема столба воды при 3 В составляет 45 см (округлил в меньшую сторону).

В таком режиме его оставил в воде на час.

Испытание выдержал нормально. Как долго он прослужит – это хороший вопрос, на который ответить сможет только время. При питании 5 вольт вода поднимается на высоту 80 см. Все это можно увидеть на видео.

Видеоролик

Отдельно по поводу шума. На суше его довольно таки хорошо слышно. Под водой при 3 В в полной тишине совсем немного различим шум насоса. За журчащей водой его совсем не слышно. Так что можно сделать вывод, что для фонтана, да и для других похожих конструкций, он вполне подходит. С вами был SssaHeKkk.

   Форум

   Форум по обсуждению материала КАК СДЕЛАТЬ НАСОС ИЗ МОТОРЧИКА



УСИЛИТЕЛЬ НЧ НА 200 ВАТТ

Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.


УСИЛИТЕЛЬ К ЭЛЕКТРОГИТАРЕ

Высококачественный усилитель для электрогитары – полное руководство по сборке и настройке схемы на JFET и LM386.




Ремонт электромоторчиков для игрушек. Как починить электрический мини моторчик.

Видео по этой теме:

Нередко случается так, что игрушка, моделька, которая работает от электрического моторчика ломается, и неисправным оказывается именно электромоторчик. Что делать если такое случилось, как подчинить маленький электродвигатель самому? Задача это в принципе не сложная. Обычно ломаются в таких двигателях наиболее уязвимые части. Давайте же в этой статье посмотрим, какими бывают основные неисправности в этих мини электрических моторах, и что делать при обнаружении той или иной поломки, дефекта.

Итак, ремонт электромоторчиков для игрушек начинается с нахождение конкретной неисправности. Самой распространённой поломкой таких моторов является место контакта щеток и контактного барабана ротора (движущейся части электродвигателя). Именно эти самые щётки со временем стираются, подгибаются, отходят на некоторое расстояние (не доставая до ротора мини моторчика). После снятие крышки у электромотора сначала смотрим на состояние этих щёток (в моторчиках для игрушек они сделаны из металла, реже из графита). Если видим, что явно с этими щетками что-то не в порядке, исправляем дефект.

Также электромоторчик для игрушек может не работать если его контакты на контактном барабане ротора сильно сместились со своего нормального (ровного, равноудаленного) положения. Бывает даже, что они касаются друг друга, чего точно не должно быть (происходит замыкание обмоток электрического моторчика на роторе). Если это произошло, аккуратно подгибаем контакты на свое нормальное положение. Может быть так, что между этими контактами попался мусор, проводящий ток (маленький кусочек провода, металлическая стружка, притянутая постоянным магнитом и т. д.). Опять же будет короткое замыкание обмоток электромоторчика, что спровоцирует его неисправность. Если нашли мусор, удаляем его.

Менее распространенной, но всё же также встречаемой неисправностью бывает случаи, когда постоянный магнит (что стоит на статоре электромоторчика по сторонам, внутри) смещается относительно своего нормального положения. Это приводит к заклиниванию ротора электрического моторчика. Естественно нужно просто вытащить магнит и снова ровно поставить его на то место, где он должен быть. Такое встречается с новыми Китайскими моторчиками, поскольку в них постоянные магниты крепятся специальной пружиной, что при сильном ударе двигателя может просто вызвать смещение магнитов.

При ремонте электромоторчиков вы также можете обнаружить, что между щетками электродвигателя для игрушек и самыми выходными контактами (что выходят наружу мотора) нет электрического контакта. Он может быть прерван на крышке (внутри), на которой крепятся щетки и контакты. Сначала для уверенности прозвоните тестером, и убедитесь, что контакта нет, а после уже принимайте меры по устранению этого дефекта.

P.S. Ну и совсем редко бывает так, что произошел обрыв самих обмоток на роторе моторчика. Либо по причине плохого качества изоляции медного провода, что намотан на роторе, было вызвано межвитковое короткое замыкание. Тут уж найти такую неисправность будет посложней. Для этого осторожно отпаяйте проводки на роторе (чтобы они были каждый сам по себе и отвечали только за свою обмотку) и мультиметром проверьте сопротивление этих обмоток. Если увидите, что оно не равно между собой, то попробуйте перемотать эту/эти обмотки.

Электродвигатель как генератор – ООО «СЗЭМО Электродвигатель»

Содержание

  1. Законы, позволяющие использовать асинхронный электродвигатель как генератор
  2. Способы переделки электродвигателя в генератор
  3. Торможение реактивной нагрузкой
  4. Самовозбуждение электродвигателя
  5. Что нужно знать, чтобы электродвигатель работал как генератор
  6. Насколько эффективно использование электродвигателя в качестве генератора

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.

И «минусы»:

  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.


Как сделать насос из моторчика. Делаем простую машинку с моторчиком Как сделать самоделки из моторчика


Кто бы мог подумать, что простейший инвертор можно сделать без применения транзисторов, микросхем и сложных схем. В прошлый раз я показывал . Как оказалось это не единственный способ построить инвертор. Я покажу как можно преобразовать электрическую энергию с постоянного напряжения 12 В до 220 В переменного тока.

Что понадобится?


Повышающий трансформатор. Естественно, раньше он работал как понижающий, но мы будем использовать его наоборот. Такие трансформаторы можно найти в приемниках, электронных часах, старых магнитофонах.

Сборка инвертора

Фактически наша схема состоит всего из трех частей включенных последовательно друг другу. Это трансформатор, включенный в цепь низкоомной обмоткой (высокоомная обмотка – это выход инвертора). Элементы питания – аккумуляторы или батареи. И коммутирующий элемент, в роли которого будет использован электрический моторчик, который можно вынуть из сломанных детский игрушек.


Вот сам моторчик. Просто так его в цепь не вставить – он не будет производить коммутацию. Нам его необходимо доработать.


Для этого разбираем моторчик.


Снимаем заднюю чать, перед этим отогнув держатели.


Нужно доработать якорь. Заключается это в том, чтобы отключить одну обмотку от контактов. Для этого обрываем проволочки одной любой обмотки.


Собираем мотор.


После такой доработки мотор не сможет полноценно крутиться, так как одна обмотка будет выключена. Но если его запускать рукой, то мотору хватает мощности чтобы поддерживать вращение. А отсутствие одной обмотки будет периодически разрывать цепь питания между элементами питания и трансформатором, куда последовательно и включен моторчик.
Включаем в цепь.


К выходу трансформатора подключаем мультиметр. Затем включаем питание. Бывает, что моторчик сам запускается, но обычно нет. Тогда запускаем вал рукой, легонько его крутнув.


Инвертор работает! Показания мультиметра прыгают от нуля и примерно до 250 В. Это нормально, так как это технический инвертор для питания примитивных устройств.


Пробуем подключить зарядное устройство. Все отлично работает – телефон заряжается.


Подключаем лампочку – лампа светит.


Конечно, о качестве преобразуемой энергии говорить не приходиться, но в сложных жизненных ситуациях такая поделка вполне может и пригодиться.

Отправим материал вам на e-mail

Сборщики металлолома будут просто счастливы забрать у вас старую стиральную машинку. Но не торопитесь их радовать. Денег за лом вы выручите немного, но если с умом подойти к этому вопросу, вы можете обзавестись множеством полезных вещей для домашнего хозяйства. Самоделки из двигателя от стиральной машины помогут быстро почистить птицу от пера, нарезать корм для домашних животных, подстричь газон, закоптить рыбу и мясо. И это далеко не полный перечень того, что можно сделать из стиралки. Сегодня в обзоре редакции сайт подробные инструкции, как подарить «железному сердцу» от стиральной машины новую жизнь.

Детали от стиральной машины – материал для многих полезных самоделок

Если вы собрались делать самоделки из бывшего в употреблении двигателя, нужно разобраться, что он собой представляет и на что способен. В вы можете встретить три типа моторов: асинхронный, бесколлекторный и коллекторный. Рассмотрим их поближе:

  • Асинхронный – может быть двухфазным или трёхфазным. Двухфазные движки встречаются у старых моделей ещё советского производства. Более современные машинки оснащены трёхфазным. Конструкция такого движка предельно проста, он может развивать скорость до 2800 оборотов в минуту. Снятый с машинки рабочий двигатель нужно просто смазать – и он готов к новым подвигам.
  • Коллекторный – такой вид мотора вы обнаружите в конструкции большинства бытовых приборов. Подобные устройства могут работать от постоянного и переменного тока, имеют компактные размеры и управляемую частоту оборотов. Единственный недостаток такого движка – стирающиеся щётки, но эти детали можно при необходимости заменить.


  • Бесколлекторный прямой привод – самый современный движок от корейского производителя. Вы обнаружите его в современных стиральных машинках от LG и Samsung.


Теперь, когда вы можете определить тип мотора, осталось решить, куда можно применить двигатель от стиральной машины.

Правильно разбираем и решаем, что можно сделать из деталей старой стиральной машины

Разборка стиральной машины – дело неспешное. После работы с водой на деталях может остаться солевой нарост, его нужно аккуратно снять, чтобы не повредить запчасти при снятии. Что можно сделать из старой стиральной машины? Для самоделок пригодится мотор – он станет основой для многих устройств. Ещё в дело пойдёт барабан. Обычно он изготовлен из нержавейки. От барабана нужно отсоединить все патрубки. Полезным может оказаться и люк для загрузки. Кроме этих деталей, не спешите выбрасывать пружинки, противовесы и части корпуса.

