Содержание

«Ноль» и «земля»: в чем принципиальное отличие?

Исторически так получилось, что в Российской Федерации, как и в приграничных государствах, используется заземляющий принцип, когда нулевой проводник соединяется с заземляющим контуром. У многих людей может возникнуть «законный» вопрос: если они контактируют между собой, то для чего тянуть столько проводов – достаточно провести повсюду двойную жилу (фазу и нулевую линию) и будет возможность заземляться посредством нулевой жилы! Однако в такой постановке вопроса скрывается один технический нюанс, который превращает данное решение не только в бесполезную игрушку, но в некоторых случаях и в довольно опасную затею.

Для тех, кому не терпится, и кто любит «заглядывать в ответ», априори выскажу «секрет» – принципиальная идея заключается в том, в каком месте нулевой провод соединяется с заземлением. Вариант их соединения непосредственно внутри розетки, подключая заземляющую жилу (желто-зеленый провод) к нулевой (синий провод), не будет верным.
Такая заземляющая схема войдет в противоречие с предписаниями ПУЭ. В результате никакой защиты людей от поражения током не получится, более того, добавится еще больше проблем с безопасностью.
В ПУЭ без каких-либо вариантов однозначно прописано, какой должна быть заземляющая жила. Она должна быть непрерывным проводом, без каких-либо размыкающих элементов – реле, предохранителей, выключателей, а также, положим, с помощью отсоединения электрической вилки от розетки.
Стоит нарушить это основное предписание, оговоренное в ПЭУ – и заземление из надежной защиты человека от поражения током превращается в бесполезную фикцию. Но проблемы на этом, как учит теория, и показывает практика, не заканчиваются! Если все-таки пытаться придавать нулевому проводу заземляющие функции, то не исключена возможность, что корпус холодильника, микроволновки или других бытовых приборов, окажется под напряжением. Это объясняется тем, что по нулевому проводу течет электроток с соответствующим падением напряжения, величину которого можно определить, умножая силу тока на показатель сопротивления проводника на промежутке между замеряемым местом и подлинной заземляющей точкой.
Причем величина такого напряжения может характеризоваться десятками вольт, то есть может быть опасной для человека (в пределе – смертельной!).

Осталось подвести некоторые итоги и расставить акценты. В чем принципиальное отличие «ноля» от «земли»? В том, что по нулевому проводу протекает ток и к нему подключаются выключатели, те же вводные автоматы. То есть, если мы желаем иметь «землю» в виде непрерывной жилы, мы обязаны:
  • в многоэтажных многоквартирных домах: подсоединиться к особой земляной жиле в электрическом тоннеле;
  • для индивидуального жилого коттеджа: точкой подсоединения должен стать вводной автомат, точнее, его нулевой провод на входе, который тянется по воздуху или подземному кабелю от ближайшего от дома понижающего трансформатора, причем сечение нулевого провода должно быть не менее десяти квадратных миллиметров для медного провода и 16 мм2 – для алюминиевой жилы (см. в ПУЭ соответствующий пункт).

Любое другое место за вводным автоматом не может использоваться в качестве «земли», поэтому ни что, от металлических болванок, вкопанных недалеко от дома, до корпуса самого электрического щитка, таковыми считаться не могут.
Никогда не забывайте о правилах, изложенных в ПЭУ. Согласно им, следует руководствоваться элементарным, но верным правилом: когда нет уверенности в том, что вот этот конкретный провод является «землей», не стоит подсоединять к нему что бы то ни было, кроме устройства защитного отключения (УЗО) на 30 мА, который срабатывает мгновенно в отличие от автомата защиты. Бережёного, как известно, бог бережет!

Что такое фаза, ноль и земля в электропроводке квартиры? Что будет если перепутать Домашняя электропроводка: находим ноль и фазу.

В разделе на вопрос что будет если перепутать фазу с нулём при подключении люстры?? заданный автором Двутавровый лучший ответ это для самой лампочки (люстры) не чего страшного, а вот для того чтоб потом производить работы по обслуживанию лампочки. будет не очень удобно, придется отключать автомат

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: что будет если перепутать фазу с нулём при подключении люстры??

Ответ от Натурфилософия [гуру]
Да ничего не будет! В данном случае это совершенно роли не играет. Просто предпочтительнее выключатель на фазу ставить.
Главное производить работу не под напряжением.

Ответ от Дядька из Будущего… [гуру]
Если на люстре – то ни чего, если на выклбючателе той люстры, то в случае чего придется для ремонта обесточивать всю группу или помещение…

Ответ от Просалить [гуру]
если не посредственно в люстре..то абсолютно ни чего…если на выключатели…. то люстра будет постоянно под напряжением….

Ответ от Ceменовых А.С. [эксперт]
есть смертельный вариант: бывает лампа взорвалась и торчат только металлические усы. если к ним дотронуться то убьет. (((((помнить постоянно что нада идти вводной автомат выключать думаю не удастся.
делайте все верно – ноль постоянно подан на люстру, а через выключатель подается фаза.

Ответ от Tonumber tonumber [новичек]

в теории фаза должна подаваться на контакт 5
фаза на люстру через выключатель
для люстры это не страшно

Ответ от Ёан Саныч [гуру]
заповедь электрика – отключи напряжение и проверь его отсутствие. в люстре как минимум есть 3 провода.

один из них – общий. на подходящих проводах также есть общий провод. он определяется контрольной лампочкой (контролькой) .
общие провода должны совпасть обязательно.
лучше, когда фаза идет через выключатель.

Интересует вопрос: какие будут последствия, если перепутать клеммы аккумулятора? Мы рассмотрим данную тему, так как такую информацию должны знать начинающие автовладельцы. Трудно себе такое представить, что можно перепутать клеммы при установке аккумулятора.

При постановке АКБ на подзарядку это сделать можно, особенно в спешке. Сделать это на автомобиле гораздо труднее, ведь клеммы имеют разные размеры, но такое случается.

Так какие будут последствия, если перепутать и неправильно подключить клеммы аккумулятора? Чтобы дать правильный ответ на такой вопрос, необходимо рассмотреть возможные случаи такого подключения.

Начнем с самого легкого по последствиям случая, это когда перепутаны зажимы, которыми подключают зарядное устройство к аккумулятору.

ЗУ не имеют клемм с разными размерами, у них они быстросъемные, и перепутать их легко. ЗУ заводского изготовления среагируют на это перегоранием предохранителя.

Самодельные ЗУ такой защиты могут не иметь, а знак об «аварии», они могут подать сильным гулом силового трансформатора. Если такая ошибка была быстро ликвидирована, то особых последствий для АКБ не будет.

Гораздо хуже для него, если он будет так «заряжаться» некоторое время. В таких случаях в АКБ происходит процесс, который специалисты называют переплюсовка. Она наносит вред аккумулятору, уменьшая его срок службы, но немного подправить ситуацию возможно. Для этого необходимо полностью разрядить АКБ с помощью автомобильной (лучше от стоп-сигнала) лампочкой. После этого уже правильно подсоединив ЗУ к аккумулятору, производят его полную зарядку.

Что произойдет если перепутать?

Какие будут последствия, если перепутать клеммы аккумулятора на автомобиле?

Возможно несколько вариантов подключения и их последствий.

  • Клеммы перепутаны при установке на автомобиль при работающем двигателе;
  • АКБ установлен при выключенном зажигании.

Первый пункт доставит намного больше неприятностей водителю, чем второй. При смене полярности АКБ можно вывести из строя диодный мост генератора, а также другие электронные устройства автомобиля. Это касается в основном старых автомобилей, у которых не предусмотрена заводом защита от неправильного подключения АКБ. На большинстве современных генераторов установлены электронные реле, контролирующие зарядку аккумулятора, для которых смена полярности недопустима.

Меньшими последствиями обойдется неправильное подключение АКБ при выключенном зажигании. В таком случае обычно выходят ранее включенные электронные устройства, например магнитола, часы и другие приборы. Иногда выручают перегоревшие предохранители, установленные в цепи их питания, но при условии, что они соответствуют необходимым требованиям по максимальному току в защищаемой цепи.

Возможные неисправности при неправильном подключении АКБ

Оставленный надолго неправильно подключенный АКБ может вызвать пожар. Такие же последствия могут возникнуть при неправильном прикуривании от другого автомобиля.

Также может пострадать бортовой компьютер, если таков установлен на автомобиле. Это грозит полным отказом всех систем автомобиля. Необходима его замена, которая значительно «облегчит» кошелек владельцу.

Халатность и невнимание могут вывести из строя автосигнализацию. Она предпочитает работать только со своими полюсами.

Обязательно обратите внимание на проводку, причем не, только ту, которая идет от аккумулятора. Случается, что плавятся и замыкают провода, которые были под нагрузкой во время подключения. На современных авто предусмотрена некоторая защита от неправильного подключения. На плюсовых клеммах устанавливают предохранитель.

Мы рассмотрели вопрос: какие будут последствия если перепутать клеммы аккумулятора. Также для предотвращения замыкания электронные блоки защищают диодными мостиками с предохранителями. Предохранитель перегорает, а блок в исправном состоянии. Не проявляйте излишнюю поспешность при установке АКБ, она может дорого обойтись в прямом смысле.

Как определить: фазу, ноль и землю

Для двухжильной проводки:

Важно: При определении фазы в проводке дома либо квартиры необходимо будет подать напряжение на эту самую проводку. В связи с этим последующие работы и

эксперименты становятся небезопасными для жизни . Поэтому 100 раз подумайте, нужно ли вам это, может лучше вызвать профессионального электрика, у которого имеется допуск. Жизнь значительно дороже тех денег, которые он с вас возьмет.