Как сделать точило или шлифовальное приспособление из двигателя для стиральной машины

Точило – один из самых востребованных инструментов для дома. С его помощью можно наточить садовые инструменты, домашние ножи и ножницы. Если у вас ещё нет такого – купите его в любом магазине инструментов или сделайте точильный станок из стиральной машины. Самый сложный момент – как закрепить наждачный круг на моторе. Проще всего купить готовый фланец. Выглядит он примерно так.


Можно выточить фланец из металлической трубы подходящего диаметра, чаще всего подходит трубка с сечением 32 мм. От неё нужно отрезать кусок длиной 15 сантиметров, этого вполне достаточно для фиксации наждака. Фланец закрепляется на валу мотора сваркой или сквозным болтом. В видео подробно описано, как работает точило из стиральной машины, изготовленное своими руками:

Делаем токарный станок по дереву из стиралки

Что можно ещё сделать с двигателем от стиралки? Одна из популярный идей – токарный станок по дереву. Рассмотрим поэтапный процесс.

Как сделать своими руками из стиральной машины простую перосъёмную машину для домашних нужд

Время забоя птицы – хлопотный этап. Обычно делают это по осени, когда утки и бройлеры достигли нужного веса, и содержать их зимой уже невыгодно. Ощипать несколько десятков, а то и сотен тушек нужно очень быстро. Избавиться от каторжной работы можно с помощью перосъёмной машинки, а сделать легко всё из тех же деталей стиралки.

Для устройства можно не разбирать стиралку. Особенно удобно использовать машинки с вертикальной загрузкой. Нужно всего лишь закрепить билы в барабане так, чтобы они смотрели внутрь. Перед ощипом цыплячью тушку нужно ошпарить кипятком, а затем просто бросить во вращающийся барабан. Вот что получится:

Важно! Чтобы вода не попала на двигатель перосъёмной машины, нужно защитить его пластиковым кожухом.

И последний момент – перосъёмное устройство должно быть прочно зафиксировано, так как вибрация при загрузке тушки будет очень сильной.

Газонокосилка из бывшего в употреблении мотора

Продолжаем искать ответ на вопрос, где можно использовать мотор от стиральной машины-автомата. Ещё одна оригинальная идея – изготовление . Для небольшого участка вполне достаточно электрической модели, привязанной к источнику питания шнуром. Устройство такого агрегата очень простое. Потребуется изготовить платформу на четырёх колёсах с небольшим диаметром.

Двигатель закрепляется сверху платформы, вал продевается в отверстие внизу, и на нём крепится нож. Остаётся только приделать к тележке ручки и рычаг для включения и отключения питания. Если у вас завалялся асинхронный мотор, вы удивитесь, насколько бесшумным получится агрегат, даже в сравнении с заводскими моделями.

Совет! Чтобы на ножи не наматывалась трава, нужно слегка загнуть их режущие кромки вниз.

Видео: как сделать газонокосилку

Корморезка для животных

Для сельского жителя корморезка – очень важный в хозяйстве аппарат. И этот агрегат несложно сделать из .Что можно использовать: барабан и мотор.

Для корморезки потребуется изготовить корпус, в котором будет крепиться барабан с заточенными для резки отверстиями и крышкой для прижимания. Соединение вращающегося барабана и двигателя осуществляется через привод. Готовая модель выглядит так:

Как собрать генератор из старой стиральной машины

Мы продолжаем рассматривать самоделки из мотора от стиральной машины, и очередь дошла до генератора. У вас не получится собрать мощное устройство, но к случаю экстренного отключения вы вполне можете подготовиться. Для превращения двигателя в генератор придётся его разобрать и частично срезать сердечник. В оставшейся части сердечника нужно изготовить пазы для неодимовых магнитов.

Промежутки между магнитами заполняются холодной сваркой. Для работы устройства в комплект нужно включить аккумулятор от мотоцикла, выпрямитель и контроллер заряда. Подробности работы в видеоматериале:

Самодельная бетономешалка

Если вы затеяли небольшой ремонт, требующий, к примеру, оштукатуривания стен, вам пригодится бетономешалка. И снова пригодятся детали стиральной машины.

В качестве ёмкости для бетона можно использовать всё тот же барабан с предварительно запаянными отверстиями для слива воды. Лучше всего использовать детали от машины с фронтальной загрузкой, там почти ничего не придётся переделывать. Для укрепления корпуса используйте металлический уголок, а для удобного перемещения бетономешалки оснастите её колёсиками. Главная сложность в конструкции − изготовление «качелей» для правильного наклона и последующего слива бетона. Как это правильно сделать в видео:

Самоделки из двигателя от стиральной машины: циркулярная пила

Вы удивитесь, но и циркулярку тоже можно соорудить на основе мотора от стиралки. Важный момент в этом вопросе – дополнительное оборудование мотора устройством, регулирующим обороты. Без этого дополнительного модуля циркулярка будет работать неровно и просто не справится с поставленной задачей. Схема сборки устройства:

Принцип работы устройства прост: двигатель приводит в движение вал, на который одет малый шкив. От малого шкива идёт приводной ремень на большой шкив с дисковой пилой.

Важно! При работе с самодельной циркуляркой берегите руки. Все детали конструкции должны быть прочно закреплены.

Полученный в результате агрегат не будет очень мощным, так что его можно использовать только для роспуска доски толщиной до 5 см. Как работает такая самодельная циркулярка:

Что ещё можно сделать из барабана стиральной машины: оригинальные идеи декора

Барабан с его правильной перфорацией – материал для изготовления декоративных предметов. Вот несколько интересных идей.

Тумбочки и столики. В барабанах с дверцей от машин с вертикальной загрузкой можно прятать нужные мелочи.

Делаем мангал из барабана от стиральной машины, фотопримеры

– изделие временное. Рано или поздно он прогорает и требует замены. Можно каждый раз покупать новый или использовать подручный материал, например, барабан от стиралки. Сделать эту поделку из барабана от стиральной машины – пара минут. Вся прелесть в том, что в перфорированную ёмкость легко поступает кислород, из-за чего происходит активное горение.

Металл барабана сможет выдержать пару сезонов. Сделайте для него удобную подставку, чтобы можно было не наклоняться, и всё готово. Шампуры стандартной длины удобно расположатся на небольшой жаровне. При необходимости можно слегка прихватить сваркой пару направляющих.

Как сделать хорошую коптильню из барабана стиральной машины

Вишенка на торте в нашем вопросе – . Ароматное копчёное мясо, сало и рыбка – что может быть лучше к столу? Если у вас в сарае или гараже завалялся бак от машины с вертикальной загрузкой – считайте, дело в шляпе.

В днище бака необходимо вырезать отверстие для топки, внутри приварить крепления для подвеса продуктов. Остаётся только установить бак на очаг, подвесить рыбу или сало, накрыть бак сверху крышкой и запалить опилки.

Важно, чтобы топливо под коптильней тлело, а не горело. Такой прибор лучше расположить вдали от дома.

Важно! За такой коптильней придётся присматривать. Её нельзя оставлять надолго, огонь может разгореться, и вместо копчёного вы получите пригоревший продукт.


В этом материале представим вашему вниманию обзор видеоролика по изготовлению машинки с моторчиком.

Итак, нам понадобится:
– моторчик 3-вольтовый от кассетного плеера;
– 3 пальчиковые батарейки;
– металлическая шайба;
– изолента;
– игрушечная машинка.


В самом начале отметим, что автор советует использовать машинку, в которой присутствует механизм, двигающий ее вперед после откатывания назад.

Разбираем машинку, и вырезаем упомянутый выше механизм.


Вытаскиваем из механизма шестеренку и приклеиваем ее к моторчику клеевым пистолетом.


На вале должна присутствовать еще одна шестеренка малого размера. Моторчик нужно приклеить так, чтобы большая шестеренка прикасалась маленькой.


Соединяем 3 батарейки последовательно, чтобы минус средней батарейки был соединен к плюсам крайних. Соединять контакты можно при помощи металлических шайб. Между собой батарейки могут быть соединены изолентой.


Собираем корпус машинки, не забыв вывести провода, идущие от моторчика.


Соединяем минусовой провод от моторчика к минусу на крайней батарейке.


Далее берем еще один провод и соединяем его к плюсовому контакту второй крайней батарейки.

Устанавливаем блок из батареек на крышу машинки.


Для того, чтобы моторчик заработал, и машинка стала двигаться, нужно сомкнуть плюсовой провод, идущий от моторчика с проводом, который подключили к плюсовому контакту батарейки.

Разные моторы имеют разное количество оборотов на Вольт и поэтому, их лучше подбирать под конкретную игрушку или конкретное использование – те которые подходят для использования в качестве двигателя на колесо, не подойдут для использования с воздушным винтом и наоборот!

Первым идет небольшой двигатель диаметром 2.4 см, он отлично подходит для использования в самодельных игрушках для вращения колес.

Купить электродвигатель можно .

Вот пример изготовления самодельного трицикла на таком двигателе.

Второй вариант более высокооборотистый и рассчитан на использование пропеллера в качестве движетеля.

Купить электродвигатель с воздушным винтом можно .

Вот пример изготовления аэроглисера на таком электромоторе с пропеллером.

Как видите – сделать такой простой аэроглиссер можно за 20-30 минут.

Третий моторчик оснащен редуктором и его можно использовать для механизации игрушек с большими колесами.

Купить электродвигатель с редуктором на колесо можно .

Понижающий редуктор выполнен из металла, он увеличивает мощность крутящего момента на валу и позволяет устанавливать этот электродвигатель напрямую на колесо игрушки.

Электрофицированная игрушка станет неспешной, но, сможет перевозить достаточно тяжелые грузы и взбираться с ними в горки.

Набор из 5 небольших электродвигателей.

Купить набор электродвигателей можно .

Покупая 5 штук за раз – получается весьма хорошая экономия.

Вот пример использования таких двигателей для изготовление простой машинки с электромоторчиком.

Электродвигатель с редуктором и пропеллером

Купить электродвигатель с редуктором и пропеллером можно .

Легкий вес и достаточная тяга – так можно охарактеризовать этот набор из двигателя, редуктора и пары пропеллеров. Именно по этому этот набор устанавливают на квадрокоптеры среднего размера.

Этот комплект отлично подойдет для аэроботов, катеров с воздушной тягой и летающих самолетов.

Выбирайте электродвигатель под свои самоделки и делайте их вместе с ребенком!

Анна комментирует:

Здравствуйте! Натолкнулась на ваш сайт в поисках необходимого механизма, для приведения в движение нашей задумки! на какой адрес электронной почты вам можно отправить наш макет, что бы посмотрели и сказали, какой моторчик нужен для “оживления отдельных частей нашей модели! Заранее большое спасибо!

Что можно сделать из старого лазерного и струйного принтера

Повторное использование техники, предметов, отделки, вещей – далеко не признак ограниченности средств. Скорее, возможность проявить умение, сообразительность и предупредить появление отходов. Такая техника как сканеры, струйные и лазерные принтеры изнашиваются не так чтобы быстро, а вот устаревают скоро. А, значит, нет возможности найти детали для ремонта.

Что сделать с такими устройствами и подскажут многочисленные форумы.

О чём пойдет речь:

Детали изделия

Как правило, в сканере, лазерном принтере приходит в негодность только какой-то один элемент, в то время как остальные детали вполне пригодны к работе. Наиболее ценны в этом смысле МФУ и матричные устройства. При разборке последних своими руками можно получить массу ценных деталей.

Старый принтер

  • Крепеж – винты, гайки, шестеренки, болты и прочая мелочь. Для домашнего умельца любой крепеж является полезным, так как порой отсутствие элементов нужного диаметра весьма затрудняют работы.
  • Самая ценная деталь в принтере любого вида – направляющая, изготовленная из каленой стали. Во многих китайских и корейских аппаратах направляющая выполняется из дешевого сплава и сгибается даже под весом приводного ремня. В струйных устройствах от Canon или Эпсон стоит стальная. Эта деталь используется при обустройстве ЧПУ-станков или самодельных печатных устройств.
  • Узел скольжения головки – в струйных устройствах он пластиковый и годится только для ЧПУ-граверов, а вот в матричных в узел запрессовывают бронзовую втулку, так что деталь можно применять на металлообрабатывающих домашних станках.
  • Если предполагается монтаж печатного устройства, картридж от Canon является лучшим вариантом.

Картридж от Canon

  • Зубчатый приводной ремень – универсальный элемент, подходящий для любого устройства, где нужно передать усилие от шагового двигателя на площадку. И ремень узел скольжения можно найти в МФУ и сканерах и даже старых копировальных аппаратах от Эпсон.
  • Шаговый двигатель – обеспечивает движение бумаги. На старых матричных аппаратах и лазерных они мощнее, однако, и детали струйных принтеров можно использовать с толком. Кроме того, со старой машины можно снять двигатель вместе с контроллером и драйвером.
  • Концевые выключатели – обеспечивают контроль над качеством бумаги. Необходимая деталь для самодельного печатного устройства или станка.

Концевые выключатели

Что можно сделать из старого принтера

Старый принтер можно модифицировать и использовать для несколько других целей. В этом случае тоже понадобится и смекалка, и умение, однако результат порой бывает весьма интересный.

Что сделать из аппарата Canon или Эпсон, а судя по отзывам, это наиболее подходящая для модификации линейка МФУ и сканеров? Устройство для печати на толстых материалах. Основой чаще всего выступает струйный старый принтер.

Струйный старый принтер

  1. Снимают передний лоток, входной, боковые панели и корпус. Удаляют датчик подателя бумаги, но сохраняют.
  2. Снимают прижимные и центральный ролик, а также механизм очистки головки.
  3. Платформу с головкой удалить можно только резкой с помощью ручной шлифовальной машинки. Для такой работы нужно надеть зашитные очки и респиратор.
  4. Печатающую головку очищают.
  5. Затем шайбами и гайками настраивают необходимую ширину зазора. Чаще всего старый принтер используют для печати на текстолитах, тонких листах фанеры и тому подобном материале. Затем механизм очистки головки устанавливают на уголки.
  6. Датчиком подачи материала выступает фотосенсор с излучающим диодом. Для него и системы подачи вырезают из фанеры платформу соответствующей величины. В качестве направляющих для текстолита монтируются алюминиевые уголки. Лист подачи также изготавливают из алюминия.

Картридж заполняют специальными чернилами.

На фото демонстрируется модифицированный старый принтер.

Ветрогенератор из электромотора

Что сделать со старым принтером еще? Ветрогенератор, который преобразует силу ветра в электроэнергию. Такое устройство вполне может обеспечить бытовые нужды. По сути, это использование не всего аппарата, а только детали. Предпочтительнее шаговые двигатели с лазерного устройства или МФУ.

Моторчик принтера

  1. Разбирают старый принтер с тем, чтобы извлечь шаговый двигатель.
  2. Собирают выпрямитель: для каждой из 4 фаз требуется по 2 диода.
  3. Изготовляют лопасти из трубы ПВХ – так проще подобрать нужную степень кривизны.
  4. Вытачивают втулку со сланцем по размеру вала.
  5. Втулку насаживают на вал, закрепляют, к фланцу фиксируют лопасти. Важно сбалансировать композицию.
  6. Двигатель вставляют в кусок трубы, где он закрепляется болтами. С торца к трубе фиксируют флюгер из дюралюминия. Удерживается вся конструкция на вертикальной трубе.

На видео демонстрируется сборка ветрогенератора своими руками.

Электродвигатель – Технический центр Эдисона

В электродвигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до появления первых динамо-машина или генератор.

Выше: Первый мотор Davenport

1.) История и изобретатели:

1834 – Томас Дэвенпорт из Вермонта разработал первый настоящий электродвигатель («настоящее» значение достаточно мощный, чтобы выполнить задачу) хотя Джозеф Генри и Майкл Фарадей создал ранние устройства движения с использованием электромагнитных полей. Ранние «моторы» создавали вращающиеся диски или рычаги, которые качался взад и вперед. Эти устройства не могли сделать никакой работы для человечества. но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были возможность запускать модельную тележку по круговой трассе и другие задачи. Позже тележка оказалась первым важным приложением. электроэнергии (это была не лампочка). Рудиментарный полноразмерные электрические тележки были наконец построены через 30 лет после смерти Давенпорта в 1850-х годах.

Влияние электромотора на мир перед лампочками:
Тележки и подключенные энергосистемы стоили очень дорого. строили, но перевозили миллионы людей на работу в 1880-е годы.До рост электросети в 1890-х гг. большинство людей (средний и низкие классы) даже в городах не было электрического света в дом.

Только в 1873 году электродвигатель наконец добился коммерческого успеха. С 1830-х годов тысячи инженеров-первопроходцев улучшили двигатели и создали много вариаций. См. Другие страницы для получения более подробной информации об огромной истории электродвигателя.

Выводы двигателя к генератору:
После слабые электродвигатели были разработаны Фарадеем и Генри, другой пионер по имени Ипполит Pixii выяснил это, запустив двигаясь задом наперед, он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом получения энергии потребности общества.Подробнее о генераторах и динамо здесь>

2.) Как работают моторы

Электродвигатели могут работать от переменного (AC) или постоянного (DC) тока. Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип мотора работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

переменного тока электродвигатели используют вторичную и первичную обмотку (магнит), первичную подключен к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от первичной обмотки, не касаясь ее напрямую. Это делается с помощью сложные явления, известные как индукция.

Справа: инженер работает над кастомными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточно мощности, чтобы поднять килограммы полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в небольших и легких пакеты.

Выше: универсальный двигатель, обычно используемый в большинстве электроинструментов.Имеет тяжелый плотный ротор. Выше: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелый якорь.

2.a) Детали электродвигателя:

Есть много видов электродвигателей, но в целом они имеют похожие детали. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано в «универсальном двигателе» выше) или намотанными изолированными проводами (электромагнит, как на фото вверху справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже, показывающее, как это работает. В этом видео рассматривается бесщеточный двигатель постоянного тока, ротор которого находится снаружи, в других двигателях. тот же принцип обратный, с электромагнитами снаружи. Видео (1 минута):

Мощность мотора:
Сила двигателя (крутящий момент) определяется напряжением и длина провода электромагнита в статоре, чем длиннее провод (что означает больше катушек в статоре), тем сильнее магнитное поле.Это означает больше мощности для повернуть ротор. Смотрите наше видео, которое относится как к генераторам, так и к двигателям. Узнать больше.