Если вы отнеслись к моим предостережениям равнодушно, тогда идем дальше и по пунктам читаем, как из двух проводов определить, где фаза, а где ноль.

1. Выключите из розеток все приборы.

2. Обесточьте квартиру либо дом, напряжение вообще должно быть отключено.

3. Оголите те два провода, с которыми собрались «выяснять отношения».

Что будет если перепутать местами опорные подшипники?

Я не имею в виду, что нужно полностью снимать изоляцию с проводов, просто их кончики должны быть слегка оголенными и зачищенными, а так же находится на расстоянии друг от друга, чтобы они случайно не соприкоснулись, и не возникло КЗ.

4. Снова подайте напряжение, в том числе и на нужные вам провода.

5. Возьмите индикаторную отвертку. Если ее у вас нет, значит нужно купить. Стоит она очень смешных денег, как буханка хлеба. Поэтому не нужно искать другие методы и говорить, что: «у меня нет никакой отвертки, может лучше лампочкой».

6. Индикаторная отвертка должна находится в правой руке. Брать ее нужно только за диэлектрическую ручку. Дотроньтесь концом отвертки поочередно до каждого из проводов. При этом указательный палец правой руки нужно класть на кончик рукоятки, который должен быть металлическим.

Тот провод, на котором загорелся индикатор и есть фаза , а второй провод, естественно – это ноль .

Вся эта инструкция очень хорошо подходит для двухжильной проводки, но провода может быть и 3, то есть ноль, фаза и земля.

Для трёхжильной проводки:

Фазу в трехжильном проводе вы определите точно так же: индикатор будет гореть. На землю и ноль индикаторная отвертка реагировать не будет.

Ноль и земля определяется в разных случаях по-разному. Некоторые определяют по цветам проводов: коричневый — фаза , синий/голубой — ноль , злёно-жёлтый/полосатый — земля . Однако в этом случае нужно полагаться на электриков, которые не должны были перепутать и использовать конкретный цвет для конкретного провода. Поэтому этот метод сразу отпадает.

Можно взять патрон с лампочкой и двумя проводами, один прикрутить к определенной вами индикатором фазе, а вторым коснуться поочередно двух оставшихся проводков: где загорится – тот провод и ноль . Однако лампочка может загореться и при соприкосновении с землей . Можно померить поочередно напряжение при помощи вольтметра. В паре фаза-ноль напряжение должно быть больше, чем в паре фаза-земля.

Советы, как узнать 0 и землю:

1. Залезть в щит и отключить защитное зануление. На оставшейся паре проводов нагрузка (лампа) будет работать. Это если вы точно знаете, где земля в щитке.

2. Замкнуть фазу на один из оставшихся проводов. Если пробки выбьет, то ноль. Если нет, то земля. При условии, что у вас есть пробки, и вы не боитесь, что вся проводка сгорит. И это довольно опасно.

3. Есть индикаторные отвёртки специальные с батарейкой, ИЭК тот же продаёт (такие жёлтые), таким землю от нуля отличать удобно. Выявляем неонкой фазу, вырубаем пакетник/вводной автомат (работает это понятно только если он двухполюсный), тыкаем оставшиеся концы, который светится — земля, который не светится — ноль.

4. Вольтметром переменного тока померять напряжение между неопределенным проводом и батареей теплоснабжения (отковырнуть краску и касаться металла). У “заземляющего” провода потенциал будет ноль, у “нулевого” провода, за счет перекоса фаз (разных нагрузок по фазам) потенциал может быть от нуля до 20-30 вольт.

5. Если у Вас трех проводная сеть то тогда должно быть УЗО, далее определяете фазный провод, предварительно отключив всю нагрузку (т.е. нигде не должна замыкаться на устройствах). После определения фазы и подключения к ней (например, лампы накаливания), второй провод соединяете с любым из оставшихся, проводов (все подключения делайте со снятием напряжения), включите УЗО, затем включите вводной автоматический выключатель, если УЗО не отключится то второй провод и является нулевым, а если произойдет отключение УЗО, то это защитное заземление.

http://patlah.ru

© «Энциклопедия Технологий и Методик» Патлах В.В. 1993-2007 гг.

Здравствуйте, есть необходимость подключить после ремонта варочную поверхность вместо старой плиты. От старой плиты остался клемник с 3мя проводами (фаза, ноль, заземление), но с точки зрения тестера фаза и два ноля. 🙂 Вопрос: 1. как определить кто ноль, кто заземление? 2. Насколько важно не перепутать их? (подозреваю, что в доме 504 серии нет отдельного заземления и эти провода соединяются в щитке на общую нулевую шину. Спасибо.

Савин Алексей Николаевич 4 years, 7 months назад

Прзвоните эти два провода с радиатором отопления, тот который покажет меньшее сопротивление и есть земля, если сопротивление одинаковое, то разницы нет можете любой провод сажать на ноль.

Eлисеев Эдуард Михайлович 4 years, 7 months назад

Скорее всего так оно и есть.Для этого надо открыть щит и по цвету проводов от вашей плиты определить какой где сидит(на земле или нуле).А 3 провода хорошо, если вы поставите УЗО на печку(электрики это знают).

Еременко Дмитрий Александрович 4 years, 7 months назад

в Савдепе небыло земли, использовалось зануление, если дифавтомат не установлен. то без раницы какой провод использовать землей

Трифонов Андрей Сергеевич 4 years, 7 months назад

Возьмите тестер и проверьте на напряжение, м ежду нулем и фазой будет порядка 220в.

Карпов Вячеслав Николаевич 4 years, 7 months назад

Сам спросил, сам ответил.

Что будет если перепутать клеммы на аккумуляторе?

Определить по цвету кабеля. Соединяются или нет — смотри щиток.

Кусков Дмитрий 4 years, 6 months назад

Если провода одинакового цвета, то заземляющий ноль должен быть немного длиннее рабочего нуля и фазного провода. И если на варочную панель установлено УЗО, то в случае перепутывания нуля с “землей” оно сработает. Кстати если Вы подключите ВП не на рабочий ноль, а на защитный, часть тока будет идти мимо счетчика. За это можно получить по шапке.

Ермолаев Вадим Петрович 4 years, 6 months назад

В СОВКЕ БЫЛО ВМЕСТЕ…НУЖНО ПРОВЕРИТЬ СКОРЕЕ РАЗНИЦЫ НЕТ…И ОДНОГО ЦВЕТА-БЕЛЫЙ…А СЧЕТЧИК ТАК НЕ ОБМАНЕШЬ…НА НУЛЕ ПЕРЕМЫКА СТОИТ….ЧИСТО ПИТАНИЕ КАТУШЕК НАПРЯЖЕНИЯ….ТОЛЬКО ФАЗНЫЕ КЛЕММЫ ИМЕЮТ ЗНАЧЕНИЕ

Уважаемый посетитель! Вы находитесь в архиве старого форума сайта mastergrad.com

поменять ноль на фазу (+)?

alladin
14 окт. 2004
10:17:23
В квартире все выключатели света размыкают ноль т.е. по иде если не выключить автомат и полезть менять лампочку может тряхонуть.

Кто так сделал не знаю (дом старый сталинский) может раньше так принято было?

Вопрос в том можно ли просто в щитке взять да и поменять ноль с фазой местами т.е. то что раньше было ноль — станет фазой.
Рискую что нибуть сжечь?

AndreyMax
(Москва, Россия)
14 окт. 2004
10:33:08
Теоретически можно и пожечь,

Но можно и прозвонить и проверить до подачи 220в

Но если у соседей какие-то финты на вашу проводку — можно и пожечь.

В общем только из-за лампочек — предлагается не париться.

alladin
14 окт. 2004
14:02:00
что значит у соседей финты?
AndreyMax
(Москва, Россия)
14 окт. 2004
14:24:20
Ну может земляной провод дальше к ним уходит, или часть розеток у них запитана.

Может у них проводок от земли на батарею …

Конечно мало вероятно — но кто знает …

Crab
(Москва)
14 окт. 2004
14:57:00
Может попариться и на коробках разветвительных перекинуть фазы на нули.
«…это хлопотно, но это к лучшему…»
проф.Выбегалло
Rosta
(Рязань)
14 окт. 2004
15:26:19
Я думаю, можно, если только Вы уверены на 100% в своей проводке.
В старых домах с двухпроводной разводкой ставят розетки нового типа (евро) с земляным контактом, сажая его на нулевой провод. Технически неправильно, но какое-никакое «заземление» это даёт.
alladin
14 окт. 2004
15:40:05
нет земля у меня в воздухе весит в щитке

Меня смущает то что автоматы отключаются посекционно

1. розетки
2. розетки
3. свет в комнатах + старые розетки
4. свет в ванной и корридоре + старые розетки
5. стиралка(розетка) + свет в кухне

Вот такой зоопарк, боюсь как бы фазу на фазу не пустить

Если менять то только в щитке, по квартире слишком долго и хлопотно.

Геннадий Б
(Петербург)
14 окт. 2004
15:41:33
alladin! Если Вы решитесь на «изменение полярности», проверьте проводку в розетках. Соединение в розетке, о котором ПОЛОЖИТЕЛЬНО отзывается Rosta, сыграет при Ваших переключениях трагическую роль!
ziv
(Череповец)
14 окт. 2004
16:14:07
Видимо в «электрику»
Можно на вводе в квартиру сменить ноль и фазу.

Возможно просто где-то они были перепутаны в квартире во время ремонта или еще чего-либо.

ziv
(Череповец)
14 окт. 2004
16:15:26
Геннадий Б, я думаю у него и розетки то простые.
alladin
14 окт. 2004
17:16:46
там где писал «старые розетки» — там простые (без земли)

Где розетки, там земля но она вся заведена в щиток и пока не подключена никуда (т.к. земли нет …)

Просто автоматы на новые розетки я и не собирался менять (№1,№2)
а вот №3 и №4 махнул бы, №5 под вопросом т.к. там намешано и новое и старое.

Махнул это значит — вытаскиваю из автомата провод и сажаю его на землю с земли пару этого провода втыкаю в автомат.

Rosta
(Рязань)
15 окт. 2004
15:32:24
IS
(Челябинск)
15 окт. 2004
16:30:51
to Rosta

> > Прозвоните свой земляной провод на предмет замыкания с нулевым в проводке квартиры.

Так как дом старый, земляного провода там, скорее всего, просто нет в природе. Есть только два провода и черт его знает, куда там заведена фаза и куда ноль. Я совсем не удивлюсь, если часть выключателей рвут фазу, а часть — ноль (хотя в данном конкретном случае автор темы писал что все выключатели сделаны одинаково).

alladin
15 окт. 2004
17:54:18
может и не одинаково но уж это проверить просто
вырубаю свет и смотрю тестером есть фаза или нет

Но думаю что все рвут ноль.

amp
(Москва)
16 окт. 2004
12:09:33
Я думал только в доме моей бабушки (центр, 50е годы) такая шиза =) Ан нет… может раньше действительно было можно разрывать ноль?

Хотя бы конечно если бы и заморочился на какие-то переделки, то перетянул бы всю проводку заново, поставил нормальный щиток и розетки с землей. Дорого, муторно, но правильно.

MaiklF
16 окт. 2004
13:34:49
В старом доме естественно нет земли. Если требуется заземлить евророзетки можно воспользоваться «нулем», только проложив этот «ноль» отдельным проводом с электрощитка. Если заземляющий контакт евророзетки соединен с РАБОЧИМ «Нулем» в самой розетке — это не есть гуд, и от этого стоит избавится (В противном случае, когда электрик, после какого-нить ремонта перепутает в щитке вводные концы и посадит нулевой провод на фазу, корпус оборудования подключенного к подобной розетке окажется под напряжением. Так же напряжение на корпусе появится и в случае отгорания рабочего нулевого провода где-то в электропроводке).
Что касается установки выключателей на «ноль». Как правило это встречается в старых домах и в деревнях. Когда-то (не знаю точной даты) существовало правило, согласно которому выключатели запрещалось ставить на «фазу» дабы уберечь включающего от поражения электрическим током в случае возможной технической неисправности выключателя или наличия в этом выключателе влаги (воды).

Что будет, если перепутать клеммы аккумулятора?

Что ж, ляпы существовали даже в ПУЭ.

Конкретно в случае у alladin, проблем никаких не вижу. Устранение ляпов с подключениями выключателей устраняется простейшим перекидыванием общих вводных проводов (например подходящих к его электросчетчику) местами. Соседи здесь ни при чем. У них своя схема эл.проводки — свои вводные концы и свой электросчетчик соответственно (если конечно речь идет не о коммуналке 🙂). И срозетками тоже проблемм не возникнет, т.к. alladin пишет, что заземляющие контакты висят в воздухе.

И ещё про евророзетки. Провод предназначенный для ЗАЩИТНОГО «Нуля», т.е. для подключения к клемме заземляющего контакта евророзетки, старайтесь посадить в электро щитке отдельно от общей «нулевой» клеммы (куда нить подальше в щитке, под отдельный болт/винт/гайку). Дабы уберечь свое дорогостоящее оборудование от случайных косяков местного электрика.

Alew
(Петербург)
16 окт. 2004
16:39:19
MaiklF затронул актуальный для меня вопрос: Если электрик по ошибке или сознательно подключит земляной провод к фазе, как на это отреагируют УЗО и двух полюсный автомат?
И защитят ли они мое дорогостоящее оборудование?

Спасибо.

MaiklF
17 окт. 2004
12:26:27
Если электрик поошибке поменяет местами фазу с нулем, то:
— для двух полюсного автомата это всё равно, и он продолжит выполнять свои основные функции по защите цепи.
— для УЗО — это зависит от модели УЗО. Для некоторых подобное переключение позволительно и устройство (УЗО) остается полностью функциональным, а для некоторых нет и устройство (УЗО)не будет работать.

В любом случае, УЗО не предназначены для защиты оборудования! ИХ цель — защитить человека от поражения электрическим током и защита электроцепи от возгораний связанных с утечками при нарушениях изоляции токоведущих частей.
Относительно принципа работы УЗО даю ссылочку, где коротко, просто и понятно все объясняется:
http://www.vashdom.ru/articles/ikm_uzo.htm

Кстати, автомат тоже нельзя рассматривать в качестве защиты оборудования (есть исключения — автомат защиты двигателя например). Автомат служит для защиты цепи (линии электропроводки, например) от превышения максимально допустимых токов (как правило в случае короткого замыкания (КЗ), или при привышении допустимых нагрузок, когда лишний чайник в розетку подключают 🙂).

На защиту оборудования призваны другие устройства.
— От скачков напряжений — стабилизаторы например.
— От помех — разного рода фильтры.
— Для бесперебойной работы оборудования — ИБП (источники бесперебойного питания), как правило в них и фильтры солидные, и от разгула напряжения спасают отлично.
— От полива оборудования водой, при поливе цветов — внимательность и аккуратность.
— От разбивания оборудования, запущенной в него ребенком игрушкой — внушение и ремень (некоторым), воспитание короче.
— Да, от пыли — пылесос (очень, кстати, нужный метод защиты)

Margaret
(Санкт-Петербург)
17 окт. 2004
15:57:36
Можно вопрос от ничего не понимающего в эл-ке человека?

Если все-таки земля в розетке подключена на ноль, а во всем ист. центре города «зануленная нейтраль» (по словам электриков когда-то), то что будет конкретно если кто-то что-то поменяет (поключит землю на фазу или что-то) в общем щитке (у нас в нем роются каждый кто может)? В одних случаях стоит сетевой фильтр, в других — нет.

И что будет, если стиралка, электродуховка вообще не заземлены?

Для человека и для техники?

IS
(Челябинск)
17 окт. 2004
17:41:56
to Margaret

> > «зануленная нейтраль» (по словам электриков когда-то)

Наверное, «заземленная нейтраль»? Так она, по идее, везде заземленная.

> > что будет конкретно если кто-то что-то поменяет (поключит землю на фазу или что-то) в общем щитке (у нас в нем роются каждый кто может)? В одних случаях стоит сетевой фильтр, в других — нет.

Если на вводе в квартиру кто-то поменяет местами фазу и ноль, получите фазу на корпусе всех якобы заземленных приборов. Т.е. одновременное касание «заземленной» стиральной машины и ванны или труб водоснабжения ничем не будет отличаться от засовывания пальцев в розетку.

> >

Ничего страшного ее будет. Правда, потенциально уровень безопасности будет ниже, но на практике это не особо принципиально: раньше отечественные стиральные машины вообще были без заземления.

Margaret
(Санкт-Петербург)
17 окт. 2004
23:22:06
Спасибо за ответ, IS.
Конечно, я описалась, заземленная нейтраль.
дело в том, что для меня эти слова ничего не значат (по непониманию), я их просто повторяю как попугай:).
Вместе с тем, нам всегда говорили, что никакой земли у нас нет. Подключить на щиток в парадной тоже невозможно…

Вот я и пытаюсь понять что делать. Электрики из ЖЭКа отказываются нам что-то делать (долгая история объяснять почему — вкратце, жители дома ругаются со всей городской администрацией, поэтому у нас сплошные проблемы и с мелочами — эл-во, отопление..), те, кого пытались нанять явно ничего не понимают, на крутых спецов денег нет…

> > И что будет, если стиралка, электродуховка вообще не заземлены? Для человека и для техники?

> Ничего страшного ее будет. Правда, потенциально уровень > безопасности будет ниже, но на практике это не особо > принципиально: раньше отечественные стиральные машины > вообще были без заземления.

А как же с гарантийными ремонтами бытовой техники? Везде в инструкциях пишется, что, мол, ни за что не отвечаем, если не заземлено.
И что все-таки может быть хотя-бы как Вы пишете, не страшного? В чем проявиться может этот уровень безопасности как более низкий?

Можно обнахалиться и еще один вопрос? У нас есть еще промежуточный щиток (то есть, есть в квартире, есть общелестничный, и есть промежуточный, на две квартиры, правда вторая квартира давно переведена в офис и что там для них сделано — неизвестно). Так вот, в нем наш (на нас идущий)автомат (на 25 ампер) сильно греется, иногда искрит, если много света включить (раньше такого не было)… — кроме электриков ЖЭКа, это кто-то может починить, а то страшно? (Этот автомат лет 7 назад искрил, вызывали ночью аварийку (тогда они еще приезжали на такие вызовы, теперь уже нет), они заменили автомат на запасной, который был у нас дома (вот на эти 25 ампер), сколько был автомат до этого мы тогда не уточнили…

Извините за изобилие вопросов,просто как-то страшно жить …в Питере.