Арматура – вращающаяся часть двигателя – это раньше называлось ротором, это поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

Статор – Корпус и катушки, составляющие внешнюю часть двигателя. В статор создает стационарное магнитное поле.

Вверху: В этом статоре отчетливо видны четыре отдельные катушки (якорь был удалено)

Обмотка или «Катушка» – медные провода, намотанные на сердечник для создания или получить электромагнитную энергию.

Провода, используемые в обмотки ДОЛЖНЫ быть изолированы. На некоторых фото вы увидите, что выглядит как обмотки из голого медного провода, это не так, это просто эмалированная с прозрачным покрытием.

Медь это самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести такую ​​же электрическую безопасно загружать.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди>

Перегорание мотора, устранение неисправностей:
Если двигатель работает слишком долго или с чрезмерным нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки может сломаться или оплавиться, а затем обмотки закорочены когда они касаются друг друга, и двигатель выходит из строя. Вы также можете сжечь двигатель, подав на него большее напряжение, чем обмоточные провода рассчитаны на.В этом случае проволока расплавится в самом слабом месте, разорвав соединение. Вы можете проверьте двигатель, чтобы увидеть, не перегорел ли он таким образом, проверив сопротивление (сопротивление) с помощью мультиметра. Как правило, при проверке двигателя вы должны искать черные метки на обмотках.


Squirrel Cage – вторая катушка в асинхронном двигателе, см. Ниже чтобы увидеть, как это работает
Индукция – генерация электродвижущей силы в замкнутом цепь изменяющимся магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент создания магнитного поля. Когда мощность падает в цикле магнитное поле не может поддерживаться, и оно схлопывается. Это действие передает мощность через магнетизм на другую обмотку или катушку. УЧИТЬСЯ БОЛЬШЕ об индукции здесь.

3.) Типы электродвигателей переменного тока

Двигатели переменного тока:

3.а) Индукция Двигатель
3.b) Универсальный двигатель (можно использовать постоянный или переменный ток)
3.c) Синхронные двигатели
3.d) Двигатели с экранированными полюсами


См. Нашу страницу, посвященную асинхронным двигателям, здесь>

Это мощный двигатель, который можно использовать с мощность переменного и постоянного тока.

Преимущества :
-Высокий пусковой крутящий момент и небольшой размер (хорошо для общего использования в бытовые электроинструменты)
-Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

Недостатки:
– Щетки со временем изнашиваются

Использует: приборы, ручной электроинструмент

Посмотреть видео ниже:


3.в) синхронный Моторы (Selsyn Motor)

Этот мотор аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

Мотор Selsyn был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь.


Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота подаваемого переменного тока.
Недостатки: Не может работать с переменным крутящим моментом, этот двигатель будет остановиться или «вытащить» с заданным крутящим моментом.
Использует: a часы использует синхронные двигатели для обеспечения точной скорости вращения для Руки. Это аналог двигателя , и хотя скорость точна, шаговый двигатель лучше подходит для работы с компьютерами, так как он функционирует на жестких «ступенях» разворота.

Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с поворотным валом. в центре, отставание потока, проходящего вокруг катушки, вызывает сила магнита, чтобы двигаться по катушке. Это получает центральный вал с вращением вторичной обмотки.

Цилиндр изготовлен из стали и имеет медные стержни, встроенные по длине в цилиндр поверхность.


Преимущества: достигает высокого уровня крутящего момента, когда ротор начал быстро вращаться.
Используется в вентиляторах, приборах

Недостатки: медленный запуск, низкий крутящий момент для запуска. Используется в вентиляторах, обратите внимание на медленный старт фанатов.
Этот двигатель также используется в стоках стиральных машин, открывателях консервных банок и прочая бытовая техника.
Другие типы двигателей лучше подходят для более мощных нужд выше 125 Вт.

Посмотреть видео ниже:


4.) Двигатели постоянного тока (DC):

Двигатели постоянного тока были первым видом электродвигателей. Обычно они составляют 75-80% эффективный. Они хорошо работают на регулируемых скоростях и обладают большим крутящим моментом.

4.a) Общая информация
4.b) Щеточные двигатели постоянного тока
4.b.1) Двигатель постоянного тока с параллельной обмоткой
4.b.2) Двигатель постоянного тока с последовательной обмоткой
4.b.3) Двигатели-блины
4.b.4) Двигатель постоянного тока с постоянным магнитом
4.b.5) С раздельным возбуждением (Sepex)
4.c) Бесщеточные двигатели постоянного тока
4.c.1) Шаговый двигатель
4.c.2) Двигатели постоянного тока без сердечника / без сердечника


Матовый Двигатели постоянного тока:

Первый DC двигатели использовали щетки для передачи тока на другую сторону двигателя. Кисть названа так потому, что сначала имела форму метлы.Маленькие металлические волокна терлись о вращающуюся часть мотора. поддерживать постоянный контакт. Проблема с кистями в том, что они изнашиваются. со временем из-за механики. Кисти будут создавать искры из-за трения. Парки часто плавили изоляцию и становились причиной коротких замыканий. в арматуре и даже переплавил коммутатор.

Первые моторы использовались на уличных железных дорогах.

Использует сплит кольцевой коммутатор со щетками.
Преимущества:
-Используется во множестве приложений, имеет простой контроль скорости с помощью уровня напряжения для управления.
-Имеет высокий пусковой момент (мощный пуск)
Ограничения: щетки создают трение и искры, это может привести к перегреву устройство и плавить / сжигать щетки, поэтому максимальная скорость вращения ограничено. Искры также вызывают радиочастоты. вмешательство. (RFI)

Есть пять типов двигателей постоянного тока с щетками:
Двигатель постоянного тока с параллельной обмоткой
Двигатель с обмоткой серии постоянного тока
Составной двигатель постоянного тока – совокупный и дифференциально смешанный двигатель
Двигатель постоянного тока с постоянным магнитом
Двигатель с раздельным возбуждением
Двигатель-блинчик

Бесщеточный Двигатели постоянного тока:

Щетка заменен внешним электрическим выключателем, который синхронизируется с положение двигателя (он изменит полярность по мере необходимости, чтобы сохранить вал двигателя вращается в одном направлении)
– Более эффективен, чем щеточные двигатели
– Используется, когда необходимо точное регулирование скорости (например, в дисководах, ленте машины, электромобили и т. д.)
-Долгий срок службы, так как работает при более низкой температуре и нет щеток изнашиваться.

Типы бесщеточные двигатели постоянного тока:
Шаговый двигатель
Двигатели постоянного тока без сердечника / без сердечника

4.b) ЩЕТОЧНЫЙ ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА:

4.b.1) DC Шунтирующий двигатель

Шунт постоянного тока Электродвигатель подключен так, что катушка возбуждения подключена параллельно с арматура.Обе обмотки получают одинаковое напряжение. Катушка шунтирующего поля намотан множеством витков тонкой проволоки для создания высокого сопротивления. Этот гарантирует, что катушка возбуждения будет потреблять меньше тока, чем якорь (ротор).

Арматура (как видно выше, это длинная толстая цилиндрическая вращающаяся часть) имеет толстую медные провода, чтобы через них проходил большой ток, завести мотор.

В качестве арматуры витков (см. фото ниже) ток ограничен противоэлектродвижущим сила.

Сила катушки шунтирующего поля определяет скорость и крутящий момент двигателя.

Преимущества: Шунтирующий двигатель постоянного тока регулирует свою скорость. Это означает, что если загрузка При добавлении якоря замедляется, КЭДС уменьшается, в результате чего якорь ток увеличивается. Это приводит к увеличению крутящего момента, что помогает переместить тяжелый груз. При снятии нагрузки якорь ускоряется, CEMF увеличивается, что ограничивает ток, а крутящий момент уменьшается.

Конвейер Пример ленты : Представьте, что конвейерная лента движется с заданной скоростью, затем в пояс входит тяжелая коробка. Этот тип двигателя будет поддерживать движение ремня. с постоянной скоростью независимо от того, сколько коробок движется по ленте.

Посмотреть видео ниже, демонстрирующее действие параллельного двигателя постоянного тока !:

4.б.2) DC двигатель с последовательным заводом

Двигатель с серийной обмоткой – это двигатель постоянного тока с самовозбуждением. Обмотка возбуждения подключена внутри последовательно с обмоткой ротора. Таким образом обнажается обмотка возбуждения в статоре. до полного тока, создаваемого обмоткой ротора.

Этот тип двигателя похож на двигатель постоянного тока с параллельной обмоткой, за исключением того, что обмотки возбуждения сделаны из более тяжелого провода, поэтому он может выдерживать более высокие токи.

Применение: Этот тип двигателя используется в промышленности в качестве пускового двигателя из-за большого крутящего момента.

Подробнее о двигателе с последовательным заводом:
, статья 1
Артикул 2

4.b.3) Блин Двигатель постоянного тока (также известный как двигатель с печатным якорем)

Блин мотор – мотор без железа.Большинство двигателей имеют медную обмотку. железный сердечник.