IS
(Челябинск)
18 окт. 2004
08:41:42
> > То есть землю в розетке лучше вообше не подключать на ноль? У нас это только для компьютеров. И сетевой фильтр ничем не поможет? Переделать розетки?

Лучше вообще без земли, чем с соединением в розетке. А сетевой фильтр совсем для другой цели — он только ловит выбросы напряжения.

> > А еще у нас автоматы (старые модели) поставлены на фазу и на ноль. Когда-то нам так сделали. Тоже неправильно?

Автоматы должны быть сдвоенные, т.е. чтобы при срабатывании автомата разрывались бы оба провода одновременно.

> > Так вот, в нем наш (на нас идущий)автомат (на 25 ампер) сильно греется, иногда искрит, если много света включить (раньше такого не было)… — кроме электриков ЖЭКа, это кто-то может починить, а то страшно?

Этим занимаются ЖЭКовские электрики и в описанных обстоятельствах их надо срочно вызывать.

Они, конечно, будут изворачиваться, но надо настаивать. В случае чего угрожать судом за невыполнение служебных обязанностей.

При ремонте или частичной замене электропроводки, электрику приходится сталкиваться с определением фазы, ноля и заземления в распаячных коробках. С определением фазы проблем никаких нет, достаточно воспользоваться отверткой-индикатором. Когда проводка проложена двумя жилами, без земли, естественно, вторая жила является нулем. Однако при ремонте проводки с тремя токоведущими проводниками, зачастую возникает вопрос: где рабочий ноль, а где защитный. Ведь по электрическим свойствам оба проводника идентичны – можно подключить даже приличную нагрузку к паре фаза-земля и не заметить разницы. При измерении напряжения мультиметром между парами фаза-ноль и фаза-земля примерно одинаковые напряжения.

Для тех, кто в танке: если вы думаете, что можно проверить мультиметром или лампой два провода из трех и там, где будет напряжение, это и есть фаза с нулем – вы заблуждаетесь! Между фазой и заземлением (занулением) напряжение также составляет около 220 вольт!

Если проводка современная, с цветной маркировкой проводов – дело упрощается. Обычно фаза маркируется коричневым или белым (при отсутствии коричневого) проводниками, ноль – синим или белым (с синей полосой). Заземление по современным стандартам маркируется желтой изоляцией с зеленой полосой. Однако здесь два НО: далеко не факт, что монтажники были в курсе об общепринятой цветовой маркировке или использовали провода для трехфазной сети с черным, коричневым и синим (белым или желтым) проводниками. Поэтому хорошему электрику не следует безоговорочно ориентироваться на цвета проводников, смонтированных другими электромонтажниками.

Методы определения

Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более сложным.

Цепь имеет защиту по дифф-току . Если весь объект или исследуемая ветка снабжены защитой по дифференциальному току – дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО при подключении лампы – вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите устройство защитного отключения на практике.

Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку “тест” на защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА может не сработать, для надежной проверки нужно брать прибор помощнее.

Сравнение с заземляющими контактами розеток . Данный метод будет работать если на вводе стоит двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует отключить все приборы из розеток.

Далее следует “прозвонить” мультиметром в режиме измерения сопротивления заземляющий контакт одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки сопротивление практически нулевое.

Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии, что проводка изначально исправна и верно смонтирована.

Лезть в щит . Если предыдущие способы реализовать нет возможности, придется лезть в “начинку” электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться – тот и есть нулевой проводник.

В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления. В этом случае понадобятся токовые клещи . Нужно включить напряжение и нагрузку в помещении, и исследовать клещами неизвестные проводники в щите – где будет ток, так и рабочий ноль. Обратите внимание: метод работает только в том случае, когда вы точно знаете, что один из проводников – ноль, а другой – земля.

Все вышеописанные методы работают как с заземлением, так и с “занулением”

Определить контакты при подключении электроплиты . Иногда возникает необходимость заменить розетку электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления электроплиты необходимо условие – двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей квартиры.

Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки – этот контакт помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире – так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится отвертка-индикатор.

Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами на электроплиту. Тот контакт, который звонится с нолем розетки – рабочий, а тот что не звонится – зануление (земля). Если же звонятся оба контакта – нужно искать ошибки в электропроводке. При организации зануления в советское время, его присоединяли к клемме “PEN” без каких-либо коммутационных аппаратов.

Что будет, если перепутать ноль с землей?

Если заземление исправно и выполнено в соответствии со всеми требованиями, об ошибке можно не подозревать многие годы. Мне много раз попадались неправильно подключенные электроплиты с советских времен. Однако на эти ошибки не следует закрывать глаза:

1. Приборы учета электроэнергии будут некорректно работать, из-за этого можно схлопотать приличный штраф от энергетиков, когда все выяснится.

2. При установке дифференциальных выключателей (УЗО) или дифференциальных автоматов, корректная их работа невозможна. Эти аппараты будут все время отключаться.

3. Заземление перестанет выполнять свою основную функцию – защищать человека от поражения электрическим током. В добавок, это может стать самой причиной поражений.

4. При “слабом” заземлении в частном доме оно быстро выйдет из строя и в любом случае, придется производить ремонт.

Источником электрической энергии служит генератор, который состоит их трех обмоток или полюсов, соединенных в трех лучевую звезду, центральная точка соединяется с землей или заземляется. Посмотрите как это происходит.

Как видно по схеме к трем концам звезды подключаются провода, отводящие фазы, а центральная точка будет нулем, как Я говорил она заземляется, потому что электропитание величиной 380 Вольт- это система с глухозаземленной нейтралью. Без заземления нейтрали трансформатора на ТП- не будет работать нормально электроснабжение.

Три фазы, ноль и еще дополнительно заземляющий проводник (также соединенный с землей)- итого пять жил, которые приходят с подстанции в электрощит дома, но до каждой квартиры с этажного щитка приходит только одна фаза, ноль и земля. Но в передаче электрического тока участвуют только фаза и ноль. А по пятому заземляющему проводнику электрический ток не течет, у него другая защитная функция, которая заключается в то что, при попадании фазы на металлический корпус бытовой техники (соединенной с заземляющим проводником) происходит и отключение автомата или УЗО- при утечке тока.

Электрическая энергия передается по фазе, а на нулевом проводнике напряжение равно нулю, но не всегда при подключенным к нему электроприборах- читайте дальше.


Напряжение между нулем (землей) и любой фазой равно 220 В, а между разноименными фазами 380 Вольт- а это напряжение используются там, где большие нагрузки или большая потребляемая мощность. А это к квартире не относится! К тому же 380 Вольт кратно опаснее для человека.

В водном электрощите дома ноль и земля соединены вместе и дополнительно с заземлителем, который закопан в землю. А далее идут раздельно по этажным щиткам дома, то есть изолированны друг от друга, к тому же заземляющий проводник соединяется на прямую с корпусом электрощита, а ноль садится на изолированную колодку!

Электрический переменный ток течет между двумя проводами фазным и нулевым, при чем при его частоте в нашей электросети 50 Гц он меняет свое направление (от нуля или к нулю) 50 раз в секунду.

Но он не просто течет а через электро потребитель, подключенный в розетку или к электрическому кабелю на прямую!

Третий проводник является защитным он не участвует в передаче электроэнергии, а служит для одной цели- это защиты нас от поражения электрическим током при аварийных ситуациях, когда фаза появляется на металлическом корпусе электроприборов! Поэтому он через заземляющие контакты розетки соединяется с металлическими корпусами стиральной машины, холодильника, микроволновой печи и т. д. А кроме того заземление значительно снижает вредное электромагнитное излучение от бытовой техники.

При прикосновении бьется током только фаза. Если Вы недостаточно хорошо изолированны от земли, т. е. не в резиновых тапочках или не стоите на деревянном стуле при этом второй рукой не касаясь пола или стены, то при при прикосновении к оголенному фазному проводу Вы ощутите протекание через Вас электрического тока от фазы на землю.

Внимание не редки случаи гибели людей в быту в результате продолжительном воздействия или прохождении электротока через сердце человека. Будьте осторожны!

В некоторых редких случаях может биться и ноль , когда к нему подключен электроприбор с импульсным блоком питания- компьютер, бытовая техника и т.п. Но, как правило, там напряжение не велико и безопасно, Вас только пощекочет!

Заземляющий проводник всегда можно брать и не бояться, кроме случаев его обрыва в электропроводке или в щите!

Как найти фазу, ноль и землю?

Для определения фазного провода необходимо приобрести недорогую индикаторную отвертку, которая при прикосновении к защищенному фазному проводу светится. Рекомендую прочитать нашу . Обычно фазный провод- красного, коричневого, белого или черного цветов.

Ноль подключается в светильнике или розетке вместе с фазой на питающий контакт, и при прикосновении индикатором- он не светится. Используется под него синий провод или с синей полоской!

Защитный проводник подключается на заземляющие контакты розетки, металлический корпус светильника или электроприбора. По общепринятым нормам жила заземления выполняется проводом желто-зеленного цвета или с полосой этих цветов.

Похожие материалы.

Что будет, если перепутать фазу и ноль при подключении люстры?

Монтаж осветительных приборов является неотъемлемой частью любого ремонта в доме или квартире. Но, несмотря на то, что установка выключателей и люстр является довольно простой задачей, все же при выполнении монтажа может возникнуть множество вопросов. Например: что будет, если перепутать фазу и ноль?

Если перепутать фазу и ноль

Как гласят ПУЭ, фаза «L» должна быть прерванной через выключатель и направляться к главному контакту патрона, в который будет вкручена лампочка. При этом ноль является общим для всех источников света и не должен прерываться. Он подходит к боковому цоколю патрона. Поэтому в случае с использованием обычных лампочек, если фаза и ноль будут перепутаны, не произойдет ничего катастрофического, но это только для самих лампочек! А вот для человека это очень опасно, так как в случае, когда он будет менять сгоревшую лампочку, то получит удар от не отключенной фазы!

Что касается люстр, в которых будут вкручены галогенные или диодным лампочки «экономки» проблема будет еще существеннее. Из-за перепутанных проводов лампочки будут работать с мерцанием и вскоре выйдут из строя. В свою очередь, если люстра дополнительно комплектуется вентилятором, то обмотки его электродвигателя при неправильном подключении просто сгорят.

Как определить ноль и фазу

Перед началом монтажа любого осветительного прибора первым делом следует разобраться со свободными концами проводов, которые торчат. На потолке их обычно 2, 3 или 4. Для того чтобы понять, какой провод куда идет, необходимо иметь инструмент электрика. Например:

  1. Если на потолке 2 провода, то понадобится простой индикатор. С его помощью можно определить назначение каждого проводника, поочередно прикоснувшись к нему индикатором при включенном выключателе. Если лампочка индикатора загорелась, то это провод фазы. Второй, соответственно, будет нулевым.

  2. Прозвон трех проводов осуществляется точно так же: с помощью индикатора определяют 2 провода фаз и провод ноль. При этом выключатель в таком случае будет двойным, поэтому нужно будет определить привязанность фаз к каждому из них.

  3. Если на потолок выходит сразу 4 провода, то это говорит о том, что четвертый является заземлением. Чаще всего он имеет маркировку желто-зеленого цвета, но все 4 провода также могут иметь и один цвет. В таком случае также нужно будет использовать индикатор. Фазы определяют индикаторами, а отличить провод заземления от ноля можно с помощью мультиметра. Тот провод, который покажет сопротивление, является заземляющим.

Важно: после того как фаза, ноль и заземление будут определены, эти провода необходимо пометить маркером, чтобы не перепутать при монтаже люстры.

Особенности монтажа люстры

Крепление люстры к потолку может осуществляться двумя основными способами: с помощью крюка или монтажной планки. Если люстра будет устанавливаться на натяжной или подвесной потолок, то закладные или подвесы должны быть подготовлены заранее.

При монтаже люстры с вентилятором необходимо придерживаться инструкции, которая прилагается к ней. Обычно в инструкции указывается схема подключения к электрической сети. Выключатель можно использовать одно или двухклавишный. В первом случае при его включении загорятся лампочки, и включится вентилятор. В случае двухклавишного выключателя можно освещение и вентиляцию включать по отдельности.


Если люстра предусмотрена для использования нескольких лампочек, все они будут соединяться с помощью одного нулевого провода. При этом фазу необходимо подключить от провода, идущего от выключателя.

Еще более сложным будет монтаж люстры с пультом, работа которой не ограничивается одним освещением. Она может использоваться в качестве декоративной подсветки или выключаться сама по таймеру. Работой всех систем люстры с пультом управления управляет специальный контроллер.

Правила безопасности при монтаже люстры

Важно: перед началом монтажных работ необходимо обесточить электросеть! Это можно сделать с помощью отключения пакетного выключателя или посредством выкручивания пробок в щитке.

При работе с электрической сетью необходимо использовать только профессиональными электротехническими инструментами, имеющими изоляцию, рассчитанную на 1000 В. При этом выполнять электротехнические работы на высоте необходимо только на устойчивой опоре, на которой не будет риска потери равновесия. И последнее – проводка, характеризующаяся поврежденной изоляцией, не должна быть использована!


Что произойдет, если вы подключите питание к земле?

Если выключатель или другое защитное устройство не сработает, вещи взорвутся, расплавятся или загорятся. Если вам случится, что будет частью этого пути к земле , , вы получите опасный, возможно, смертельный удар электрическим током. Чего вам может не хватать, так это того, что заземление на генераторе переменного тока не отрицательное, оно равно нулю.

Нажмите, чтобы увидеть полный ответ


Соответственно что будет при подключении питания к земле?

Физика электрического потока сложнее, чем может дать большинство простых объяснений, но по сути, электричество стремится вернуть свои электроны на « землю », то есть разрядить свою отрицательную энергию и вернуться к равновесию.

Далее вопрос, что значит быть заземленным электричеством? В электрическая инженерная, земля или земля является опорной точкой в ​​электрической цепи , от которой измеряются напряжения, общим обратным путем для электрического тока или прямым физическим соединением с землей. Электрические цепи могут быть подключены к земле по нескольким причинам.

Кроме того, что произойдет, если электрические устройства не будут заземлены?

Без должным образом заземленной электрической системы , вы будете рисковать любыми устройствами у вас подключено к ваша система не подлежит ремонту.В наихудшем сценарии перегрузка источника питания может привести к даже к возгоранию с по , что приведет к риску , а не , только значительным потерям имущества и данных, но также и физическим травмам.

Что произойдет, если нейтраль не заземлена?

Опасность разомкнутой работы Нейтраль Если обслуживающий провод , заземленный ( нейтраль ) разомкнут или не предусмотрен вообще, то нежелательный нейтральный ток будет течь по металлическим частям электрической системы и опасным напряжением будут присутствовать на металлических частях, что может привести к поражению электрическим током.

Что произойдет, если соединить два провода под напряжением? – Mvorganizing.org

Что произойдет, если соединить два провода под напряжением?

Подключение двух токоведущих проводов таким образом к переключателю ничего не даст, если оба токоведущих провода от одного источника, поскольку ток не будет течь, поскольку оба они должны иметь одинаковый потенциал, измеренный в вольтах (электрический ток течет между точками с разными потенциалы) НО если “Живые” провода от других…

Что произойдет, если токоведущий провод коснется воды?

Вода также может вызвать пожар.Однако при отсутствии предохранителя провод нагревается и может начаться возгорание. Вода также может проводить электричество к вашему телу, если вы коснетесь оголенного провода, поскольку заземляющий провод предназначен для возврата электричества в землю, даже если для этого он должен проходить через ваше тело.

Что произойдет, если вы подключите нейтраль к земле?

Соединение между нейтралью и землей позволяет при любом замыкании фазы на землю развивать ток, достаточный для «отключения» устройства максимальной токовой защиты цепи. Если нейтраль меньше фазных проводов, она может быть перегружена, если возникнет большая несимметричная нагрузка.

Могут ли нейтраль и земля быть на одной шине?

Нейтраль и земля разрешены в одной шине, однако только один нейтральный провод разрешен под винтом. Никакие другие нейтрали или земли не должны находиться под винтом.

Что произойдет, если поменять местами нейтраль и земля?

Если полярность вашей розетки обратная, это означает, что нейтральный провод подключен к тому месту, где должен быть горячий провод.Это может показаться не ужасным, но это так. Из розетки всегда течет электричество с обратной полярностью, даже если прибор должен быть выключен.

Кто виноват в неисправности счетчика электроэнергии?

Ваш поставщик несет ответственность за правильную работу вашего счетчика. Если вы арендатор и ваш домовладелец оплачивает счета за электроэнергию, сообщите им, что, по вашему мнению, счетчик неисправен. Они будут нести ответственность за то, чтобы связаться с поставщиком энергии и решить проблему.

Безопасно ли оставлять зарядные устройства подключенными, когда они не используются?

Его можно не беспокоить. Гарантированно, что он потребляет немного энергии, но не представляет никакой опасности для безопасности. Вы можете оставить его подключенным к розетке, так как при его отключении питание будет отключено. Если вы хотите быть СУПЕР безопасным, то можете, если хотите.

Какие приборы сжигают больше всего электроэнергии?

Вот десять самых распространенных бытовых приборов, перечисленных в порядке потребления энергии:

  • Сушилка: 75 кВтч / мес.
  • Духовка Диапазон: 58 кВтч / месяц.
  • Освещение 4-5 комнатных домов: 50 кВтч / мес.
  • Посудомоечная машина: 30 кВтч / мес.
  • Телевидение: 27 кВтч / мес.
  • Микроволновая печь: 16 кВтч / месяц.
  • Стиральная машина
  • : 9 кВтч / мес.

Что такое однофазное и трехфазное питание и что происходит, когда нейтраль вашего источника питания отключается?

    org/BreadcrumbList”>
  1. Главная страница ›
  2. Экономия электроэнергии›
  3. Общие советы ›
  4. Что такое одно- и трехфазное питание и что происходит, когда нейтраль вашего источника питания отключается?

Вы либо видели, либо слышали от других о проблеме высокого или низкого напряжения в своем доме.В большинстве случаев сомнения связаны с некачественным питанием или скачком напряжения. Но есть и другая причина, а именно «отключение нейтрали». В этом посте мы рассмотрим, как отключение нейтрали и его расположение влияют на производительность вашего источника питания.

Электропитание в вашем доме может быть однофазным, т. Е. 2-проводным с фазой и нейтралью или 4-проводным с 3 фазой и нейтралью. Подробнее об одно- и трехфазном питании. Электропитание распределяется параллельно к разным домам либо однофазной, либо трехфазной системой электроснабжения в зависимости от разрешенной нагрузки.Трансформатор на подстанции соединен треугольником, при этом вход является трехпроводным, трехфазным, а выход трансформатора – четырехпроводным, трехфазным. В зависимости от нагрузки энергокомпания санкционирует одно- или трехфазное электроснабжение вашего дома. Когда он однофазный, мощность поочередно распределяется от фаз R, Y и B, так что нагрузка на систему уравновешивается.