Видео с демонстрацией примеры мотора-блинчика:

Преимущества:
Точное регулирование скорости, плоский профиль, не имеет зубцов, которые возникают утюгом в электромагните

Недостатки:
плоская форма не подходит для всех приложений

Имеет обмотку в форме плоского эпоксидного диска между двумя магнитами с сильным магнитным потоком.Это полностью без железа, что делает большую эффективность. Используется в сервоприводах, был первым спроектирован как моторы стеклоочистителя и видеоиндустрии, так как он был очень плоским в профиль и имел хороший контроль скорости. Компьютеры и видео / аудио запись всей использованной магнитной ленты, точный и быстрый контроль скорости был был нужен, поэтому для этого был разработан мотор-блин. Сегодня это используется во множестве других приложений, включая робототехнику и сервосистемы.

4.b.4) Составной двигатель постоянного тока (накопительный и дифференциально-составной)

Это еще один самовозбуждающийся двигатель с последовательными и шунтирующими катушками возбуждения. Он имеет эффективное регулирование скорости и приличный пусковой крутящий момент.

Узнайте больше об этом типе двигателя здесь.

4.b.5) Двигатель постоянного тока с постоянным магнитом

Этот тип двигателя хорошо работает на высоких оборотах и ​​может быть очень компактным.
Область применения: компрессоры, другое промышленное применение.

Узнайте больше об этом типе двигателя здесь.

4.б.6) Отдельно возбужденный (сепекс)

SepEx имеет обмотку возбуждения, которая питается отдельно от якоря с прямым текущий сигнал. Полевой магнит также имеет собственный источник постоянного тока. В результате вы увидите это Тип двигателя имеет четыре провода – 2 для возбуждения и 2 для якоря.

Этот двигатель представляет собой щеточный двигатель постоянного тока. который имеет более широкие кривые крутящего момента, чем двигатель постоянного тока с последовательной обмоткой.

Узнайте больше об этом типе двигателя здесь.

4.c) Бесщеточные двигатели постоянного тока:

4.c.1) Шаговый Мотор

Шаговый мотор – это тип бесщеточного мотора, который перемещает центральный вал один часть хода за раз.Это делается с помощью зубчатых электромагнитов. вокруг куска железа в форме централизованной шестерни. Есть много видов шаговых двигателей. Они используются в системах, которые перемещают объекты с высокой точностью. положение, как сканер , дисковод и промышленная лазерная резьба устройства .

Посмотреть видео шагового двигателя в действии ниже:

4.в.2) Без сердечника / Двигатели постоянного тока без железа

Медь намотанная или алюминиевый сердечник вращается вокруг магнита без использования железа. Этот делается путем придания цилиндрической формы.
Преимущество: легкий и быстрый запуск отжима (используется в компьютере жестких дисков)
Недостаток: легко перегревается, так как железо обычно действует как радиатор, для охлаждения необходим вентилятор.

Узнайте больше об этом типе двигателя здесь.

Источники:
Документы Джозефа Генри – Смитсоновский институт
Denver Electric Motor Company
Стив Нормандин
Википедия
Томас Дэвенпорт – доктор Фрэнк Уикс мл.
Электромобиль своими руками


Связанные темы:

Конструкция электродвигателя 101: Выбор наиболее подходящего материала

Конструировать электрическую машину в лучшем случае сложно.Это всегда компромисс между технологичностью и производительностью.

В конструкции двигателя с осевым магнитным потоком теоретически магнитный поток будет двигаться в противоположном направлении, но на значительно меньшем уровне. Итак, вы выбираете, как вы этого добиваетесь – удаляя излишки, тратя при этом много материала.

Сегодня двигатели с осевым потоком двигаются в сторону нетрадиционных конструкций. Как бы то ни было, материалы, которые вам понадобятся при разработке следующего электродвигателя , зависят от того, как двигатель должен работать, где он будет работать и так далее.

Когда дело доходит до материалов для электродвигателей, на ваш выбор либо электротехническая сталь, либо порошковый металл, либо вообще ничего. В этой статье основное внимание будет уделено электротехнической стали (также известной как листовая сталь), а также двум формам металлического порошка.

Есть и другие статьи, которые прекрасно объясняют использование материалов для других компонентов двигателя, таких как вал. Сегодня мы сосредоточимся на трех наиболее важных элементах.

Конструкция электродвигателя: компоненты ротора и статора

Давайте посмотрим, где находится порошковая металлургия с этими тремя ключевыми компонентами электродвигателей постоянного тока:

Как вы увидите, материал сердечника электродвигателя уже по колено в порошковом металле или, по крайней мере, может использовать преимущества порошковой металлургии.

Итак, из чего сделаны эти материалы компонентов двигателя? Компоненты из порошкового металла для двигателей обычно состоят из железа, никеля и кобальта.

  • Утюг – самый дешевый из трех, поэтому многие дизайнеры обращаются к нему первыми.
  • Кобальт редко используется сам по себе, но иногда его добавляют в железо. Кобальт дает вашей детали больше индукции насыщения.
  • Никель дорог, но ценен для применения в двигателях. Это увеличивает производительность, облегчая намагничивание вашего компонента.

А теперь перейдем к более широкой картине:

Материал статора электродвигателя

В традиционных стальных ламинатных статорах потери в сердечнике высоки. Этот может снизить их эффективность , в зависимости от использования двигателя и частоты. Если для вашей конструкции важно предотвратить потери в сердечнике, электротехническая сталь может быть неоптимальной.

Многослойный материал сердечника статора также имеет двухмерную индивидуальность. Ламинирование может дать красивую плоскую деталь, но что, если ваш дизайн не плоский или требует других наворотов? Это по-прежнему лучший материал для ротора?

К счастью, есть более новая и более эффективная замена.Можно использовать магнитно-мягкий композит (SMC) для эффективной работы в тандеме с ротором.

Магнитно-мягкие композиты – это металлические порошки, которые можно легко намагничивать и размагничивать по сравнению с твердым магнитом.

Объединение сил

Одна уникальная возможность – комбинировать магнитомягкий композит с листами электротехнической стали. Существуют так называемые «гибридные» ситуации , в которых вы получаете преимущества обоих . Правильно спроектированная комбинированная сборка позволяет использовать преимущества электротехнической стали (более низкая стоимость производства), добавляя при этом уникальные особенности с помощью SMC (благодаря своей потрясающей способности создавать формы).

Если ваш текущий электродвигатель работает с КПД 60-70%, можете ли вы улучшить его с помощью SMC? Подумайте о долгосрочной экономии на счетах за электроэнергию , которую вы могли бы предложить конечному потребителю.

У нас есть еще одна мысль для тех, кто добавляет магниты в конструкцию ротора. Можете ли вы создать двигатель на основе полностью порошкового металла, полагаясь на спеченный магнитный порошок в качестве материала, к которому вы прикрепляете магниты? Теперь вы можете объединить две концепции дизайна – SMC и спеченный порошковый металл – в полной мере используя преимущества порошковой металлургии.

Подробнее об этом ниже.

Материал ротора электродвигателя

В качестве материалов для ротора обычно используются листы электротехнической стали. Внешняя и внутренняя части двигателя – ротор и статор – имеют штамп одновременно, чтобы минимизировать отходы . Традиционно, из чего бы вы ни штамповали статор, вы штампуете и ротор.

Тем не менее, с более новыми двигателями инженеры обращают внимание на характеристики магнитов на двигателе для улучшения крутящего момента и характеристик шин.

Магнитомягкие композитные материалы

НЕ рекомендуются для роторов в том виде, в котором они разработаны в настоящее время. SMC не спекаются, и поэтому им не хватает прочности, чтобы выдерживать эти применения.

Но спеченные магнитомягкие материалы … они могут быть отличной альтернативой .

Вам может быть интересно узнать о разнице между спеченными магнитомягкими материалами и SMC. Для этого упражнения просто знайте, что магнитомягкие композиты не спекаются.

Подшипники

Подшипники являются основным продуктом традиционной порошковой металлургии.Это крупносерийная недорогая работа, которая доступна в самых разных материалах и формах.

Порошковые металлы используются в подшипниковой промышленности с 1930-х годов и являются хорошо зарекомендовавшим себя материалом для многих связанных областей применения. Первоначально они были бронзой, но благодаря нововведениям в порошковой металлургии в последующие годы можно использовать более экономичные материалы, такие как железо.

В этих небольших металлических компонентах используется губчатое железо , уплотненное до низкой плотности , поэтому вы можете пропитать их смазочным маслом.

Подшипники двигателя такие, какие они есть. Нововведения происходят на уровне статора и ротора.

А как насчет двигателей с радиальным магнитным потоком?

Для обычных двигателей с радиальным магнитным потоком на 60 Гц магнитомягкие композиты не являются хорошей альтернативой. … Но можем ли мы жениться на гибридном дизайне, чтобы оптимизировать его?

Что делать, если вам не нужна простая радиальная конструкция? Что, если вам нужны другие полезные свойства материала вашего электродвигателя? Это возможно с ламинированием электротехнической стали, но будет намного сложнее.Теперь вам действительно нужно полностью сосредоточиться на магнитно-мягких композитах из-за их способности создавать форму.

Модули SMC

идеально подходят для новых проектов или конструкций, в которых вы можете комбинировать модули SMC и ламинат , чтобы получить преимущества в производительности.

Изображение выше является классическим примером. Этот инверторный двигатель с прямым приводом в часах LG Signature находится прямо в рулевой рубке из магнитомягкого композитного материала. И по мере того, как вы разрабатываете новые конструкции с ротором, начните спрашивать себя: «Можем ли мы перевести их на порошковый металл?» Это могут быть не только SMC, но и спеченные магнитомягкие материалы.