Что такое нейтральный терминал?

Нейтраль выводится из трансформатора, через который между фазой и нейтралью подается напряжение 240 В.Этот нейтральный провод заземлен на самом трансформаторе и проходит как изолированный провод к дому. Заземление нейтральной клеммы удерживает нейтраль под потенциалом земли. Это помогает поддерживать фазный потенциал на уровне 240 В минус несколько вольт в сторону падения напряжения. Из-за неуравновешенности нагрузки через нейтральный провод всегда течет ток обратно в систему. Помните, что нейтраль заземляется только на трансформаторе, а не на нагрузке, т. Е. В доме. Не следует заземлять нейтраль у себя дома.В этом случае часть тока может течь к источнику через землю с некоторой потерей мощности.

Что такое отключение нейтрали?

Отключение нейтрали аналогично отключению фазы. Если фазное питание отключено, в этой фазе не будет электричества в вашем доме и не будет нанесен ущерб. Теперь представьте себе отключение нейтрали по сценарию, приведенному ниже, и то, как напряжение ведет себя на выводах различных фаз.

На трансформаторе

Трансформатор питает нагрузку во всех трехфазных сетях, а распределение таково, что нагрузка сбалансирована в пределах плюс / минус 5-15%.Из-за отключения нейтрали на трансформаторе его потенциал будет плавающим в зависимости от дисбаланса нагрузки. Теперь, если дисбаланс нагрузки значительный, скажем, плюс-минус 15%, фаза с низкой нагрузкой, напряжение станет высоким, и электронное оборудование, предусмотренное в этой фазе, может сгореть и снизить нагрузку, что может вызвать эффект домино. В то же время фаза с высокой нагрузкой будет испытывать низкое напряжение, но не повредит электронику / свет / вентилятор. Но это может привести к повреждению оборудования с электроприводом, а также к возникновению дыма или пламени, снижению нагрузки в этой фазе или отключению из-за защиты действия стабилизатора.В любом случае нагрузка снижается, а напряжение повышается. Теперь нейтраль может перейти в состояние устойчивости, и последовательность повреждений оборудования может прекратиться.

Так объясняются жалобы на повреждение оборудования в обществе, и каждая квартира / дом сталкивается с этой проблемой.

У вас дома

Дисбаланс нагрузки будет значительным, как и дисбаланс напряжений. Существует вероятность существенного повреждения электронного оборудования в связи с явлением, описанным выше.

В доме с однофазным подключением

Поскольку нейтраль отключена, в доме не будет электропитания. Вы будете искать MCB или RCCB, но без отключения и что дальше? Естественное отключение приведет к появлению фазного напряжения на клемме нейтрали. Обнаружить это можно только при помощи тестера. Убедитесь, что это испытание проводится с помощью электрика.

Нейтраль отключена, но касается земли

А! Это самый безопасный режим отключения при отключении нейтрали и касании земли.Теперь обратный ток течет обратно к источнику через землю. Потенциал нейтрали не сильно смещается и не повреждает какое-либо оборудование.

Как часто это бывает?

В воздушной распределительной сети LT это может быть обычным явлением во время штормов, особенно в деревнях с ненадлежащим обслуживанием нейтрального провода. Это одна из причин, по которой сельчане будут использовать землю в качестве обратного проводника вместо нейтрали, потому что нет надежности воздушных проводов.Раньше в городах была широко распространена воздушная раздача LT, но в то время электронные или моторные приборы также не были очень распространены в домах и не вызывали особой жалобы. При распределении LT по кабельной сети очень маловероятно, что такие случаи, кроме случаев, когда есть перерыв в техническом обслуживании.

Какое решение?

На данный момент не существует стандартного продукта, продаваемого какой-либо компанией, производящей распределительное устройство. MCB не будет работать, так как ток не будет очень высоким, и RCCB также не будет работать, поскольку нет утечки тока.Можно представить себе самодельную схему, предусматривающую трехполюсный силовой контактор на 63 А после входных автоматических выключателей с катушкой, подключенной к фазе, а другой – к нулевой шине в распределительной коробке. Когда нейтраль отключена, катушка не получает питания и размыкает контактор. Схема, нарисованная от руки, приведена ниже. Показан входящий TPN 63A, но у одного должно быть твердое нейтральное соединение.

Об авторе :
Г-н Махеш Кумар Джайн – выпускник Университета Рурки (ИИТ Рурки) со степенью в области электротехники, проработавший 36 лет на индийских железных дорогах.Он ушел в отставку с Индийских железных дорог с должности директора IREEN (Институт электротехники Индии), а также работал главным инженером-электриком на многих железных дорогах. Он выполнял обязанности электрического инспектора правительства. Индии. Г-н Махеш Кумар Джайн страстно увлечен вопросами электробезопасности, пожарной безопасности, надежности, потребления / сохранения / управления электрической энергией, электроприборов. В настоящее время он работает консультантом в Nippon Koi Consortium в области распределения энергии и электровозов. Ещё от автора .

Заземление

Заземление

Заземление

Термин «основание» применяется к следующий?

  • Контрольная точка для измерения напряжения ( 0 вольт).
  • Обратный путь для тока в схема.
  • Наружная оплетка на трос.
  • Третий контакт вилки питания.
  • Грязь, на которой мы стоим, когда мы вне.
  • Накладная гайка на задней стороне миксера или предусилитель.
  • Все вышеперечисленное.

Вероятно, 80% проблем, возникающих в проводка аудиосистемы связана с землей. Симптомы земли проблемы включают гул, слабый сигнал, гул, радиопомехи, гул, потрескивающие звуки, гул, поражение электрическим током и гудение.

Земля – ​​это прежде всего нулевое напряжение. точка – эталон, который схемы используют при усилении сигналов.Один из более сложных вещей, которые нужно понять о земле, заключается в том, что хотя напряжение равно 0, может протекать много тока.

Необходимость текущих обратных путей очевидна если вспомнить, что электричество передается по цепям. Если у тебя есть провод, передающий ток от одного устройства к другому, должен быть второй провод для возврата тока. Во многих схемах текущий обратный путь обозначен как земля. Когда оборудование предназначен для симметричных подключений, второй провод внутри кабель для обратного пути.При неуравновешенной передаче используется щит для обратного пути.

Многое из того, что мы называем заземлением, на самом деле экранирование. Щиток представляет собой металлический корпус или обертку, предназначенную для защитить внутреннюю проводку от попадания нежелательных токов от любые магнитные поля, которые проходят мимо. Наши здания загромождены много таких полей, генерируемых удаленными радиостанциями и ближайшим AC проводка. Для того, чтобы щит делал свое дело, он должен быть подключен на землю, и через экран не должно протекать ток сам.

По соображениям безопасности правительство постановило что все внешние металлические части электрооборудования должны быть подключен к колышку в грязи за пределами здания. Эта безопасность заземление должно закоротить питание и отключить автоматический выключатель вместо того, чтобы кого-нибудь убить электрическим током, если проводка питания соприкасается с корпусом. Некоторое оборудование освобождено от этого правило.

Все эти виды использования земли не только сбивая с толку, они противоречат друг другу электрическими способами.Для Например, защитное заземление может иногда вызывать протекание тока в щиты. Проблемы с землей могут быть постоянными, и их причина может быть сложно пригвоздить, но если вы будете следовать этим правилам, ваша студия должна будьте свободны.

Правило 1. Питание всего от тот же источник.

Розетки в комнате могут отличаться напряжение на удивительную величину. Есть три провода, идущие к розетка – одна называется горячей: она имеет несколько искаженную синусоидальную волну, которая колеблется примерно на 170 вольт от пика к пику (120 среднеквадратичных значений).Другой – это нейтральный – он находится в середине горячей волны и не должен иметь форму волны. Третий – это безопасное заземление.

Проблема в том, что все это происходит из высоковольтное трехфазное питание от энергокомпании. Это обычно делается с большим трансформатором, имеющим три выхода: два из них горячие и не совпадающие по фазе на 180 градусов, третий – нейтраль, снятая с центрального отвода трансформатора. Центральные краны часто не совсем по центру, поэтому может быть небольшая форма волны напряжения на нейтрали.Таким образом, нейтраль соединена с землей. провод, в идеале в том месте, где на самом деле заземляющий провод заземлен. Эти вещи, вероятно, находятся далеко от розетки, которую вы используют. Сопротивление провода между трансформатором и розетка будет формировать небольшую форму волны напряжения на нейтрали. если ты используйте две розетки, нейтрали могут иметь разное напряжение. Даже хуже того, горячий провод одного из них может быть на 180 градусов не в фазе с Другие. В любом случае ток 60 Гц будет течь от одного устройство на другое.

Если вы должны нарушить это правило, потому что оборудование находится в разных комнатах или оборудования слишком много для одного цепи, попробуйте несколько розеток, чтобы увидеть, какие из них работают лучше всего.

О компании Power Кондиционеры

Их три типа:

Устройства защиты от перенапряжения защищают ваше снаряжение от жарка, если есть скачок мощности из-за освещения или вашего соседа пытаясь украсть мощность с помощью пары соединительных кабелей и взорвать весь блок.(Правдивая история!) Они дешевы, часто включаются в удлинители, которые вам все равно понадобятся.

Источники бесперебойного питания держат компьютеры от сбоя при небольшом падении мощности. К несчастью, многие из них используют высокочастотные коммутационные схемы и обеспечивают очень грязная власть. Их следует держать подальше от студии.

Сбалансированные стабилизаторы мощности

обеспечивают исключительно чистое питание с нейтралью на -60 вольт и горячим в 60.Они красивы и решают все проблемы с питанием на чуть меньше 100 долларов за ампер.

Раз уж я говорю об этой теме, убедитесь, что аудиосистема – единственное, что подключено к этой цепи. Вакуум чистящие средства и дозаторы содовой действительно портят линии электропередач.

Правило 2: Соблюдайте аккуратность проводки, чтобы ее избегать Контуры заземления

Контуры заземления возникают при подключении трех части шестеренки в треугольник.Если деталь A подключена к детали B, и с питанием все в порядке, нет причин для протекания тока в экранирование кабеля и отсутствие пути для обратного потока.

Но, если A подключен к B, который подключен к C, который соединен с A, есть круговой путь в щиты, через которые ток будет течь при малейшем поощрение. Воодушевление может исходить от множества вещей, например: эти тупые силовые трансформаторы, закрывающие большинство дыр в электрические полосы.Это была бы не большая студия без сложного исправление, поэтому вот как минимизировать ущерб:

  • Держите все аудиокабели в одной связке или лоток.
  • Оберните связку буквой C вокруг спинки. шестерни, а не по кругу (даже если некоторые провода наматываются длиннее чем вам хотелось бы.)
  • Держите вышеуказанное вдали от сети переменного тока. трансформаторы электропроводки и силовые (в том числе скрытые внутри оборудование).
  • Убедитесь, что кабели питания пересекают аудиосистему. кабели под прямым углом.

Правило 2а: не нарушайте безопасность земля (если нет необходимости)

Иногда земля в силовой проводке обеспечивает это критически важное третье соединение, необходимое для установления контур заземления. Вы можете сказать, что это происходит, потому что с помощью двухконтактного адаптер убирает шум.В этой ситуации вам следует сделать все убрать гул можно не прибегая к переходнику. Если другие меры терпят неудачу, вы должны выбирать между гудением и риском шок. Конечно, если устройство заземлено другим способом (например, прикручивается к стойке с другим заземленным оборудованием) нет Опасность. Если вы используете адаптер, проверьте надежность заземления с помощью измеритель сопротивления.

Некоторое действительно классное оборудование будет гудеть, если вилка перевернута в розетке.Есть как минимум три здесь проблем:

  • Вы не должны поворачивать заткнись.
  • Это же гитарный усилитель? Если это так от струн гитары можно получить шок!
  • Если он так себя ведет, он будет гудеть что бы вы ни делали, так что выкиньте это и получите что-нибудь приличное.

Правило 3: Баланс или дисбаланс, но не Оба

Симметричные соединения лучше всего хранить шум вне системы.В симметричном подключении входная цепь реагирует на разницу в напряжении между двумя проводами. С провода скручены внутри кабеля, любые посторонние сигнал, наведенный на одном, будет наведен на другом. Это значит там не будет разницы в напряжении шума для входной цепи к ответить на. При сбалансированных соединениях, это единственный способ получить гул происходит от тока, протекающего в экране кабеля.

Если все ваше оборудование сбалансировано, вы можете предотвратить попадание тока в экраны, подключив их только с одного конца.я желательно оставить конец, подключенный к выходам, свободным, но это может быть либо, если все они одинаковы. Если есть патч-бэк и вы делаете это, убедитесь, что ваши коммутационные шнуры несут щит через.

Если ваше снаряжение неуравновешено, вы должны подключить щиты на обоих концах. Держите провод коротким, потому что чем он длиннее получает, тем эффективнее она в качестве антенны на 60 Гц. 20 футов – это большинство, с чем я когда-либо уходил. Обычно несимметричные соединения сделано с симметричным (двухжильным) проводом, потому что это примерно все, что можно купить.Подключаю лишний провод к экрану / земле на оба конца. Я видел предложение подключить второй провод таким образом, но оставьте экран неподключенным с одного конца. Некоторые аудиофилы кабели трехосного типа с подключением внешнего экрана на одном конце Только. Это эффективно в сложных ситуациях, но дорого с готовые кабели и их сложно подключить самостоятельно.

Если у вас есть смесь сбалансированного и несбалансированного снаряжения, вы можете добавить балансировочные коробки (по 50 долларов за канал) к нескольким элементам, но чаще всего придется отказаться от преимуществ сбалансированного соединения и провода все это несимметрично.Я разбалансирую, подключив холодный (контакт 3 или кольцевой) провод к экрану на несимметричном конце. я не знаю, уменьшит ли это гул, но я говорю себе, что будет легче преобразовать в сбалансированное, когда появится возможность.

Трудно из-за разницы в уровнях смешивать сбалансированную и неуравновешенную передачи. Самые современные сбалансированные устройства есть переключатель для изменения уровня выхода, но если это не так там вы должны поставить пару резисторов на выходе разъем:

Некоторое оборудование не нравится таким образом неуравновешенный.Частотная характеристика испорчена из-за замыкание одного из выводных контактов на экран. Это происходит в основном со старинным оборудованием, особенно с ламповыми схемами. В этом случае вы должны используйте согласующий трансформатор импеданса, чтобы подключить его к несимметричной входы.

Правило 4: Сделайте все нули тот же

Иногда, несмотря на все вышеперечисленное, гудит произойдет, когда две отдельные части снаряжения соединены вместе и ни к чему другому.Подход грубой силы к этой проблеме состоит в том, чтобы используйте провод №10 для соединения корпусов устройств. Этот может создать контуры заземления и усугубить ситуацию, но если контур заземления уже существует, он обеспечивает путь с более низким импедансом для контура тока, чем экраны кабелей, и уменьшит шум. Некоторые инженеры рекомендуют прокладывать такие провода от каждого элемента шестеренки. к центральной точке заземления, возможно, к микшерному пульту.

Более вероятный повод использовать дополнительную заземляющий провод подключается к Hi-Fi или музыкальному инструменту, у которого есть вообще нет заземления – эти элементы имеют два шнура питания и соединения экрана изолированы от корпуса.Они в порядке в постоянная установка, но если вы возьмете соединения с патч-бэком и патч при включенном питании будет гудеть динамик, когда шнур вставлен (так как кончик шнура проходит через экран выход устройства). Вы можете вылечить это заземляющим проводом от выхода разъемом к приставке, либо перемычкой на коммутационной панели от щита прибор к щитку от консоли. (Если предыдущее создает контур заземления, используйте резистор 10 Ом вместо перемычки.)

Когда все остальное терпит неудачу, Изолятор

Есть соединения, которые будут гудеть, нет от того, что. Многие устройства просто не соответствуют спецификациям профессиональное аудио, но они должны использоваться точно так же. Гитарные усилители и компьютерные звуковые карты – частые нарушители. Худший часть в том, что иногда установка одного из этих плохих парней в систему может повсюду появляется шум. Изолирующие трансформаторы – единственные решение.

pqe 02.12.1998

1910.269 Приложение C – Защита от опасных различий в электрическом потенциале

Приложение C к § 1910.269 – Защита от опасных различий в электрическом потенциале

I. Введение

Ток, проходящий через импеданс, создает напряжение на этом импедансе. Даже у проводников есть некоторое, хотя и небольшое, значение импеданса. Следовательно, если «заземленный» объект 1 , такой как кран или обесточенная и заземленная линия электропередачи, приводит к замыканию на землю в линии электропередачи, на этот заземленный объект прикладывается напряжение.Напряжение, приложенное к заземленному объекту, в значительной степени зависит от напряжения на линии, от импеданса поврежденного проводника и от импеданса «истинного» или «абсолютного» заземления, представленного объектом. Если импеданс объекта, вызывающего повреждение, относительно велик, напряжение, приложенное к объекту, по существу является напряжением системы фаза-земля. Однако даже неисправности заземленных линий электропередач или хорошо заземленных опор электропередачи или конструкций подстанций (которые имеют относительно низкие значения сопротивления относительно земли) могут привести к возникновению опасных напряжений. 2 Во всех случаях степень опасности зависит от величины тока через работника и времени воздействия. В этом приложении обсуждаются методы защиты рабочих от возможности контакта заземленных объектов, таких как краны и другое механическое оборудование, с линиями электропередачи, находящимися под напряжением, и случайное включение обесточенных и заземленных линий электропередач.

II. Распределение градиента напряжения

A. Кривая распределения градиента напряжения .Абсолютное или истинное заземление служит эталоном и всегда имеет напряжение на 0 вольт выше потенциала земли. Поскольку между заземляющим электродом и абсолютным заземлением существует полное сопротивление, между заземляющим электродом и абсолютным заземлением будет разница напряжений в условиях замыкания на землю. Напряжение рассеивается с заземляющего электрода (или от точки заземления) и создает градиент потенциала земли. Напряжение быстро падает с увеличением расстояния от заземляющего электрода.Падение напряжения, связанное с этим рассеянием напряжения, является потенциалом земли. На рисунке 1 представлена ​​типичная кривая распределения градиента напряжения (при условии однородной текстуры почвы).