SMC может помочь преодолеть разрыв, придав форму, которая наилучшим образом соответствует конструкции вашего электродвигателя.

Больше не заселить

Компоненты электродвигателя не должны быть компромиссом – по крайней мере, в том смысле, к которому вы привыкли.

Поэкспериментируйте с идеей комбинирования слоистой кремнистой стали, магнитомягкого композита (для электродвигателей переменного тока) и спеченных магнитомягких материалов (для электродвигателей постоянного тока). Производитель порошковой металлургии должен быть в состоянии определить жизнеспособность компонентов на порошковой основе для вашего конкретного проекта.

Вы можете узнать больше о SMC и электронном двигателе, посетив бесплатный ресурс Engineer’s Hub ниже:

Связанные ресурсы

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 года и недавно была обновлена.)

Как повысить эффективность электродвигателей

Первый промышленный электродвигатель, вероятно, считался прорывом в свое время, даже несмотря на то, что было много возможностей для улучшения.По мере развития технологий производители двигателей разработали более совершенные двигатели, которые потребляют меньше энергии и требуют меньших затрат. Хотя для производителей вполне естественно использовать новейшие технологии при создании электродвигателей, возможности для дальнейшего совершенствования методов производства сыграли важную роль в повышении эффективности этих двигателей.

Рассмотрим следующую статистику:

  • В 2015 году мировой рынок электротехники оценивался в более чем 70 миллиардов долларов, и ожидается, что он будет расти со среднегодовыми темпами роста (CAGR) в 4 раза.2 процента с 2017 по 2025 год.
  • По оценкам, к 2035 году мировое потребление электроэнергии достигнет 35 триллионов киловатт-часов, и почти 28 процентов будут использоваться электродвигателями.
  • Девяносто процентов установленных двигателей работают непрерывно на полной скорости и используют механические системы для регулирования мощности.

Будущее определенно выглядит многообещающим!

Прежде чем перейти к изучению эффективности электродвигателей, важно больше узнать об общих двигателях, используемых в промышленности.

Простой двигатель постоянного тока преобразует электрическую энергию постоянного тока в механическую. Обычно он оснащен большим количеством катушек, что делает его эффективным. Однако это по-прежнему может привести к большим потерям энергии из-за трения между коллектором и щетками, а также потери крутящего момента при определенных углах. Кроме того, если двигатель застрянет при попытке поднять тяжелый груз, катушки ротора могут легко перегреться и расплавиться. Вот почему в ряде промышленных и тяжелых бытовых приборов используются электродвигатели.

Как производители могут экономить электроэнергию с помощью электродвигателей

Конструкция электродвигателя и способ его использования являются двумя определяющими факторами, которые помогают экономить электроэнергию. Давайте сначала посмотрим на аспект дизайна.

Использование медных обмоток в обмотках статора

Что касается проводимости двигателя, всегда лучше использовать медные катушки, чем устаревшие алюминиевые. Это потому, что проводимость алюминия ниже, чем у меди.Чтобы не отставать от медных катушек, алюминиевые магнитные провода могут нуждаться в большем поперечном сечении, чтобы они могли обеспечивать такой же уровень проводимости. Обмотки, намотанные алюминиевой проволокой, могут иметь больший объем по сравнению с двигателем того же размера с медной проволокой.

Если вы все еще используете алюминиевые обмотки, убедитесь, что концы алюминиевого магнитного провода правильно подключены. Алюминий окисляется намного быстрее, чем другие металлы, и если алюминиевый порошок подвергается воздействию воздуха, он полностью окисляется всего за несколько дней и оставляет после себя тонкий белый порошок.

Для правильного соединения, обеспечивающего хорошую проводимость, оксидный слой алюминиевого магнита необходимо проткнуть, чтобы предотвратить дальнейший контакт алюминия с воздухом.

Конечно, достижение КПД двигателя – это больше, чем просто выбор между алюминиевой и медной обмотками. Несколько производителей разработали обжимные соединители с прокалкой под высоким давлением для повышения эффективности. Это было сделано для того, чтобы алюминиевые обмотки не отставали от своих медных аналогов.Хотя двигатели с алюминиевыми обмотками могут сравниться по мощности с медными, это требует времени и денег. Алюминий также требует большего количества витков и провода большего диаметра, что не всегда может быть экономичным.

Если двигатель должен работать время от времени или в течение короткого времени, а эффективность и объем не имеют значения, использование алюминиевых магнитных проводов может иметь смысл. В противном случае всегда следует отдавать предпочтение медным обмоткам.

Использование медных стержней в роторе

Когда дело доходит до роторов, медь также дает преимущество в эффективности.Медные роторы предпочтительны для энергоэффективных производств в развитых и развивающихся странах, где электричество часто бывает дефицитным и дорогостоящим. Медные роторы – лучший выбор по сравнению с алюминиевыми с точки зрения качества двигателя, надежности, стоимости, эффективности и срока службы.

Обработка движущихся деталей с точностью

Обработка влечет за собой удаление материала из секционного блока до очень переносимого вещества. Прецизионное оборудование необходимо для достижения высочайшего допуска при наименьшей измеримой степени.Будь то резка металла или добыча угля, прецизионное оборудование может обеспечить точность, необходимую для производства материалов в желаемых количествах. Движущиеся части машины потребуют своевременного обслуживания для максимальной производительности и эффективности. Техническое обслуживание должно выполняться только специалистами, при этом должен потребоваться осмотр всех деталей.

Использование высококачественной стали для роторов и статоров

Высокотехнологичная электротехническая сталь необходима для производства экономичных статоров и роторов, используемых во множестве электродвигателей.Этот тип стали обеспечивает высокую магнитную проницаемость и низкие потери мощности для первоклассных характеристик. Однако потери мощности в электротехнической стали все же могут возникать. Вихревые токи, также называемые токами Фуко, вступают в игру, когда магнитное поле изменяется. Прокатка стали до более тонкой толщины контролирует эти вихревые токи и снижает потери тока. Это особенно верно для прикладных частот, превышающих стандартные 50 или 60 герц.

Сохранение ротора и статора как можно ближе друг к другу

Благодаря высокоточному производству производители могут удерживать ротор и статор как можно ближе друг к другу, не касаясь друг друга.Когда скорость вращения достигает нескольких тысяч оборотов в минуту, электротехническая сталь в роторе может испытывать огромные нагрузки. Высокое напряжение особенно ощущается в областях рядом с пазами для магнитов, где узкое оборудование удерживает магниты на месте.

В асинхронных двигателях передача энергии происходит через воздушный зазор между статором и двигателем. Воздушный зазор необходим для минимизации сопротивления. Небольшой воздушный зазор приведет к меньшим потерям энергии и повышению эффективности.Общая магнитная связь между статором и ротором увеличивается по мере уменьшения воздушного зазора. Более высокая потокосцепление приводит к уменьшению потерь энергии и повышению эффективности. Меньший зазор также помогает избежать шума.

Больше катушек делают двигатели более эффективными

Провода в фазных обмотках двигателей малой мощности тоньше. Однако количество витков катушки должно быть большим, чтобы увеличить магнитодвижущую силу или плотность тока. Сопротивление фазных обмоток и плотность потерь мощности также выше, чем у двигателей большой мощности.Следовательно, маломощные двигатели с высокими скоростями потребуют большей магнитодвижущей силы. Это означает, что потребуется больше катушек и большее количество витков с тонким проводом, который обеспечивает более высокую плотность тока.

Использование частотно-регулируемых приводов

Приводы с регулируемой скоростью (VSD) или приводы с регулируемой скоростью представляют собой тяжелые промышленные электродвигатели. Их скорость можно регулировать с помощью внешнего контроллера. Эти приводы используются для управления технологическим процессом, поскольку они помогают экономить энергию на предприятиях, где используется множество электродвигателей.

VSD обычно используются в качестве энергосберегающих насосов и вентиляторов, поскольку они улучшают технологические операции, особенно там, где необходимо регулирование потока. Они также обеспечивают возможность плавного пуска, что снижает электрические напряжения и провалы напряжения в сети, которые обычно наблюдаются при пусках двигателей под напряжением, особенно при работе с высокоинерционными нагрузками.

Как пользователи электродвигателей могут обеспечить эффективность

Как упоминалось ранее, то, как электродвигатели используются производителями, промышленными предприятиями и домовладельцами, будет определять их эффективность.Ниже приведены некоторые конкретные шаги, которые пользователи могут предпринять для обеспечения эффективности и долговечности двигателя:

Использование интеллектуальных двигателей с соответствующим пускателем / контроллером двигателя

Хотя интеллектуальные двигатели широко используются и доступны, крайне важно выбрать наиболее подходящий вариант, чтобы свести к минимуму время простоя, повысить эффективность и снизить затраты. Инженеры-производственники знают, какое бремя потребления электроэнергии двигателями может сказаться на их эксплуатационных расходах. Чтобы смягчить это, они часто используют технологии управления двигателями, которые используют только необходимое количество энергии для запуска двигателей, выявления диагностических данных и сокращения времени простоя.По мере того как пускатели двигателей становятся все более популярными, технология пускателей двигателей также приобретает все большее значение.

Ниже приведены несколько важных вопросов, которые следует рассмотреть перед принятием решения о потенциальных областях применения электродвигателей:

Будет ли приложение требовать управления скоростью, даже если двигатель работает на определенной скорости?

Требования к контролю скорости должны быть определены как можно раньше. Некоторые устройства плавного пуска имеют ограниченное управление низкой скоростью между пуском и остановкой.Важно помнить, что рабочая скорость двигателя не может быть изменена, потому что устройство плавного пуска регулирует только напряжение двигателя, а не частоту.

Потребуется ли приложению определенное время запуска и остановки?

Обычно время пуска и останова устройств плавного пуска зависит от нагрузки. Внутренние алгоритмы регулируют напряжение на основе заранее запрограммированного времени, чтобы увеличить ток и крутящий момент для запуска двигателя и / или уменьшить их, чтобы остановить его.Если нагрузка небольшая, двигателю может потребоваться меньше времени для запуска, чем запрограммированное значение. В устройствах плавного пуска нового поколения используются усовершенствованные алгоритмы, позволяющие добиться более точного и менее зависимого от нагрузки времени пуска и останова.

Потребуется ли приложению полный крутящий момент без скорости?

ЧРП могут лучше всего работать с приложениями, требующими полного крутящего момента при нулевой скорости. Они могут создавать номинальный крутящий момент двигателя от нуля до номинальной скорости и даже обеспечивать полный крутящий момент без скорости.С другой стороны, устройства плавного пуска обычно работают в диапазоне частот от 50 до 60 Гц, а полный крутящий момент может быть достигнут только при полном напряжении. Начальный крутящий момент (доступный при нулевой скорости) обычно находится в диапазоне от нуля до 75 процентов и может быть запрограммирован.

Потребуется ли в приложении постоянный крутящий момент?

Устройства плавного пуска изменяют напряжение для управления током и крутящим моментом. Во время запуска ток изменяется в зависимости от напряжения, в то время как крутящий момент двигателя изменяется как квадрат приложенного напряжения.Крутящий момент может не оставаться постоянным при различных приложенных напряжениях, условие, которое может усложняться при изменении нагрузок.

Некоторые устройства плавного пуска работают по алгоритмам управления крутящим моментом, но это не обязательно связано с постоянным крутящим моментом. Однако во время ускорения частотно-регулируемые приводы используют разные частоты двигателя при изменении напряжения. Режим управления VFD определяется с точки зрения постоянного напряжения на герц и обеспечивает постоянный крутящий момент.

Каковы стоимость, размер и тепловые характеристики?

При силе тока менее 40 ампер устройства плавного пуска могут предложить небольшую экономическую выгоду по сравнению с частотно-регулируемыми приводами.По мере увеличения силы тока и мощности стоимость частотно-регулируемых приводов увеличивается быстрее, чем у устройств плавного пуска, и может достигать экстремальных значений при высоких значениях силы тока.

Что касается размера, устройства плавного пуска имеют преимущество перед частотно-регулируемыми приводами при любой силе тока благодаря своей конструкции. По мере увеличения тока и мощности разница может увеличиваться. Когда устройства плавного пуска объединены с внутренним или внешним электромеханическим байпасом, они еще более эффективны и могут выделять меньше тепла. Это связано с тем, что устройства плавного пуска имеют меньше активных компонентов в цепи в режимах запуска, работы и останова.

Что следует учитывать при установке и гармониках?

Проблемы, связанные с установкой, можно разделить на стоимость, размер, температуру и качество электроэнергии. Установки плавного пуска требуют меньших размеров и меньших затрат, поэтому они не вызывают особого беспокойства.

Кроме того, гармоники устройства плавного пуска меньше, чем у частотно-регулируемых приводов. Длинные кабели для частотно-регулируемых приводов требуют большего внимания, чем для устройств плавного пуска. Кроме того, для устройств плавного пуска могут не потребоваться специальные типы проводов.Электромагнитная совместимость также не может быть учтена.

Прекратите использование двигателей, если в этом нет необходимости

Как бы просто это ни звучало, наиболее эффективный способ экономии энергии – выключать двигатель, когда он не используется. Чаще всего пользователи не решаются выключить двигатель, потому что считают, что его многократный запуск приведет к значительному износу. Один из способов смягчить это – использовать устройства плавного пуска, которые могут снизить износ.Правильно установленное и специально подобранное устройство плавного пуска также может снизить нагрузку на механические и электрические системы.

Снижение износа

Снижение износа двигателя – одна из основных задач пользователей. При запуске электродвигателя происходит значительный износ, так как высокие начальные токи и силы создают давление в механических и электрических системах. Хотя это может быть вредным, повреждающие эффекты можно контролировать с помощью устройств плавного пуска.Вы также можете использовать VSD, но они могут быть менее эффективными и дорогостоящими.

Использование высокоэффективных двигателей

Эффективность двигателя может быть получена из двух факторов: размера двигателя и качества его эффективности. В частности, для двигателей меньшего размера размер является важным фактором, влияющим на эффективность. Для более мощных двигателей большее значение имеют классы эффективности.

Энергоэффективные двигатели потребляют меньше электроэнергии, не так легко нагреваются и служат дольше.Эти типы двигателей отличаются улучшенной конструкцией, что приводит к меньшим тепловым потерям и меньшему шуму. Использование высококачественных материалов, более жестких допусков и улучшенных технологий производства также помогает снизить потери и повысить эффективность.

Чтобы оценить преимущества высокоэффективных двигателей, вы должны сначала определить «эффективность» электродвигателя. Это можно определить по соотношению механической мощности, выдаваемой двигателем (выход), к электрической мощности, подаваемой на двигатель (вход).Следовательно, КПД = (выходная механическая мощность / потребляемая электрическая мощность) x 100 процентов.

Таким образом, если двигатель эффективен на 80 процентов, он может преобразовывать 80 процентов электрической энергии в механическую. Остальные 20 процентов электроэнергии теряется в виде тепла.

Покупка двигателя подходящего размера

Двигатели, как правило, наиболее эффективны при нагрузке от 60 до 100 процентов от их полной номинальной нагрузки и наиболее неэффективны при нагрузке ниже 50 процентов.Это означает, что простая покупка двигателя правильного размера может в значительной степени повысить эффективность.

Обычно двигатели увеличенного размера работают с нагрузкой ниже 50% от номинальной, что не только делает их неэффективными, но и более дорогими по сравнению с двигателями нужного размера. Кроме того, они также могут уменьшить подачу электроэнергии на машину, что увеличивает нагрузку на электрическую систему.

Последние мысли

Поскольку «энергоэффективность» становится современной модной фразой, важно, чтобы эта концепция была интегрирована в повседневные бытовые и промышленные применения.Энергоэффективные двигатели могут предложить множество преимуществ. При правильной установке они могут работать холоднее, обеспечивать более высокие стандарты обслуживания, дольше служить, обеспечивать лучшую изоляцию и меньше шума и вибрации. Имея такое множество преимуществ, производители двигателей поступят мудро, если будут производить и использовать наиболее энергоэффективные двигатели.

Эта статья ранее появлялась на сайте www.powerjackmotion.com.

Электродвигатели Исследования и разработки

Управление автомобильных технологий (VTO) поддерживает исследования и разработки (НИОКР) для улучшения двигателей в гибридных и подключаемых электромобилях, уделяя особое внимание сокращению использования редкоземельных материалов, используемых в настоящее время для двигателей на основе постоянных магнитов.

В системе электропривода электродвигатель преобразует накопленную в аккумуляторе электрическую энергию в механическую энергию. Электродвигатели состоят из ротора (подвижная часть двигателя) и статора (неподвижная часть двигателя). Двигатель с постоянными магнитами включает в себя ротор, содержащий ряд магнитов и токопроводящий статор (обычно имеющий форму железного кольца), разделенных воздушным зазором. Существует три типа электродвигателей, которые могут использоваться в гибридных или подключаемых системах тягового привода электромобилей.

  • Двигатели с внутренним постоянным магнитом (IPM) имеют высокую удельную мощность и поддерживают высокий КПД в большом проценте рабочего диапазона. Почти все гибридные и подключаемые к электросети электромобили используют в тяговых двигателях редкоземельные постоянные магниты. Из-за высокой стоимости изготовления магнитов и ротора эти двигатели относительно дороги. Другие проблемы при использовании двигателей IPM включают ограниченную доступность и высокую стоимость редкоземельных магнитных материалов.Несмотря на проблемы, автомобильная промышленность ожидает продолжения использования двигателей IPM в большинстве электромобилей в течение следующего десятилетия.
  • Асинхронные двигатели обладают высоким пусковым моментом и высокой надежностью. Однако их удельная мощность и общий КПД ниже, чем у двигателей IPM. Сегодня они широко доступны и распространены в различных отраслях промышленности, в том числе в некоторых серийных автомобилях. Поскольку эта технология двигателей является зрелой, маловероятно, что исследования могут привести к дополнительным улучшениям в эффективности, стоимости, весе и объеме для конкурентоспособных электромобилей будущего.
  • Импульсные реактивные двигатели предлагают более дешевый вариант, который может быть прост в изготовлении. Они также имеют прочную конструкцию, которая может выдерживать высокие температуры и скорости. Однако они производят больше шума и вибрации, чем двигатели сопоставимых конструкций, что является серьезной проблемой для использования в транспортных средствах. Кроме того, вентильные реактивные электродвигатели менее эффективны, чем электродвигатели других типов, и требуют дополнительных датчиков и сложных контроллеров электродвигателей, что увеличивает общую стоимость системы электропривода.
Исследование и разработка электродвигателей ВТО
Основная цель

VTO – снизить стоимость, объем и вес электродвигателей при сохранении или повышении производительности, эффективности и надежности. Чтобы достичь плановых затрат на 2022 год, исследования должны снизить стоимость двигателя на 50%.