Рисунок 1 – Типичное напряжение – Градиентная кривая распределения

Б. Ступенчатые и контактные потенциалы . На рисунке 1 также показано, что работники подвергаются риску ступенчатого и сенсорного потенциалов. Ступенчатый потенциал – это напряжение между ногами человека, стоящего возле находящегося под напряжением заземленного объекта (электрода).На рисунке 1 ступенчатый потенциал равен разности напряжений между двумя точками, находящимися на разном расстоянии от электрода (где точки представляют положение каждой ступни по отношению к электроду). Человек может получить травму во время аварии, просто стоя рядом с объектом.

Потенциал прикосновения – это напряжение между заземленным объектом под напряжением (опять же, электродом) и ступнями человека, контактирующего с объектом. На рисунке 1 потенциал прикосновения равен разнице в напряжении между электродом (который находится на расстоянии 0 метров) и точкой на некотором расстоянии от электрода (где точка представляет положение ног человека в контакт с объектом).Потенциал прикосновения может быть почти полным напряжением на заземленном объекте, если этот объект заземлен в точке, удаленной от места, где с ним контактирует человек. Например, кран, заземленный на нейтраль системы и контактирующий с линией под напряжением, подвергнет любого человека, контактирующего с краном или его неизолированной линией нагрузки, потенциалом прикосновения, почти равным полному напряжению короткого замыкания.

На рисунке 2 показаны потенциалы шага и касания.

Рисунок 2 – Возможности шага и касания

III.Защита рабочих от опасной разницы в электрическом потенциале

A. Определения . К разделу III этого приложения применяются следующие определения:

Облигация . Электрическое соединение токопроводящих частей, предназначенное для поддержания общего электрического потенциала.

Соединительный кабель (соединительная перемычка) . Кабель, соединенный с двумя токопроводящими частями для соединения частей друг с другом.

Штанга кластера . Клемма, временно прикрепленная к конструкции, которая обеспечивает средства для прикрепления и соединения заземляющих и соединительных кабелей с конструкцией.

Земля . Проводящее соединение между электрической цепью или оборудованием и землей или с некоторым проводящим телом, которое служит вместо земли.

Кабель заземления (заземляющая перемычка) . Кабель, соединяющий обесточенную часть и землю. Обратите внимание, что заземляющие кабели несут ток повреждения, а соединительные кабели, как правило, нет. Кабель, который соединяет две токопроводящие части, но пропускает значительный ток короткого замыкания (например, перемычка, соединяющая одну фазу и заземленную фазу), является заземляющим кабелем.

Заземляющий мат (сетка заземления) . Временно или постоянно установленный металлический мат или решетка, которые создают эквипотенциальную поверхность и обеспечивают точки соединения для крепления заземления.

B. Анализ опасности . Работодатель может использовать инженерный анализ энергосистемы в условиях отказа, чтобы определить, будут ли возникать опасные скачки напряжения и напряжения прикосновения. Анализ должен определить напряжение на всех проводящих объектах в рабочей зоне и время, в течение которого напряжение будет присутствовать.На основе этого анализа работодатель может выбрать соответствующие меры и защитное оборудование, включая меры и защитное оборудование, описанные в Разделе III этого приложения, для защиты каждого сотрудника от опасной разницы в электрическом потенциале. Например, из анализа работодатель будет знать напряжение, остающееся на токопроводящих объектах после того, как сотрудники установят оборудование для соединения и заземления, и сможет выбрать изолирующее оборудование с соответствующими характеристиками, как описано в параграфе III.C.2 этого приложения.

C. Защита рабочих на земле . Работодатель может использовать несколько методов, включая эквипотенциальные зоны, изоляционное оборудование и ограниченные рабочие зоны, чтобы защитить работников на земле от опасных перепадов электрического потенциала.

1. Эквипотенциальная зона защитит находящихся в ней рабочих от опасного скачка и прикосновения. (См. Рис. 3.) Эквипотенциальные зоны, однако, не будут защищать сотрудников, находящихся полностью или частично за пределами защищенной зоны.Работодатель может установить эквипотенциальную зону для рабочих на земле по отношению к заземленному объекту, используя металлический коврик, соединенный с заземленным объектом. Работодатель может использовать сетку заземления для выравнивания напряжения внутри сети или связывания проводящих объектов в непосредственной рабочей зоне, чтобы минимизировать потенциал между объектами и между каждым объектом и землей. (Однако прикрепление объекта за пределами рабочей области может увеличить потенциал прикосновения к этому объекту.) Раздел III.D этого приложения обсуждает эквипотенциальные зоны для сотрудников, работающих на обесточенных и заземленных линиях электропередач.

2. Изоляционное оборудование, такое как резиновые перчатки, может защитить сотрудников, работающих с заземленным оборудованием и проводниками, от опасного потенциала прикосновения. Изолирующее оборудование должно быть рассчитано на максимальное напряжение, которое может быть приложено к заземленным объектам в условиях неисправности (а не на полное напряжение системы).

3. Ограничение доступа сотрудников к участкам, где может возникнуть опасный шаг или возможность прикосновения, может защитить сотрудников, не участвующих напрямую в выполнении операции.Работодатель должен обеспечить, чтобы работники, находящиеся на земле в непосредственной близости от передающих конструкций, находились на расстоянии, на котором ступенчатое напряжение было бы недостаточным, чтобы вызвать травму. Сотрудники не должны обращаться с заземленными проводниками или оборудованием, которое может оказаться под напряжением до опасного напряжения, если только сотрудники не находятся в эквипотенциальной зоне или не защищены изоляционным оборудованием.

Рисунок 3 – Защита от градиентов потенциала земли

Д. Защита сотрудников, работающих на обесточенных и заземленных ЛЭП .Этот Раздел III.D Приложения C устанавливает руководящие принципы, помогающие работодателям соблюдать требования § 1910.269 (n) по использованию защитного заземления для защиты сотрудников, работающих на обесточенных линиях электропередач. Параграф (n) § 1910.269 применяется к заземлению линий передачи и распределения и оборудования с целью защиты рабочих. Параграф (n) (3) § 1910.269 требует, чтобы в таких местах были размещены временные защитные площадки и устроены таким образом, чтобы работодатель мог продемонстрировать, что они предотвратят воздействие на каждого работника опасной разницы в электрическом потенциале. 3 Разделы III.D.1 и III.D.2 этого приложения содержат рекомендации, которые работодатели могут использовать при демонстрации, требуемой согласно § 1910.269 (n) (3). В разделе III.D.1 этого приложения приведены инструкции о том, как работодатель может определить, подвергаются ли определенные методы заземления работникам опасным перепадам электрического потенциала. В разделе III.D.2 этого приложения описаны методы заземления, которые работодатель может использовать вместо инженерного анализа для демонстрации, требуемой § 1910.269 ​​(п) (3). Управление по охране труда и здоровья будет рассматривать работодателей, которые соответствуют критериям, указанным в этом приложении, как отвечающих § 1910.269 (n) (3).

Наконец, в разделе III.D.3 этого приложения обсуждаются другие соображения безопасности, которые помогут работодателю выполнить другие требования в § 1910.269 (n). Следование этим рекомендациям защитит рабочих от опасностей, которые могут возникнуть при подаче напряжения на обесточенную и заземленную линию.

1. Определение безопасных пределов тока тела .В Разделе III.D.1 Приложения C приведены инструкции о том, как работодатель может определить, опасны ли какие-либо различия в электрическом потенциале, которым могут подвергаться работники, в рамках демонстрации, требуемой согласно § 1910.269 (n) (3).

Стандарт Института инженеров по электротехнике и электронике (IEEE) 1048-2003, Руководство IEEE по защитному заземлению линий электропередач, предоставляет следующее уравнение для определения порога фибрилляции желудочков при ограниченной продолжительности поражения электрическим током:

, где I – ток, протекающий через тело рабочего, а t – продолжительность тока в секундах.Это уравнение представляет порог фибрилляции желудочков для 95,5% взрослого населения с массой 50 кг (110 фунтов) или более. Уравнение действительно для текущей продолжительности от 0,0083 до 3,0 секунды.

Чтобы использовать это уравнение для установки безопасных пределов напряжения в эквипотенциальной зоне вокруг рабочего, работодатель должен принять значение сопротивления тела рабочего. В стандарте IEEE Std 1048-2003 указано, что «для определения общее сопротивление тела обычно принимается равным 1000 Ом.. . ограничения тока тела ». Однако работодатели должны знать, что полное сопротивление тела рабочего может быть существенно меньше этого значения. Например, IEEE Std 1048-2003 сообщает о минимальном сопротивлении рукопашного боя 610 Ом и внутреннем корпусе. сопротивление 500 Ом. Внутреннее сопротивление тела лучше представляет собой минимальное сопротивление тела рабочего, когда сопротивление кожи падает почти до нуля, что происходит, например, когда есть трещины на коже рабочего, например, от порезов или от волдыри, образовавшиеся в результате поражения электрическим током или намокания рабочего в местах соприкосновения.

Работодатели могут использовать уравнение IEEE Std 1048-2003 для определения безопасных пределов тока тела только в том случае, если работодатель защищает рабочих от опасностей, связанных с непроизвольными мышечными реакциями от поражения электрическим током (например, опасность для рабочего от падения в результате поражения электрическим током). шок). Более того, уравнение применимо только тогда, когда продолжительность поражения электрическим током ограничена. Если меры предосторожности, которые принимает работодатель, включая те, которые требуются применимыми стандартами, не обеспечивают адекватной защиты сотрудников от опасностей, связанных с непроизвольными реакциями на поражение электрическим