Для достижения этих целей VTO и его партнеры изучают множество направлений исследований:

Как работает электродвигатель?

Все признают, что если вы можете создать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед.- Джеймс Дайсон

Введение

«Электродвигатель стал немного более известен и ценился за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили. Поскольку большинство людей понимают и ценят влияние, которое их загрязнение оказывает на климат, спрос на автомобили растет. производителей для создания автомобилей, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда ».

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей мира усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде.”

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей – статора и ротора. Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



Статора Ротор

Статор

Статор состоит из трех частей – сердечника статора, токопроводящего провода и каркаса.Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом. У этих колец есть прорези на внутренней стороне колец, вокруг которых будет наматываться проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

После того, как токопроводящий провод вставлен в сердечник статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей – сердечника ротора, токопроводящих стержней и двух концевых колец. Пластины из высококачественной легированной стали составляют цилиндрический сердечник ротора, в центре которого проходит стержень. На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразной планке в центре сердечника ротора, либо слегка закручены, образуя диагональные прорези. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора. Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все токопроводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионал)

Если вы инженер-электрик, вы знаете, как работает электродвигатель. Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Он начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю.Электроэнергия подается на статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор – это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Итак, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса. Вращение колес – это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка – аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора.Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин, почему электромобили так уникальны. Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе – ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от того, что его тянет за собой магнитное поле).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и затратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, в то время как колеса будут двигаться еще быстрее, чтобы спуститься с холма. В машине это происходит, когда вы отпускаете ногу с газа, а ротор движется быстрее и возвращает электрическую энергию обратно в линию электропередачи для подзарядки аккумулятора.


Что такое переменный ток (AC)


по сравнению с постоянным током (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.Пока один ток постоянный, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока поддерживает постоянную полярность, то есть неизменную.

Подумайте, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянный ток для постоянной подачи одинакового напряжения. В дополнение к батареям, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батарей, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью при просмотре во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, – это частота. Частота сигнала – это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока – лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, которое подает питание на окрестности (те цилиндрические серые коробки, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Большинство крупных промышленных двигателей представляют собой асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого из них, чтобы намеренно выйти из строя.

Что означает три фазы?

Основанный на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия приводит к тому, что катушки с проводящим проводом начинают вести себя как электромагниты.

Простой способ понять три фазы – рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например, Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем истинный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США – Илон Маск

Электродвигатели прямо и косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание: MPG (значения миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива в городе / на шоссе для бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение 58 миль на галлон в США представляет собой средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, снижается шумовое загрязнение, поскольку шум, излучаемый электродвигателем, гораздо более приглушен, чем шум двигателя, работающего на газе.Кроме того, в связи с тем, что электродвигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в техосмотрах.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной индустрии, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, и не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не получится от достижений в области электродвигателей, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса в том виде, в каком он определяется электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Строительство трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Принцип работы трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.com/reviews/2015-tesla-model-s-p90d-test-review
http://www.caranddriver.com/tesla/ model-s
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
http: // science.howstuffworks.com/electricity8.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Изображение с: http://faq.zoltenergy.co/ технический /
http://www.kerryr.net/pioneers/tesla.htm
https://en.wikipedia.org/wiki/Westinghouse_Electric_(1886)
http://www.allaboutcircuits.com/textbook/alternating- current / chpt-13 / Introduction-ac-motors /
https://www.youtube.com/watch?v=Q2mShGuG4RY
http://www.explainthatstuff.com/electricmotors.html
http://electronics.howstuffworks.com/motor.htm
https://en.wikipedia.org/wiki/Induction_motor


Как работает электродвигатель в автомобиле

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей: статора и ротора. Статор состоит из трех частей: сердечника статора, токопроводящего провода и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга, а затем соединены друг с другом.
Внутри этих колец есть прорези, через которые проводящий провод будет наматывать обмотки статора.Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов. Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3.
Провода каждого типа наматываются вокруг пазов на противоположных сторонах внутренней части сердечника статора. Как только токопроводящий провод находится внутри сердечника статора, сердечник помещается в раму.

Как работает электродвигатель?

Из-за сложности темы ниже приводится упрощенное объяснение того, как четырехполюсный трехфазный асинхронный двигатель переменного тока работает в автомобиле.Все начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия подается на статор через аккумуляторную батарею автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается в двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор – это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.В обычном автомобиле, то есть неэлектрическом, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса. Вращение колес – это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка: аккумулятор необходимо подзарядить, чтобы он функционировал должным образом. В электромобиле нет генератора.
Так как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока.

Рис. 1. Термин «переменный ток» определяет тип электричества, характеризующийся напряжением и током, которые меняются во времени.

Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Это одна из причин, почему электромобили так уникальны.
Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе – ротор движется вращающимся магнитным полем, требуя большего крутящего момента.Но что происходит, когда вы отпускаете акселератор? Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля). Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.

Переменный ток и постоянный

Концептуальные различия этих двух типов токов должны быть очевидны; в то время как один ток (постоянный) постоянен, другой (переменный) более прерывистый.Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Под постоянным током понимается постоянный однонаправленный электрический ток. Кроме того, напряжение сохраняет полярность во времени. На батареях, собственно, четко обозначен положительный и отрицательный полюсы. Они используют постоянную разность потенциалов для генерации тока всегда в одном и том же направлении.В дополнение к батареям, топливным элементам и солнечным батареям, скольжение между определенными материалами может производить постоянный ток.

Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте, что давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени (рис. 1). При изменении напряжения и тока сигнала переменного тока они чаще всего следуют по форме синусоидальной волны.Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью при просмотре во времени. Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.
Другой термин, который вы можете услышать при обсуждении электроэнергии переменного тока, – это частота. Частота сигнала – это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц.Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Почему это важно?

Электроэнергия переменного тока – лучший способ передачи полезной энергии от источника генерации (например, плотины или ветряной мельницы) на большие расстояния.

Рис. 2. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений.Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, которое подает питание на окрестности (те цилиндрические серые коробки, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока). Мощность переменного тока
позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.

Как работает трехфазный четырехполюсный асинхронный двигатель?

Большинство крупных промышленных двигателей представляют собой асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Однако что именно означает «асинхронный» двигатель?
С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора.
С точки зрения непрофессионала это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.
Что означает многофазность? Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью (рис. 2).
Обычно предполагается, что многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.

Рис. 3. Три фазы – это токи электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.

Что означает трехфазный ? Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля (рис. 3).
Эта энергия заставляет катушки проводящих проводов вести себя как электромагниты. Простой способ понять три фазы – рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии.По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.

Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги. Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут.
Тем не менее, есть десятки других компаний, которые достигают значительного прогресса в этой области, например, Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric. (рис.4).

Электромобили и окружающая среда

Электродвигатели влияют на окружающую среду как напрямую, и косвенно, на микро- и макроуровне.Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно. С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему, связанную с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух (рис. 5).
Примечание. Значения MPG (миль на галлон), указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива для города / шоссе бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение в 58 миль на галлон в США – это средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году. С большой точки зрения рост количества электромобилей дает несколько преимуществ.

Рис. 5. Значения количества миль на галлон для каждого региона страны – это комбинированный рейтинг экономии топлива бензинового транспортного средства, который при глобальном потеплении будет эквивалентен вождению электромобиля.

Во-первых, снижается уровень шумового загрязнения, так как шум, издаваемый электродвигателем, намного ниже, чем шум от газового двигателя. Кроме того, поскольку электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в техосмотрах.

Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса.Хотя электродвигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и производительность, но и на внешнее воздействие . Таким образом, хотя электрический двигатель, возможно, и не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс. Если больше ничего не должно произойти из-за достижений, связанных с электродвигателем, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду.Это новое определение прогресса в том виде, в каком он определяется электрическим двигателем.
(Джилл Скотт)

Электродвигатель

| Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель – это машина, используемая для преобразования электрической энергии в механическую. Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первый гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю. Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, который состоит из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор . Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит движущийся компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам).В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре. Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две большие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году.Поскольку единственными доступными электрическими источниками был постоянный ток, первые коммерчески доступные двигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах. Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока.Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря. Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении.Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюса противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь. Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположный ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами.Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает напряжение на якоре, известное как противо-ЭДС (электродвижущая сила), поскольку оно противостоит приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет противодействия ЭДС, и якорь начинает вращаться.Счетчик ЭДС увеличивается с вращением. Действующее напряжение на обмотках якоря – это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотка возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы.Ток через обмотку возбуждения можно регулировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широких пределах в широком диапазоне условий нагрузки. Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны.Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели

переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные. Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, но

Ключевые термины

AC – Переменный ток, при котором ток, проходящий по цепи, меняет направление потока через равные промежутки времени.

DC— Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор – Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор – Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент – Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

– это, по сути, короткие замыкания.Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель изначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *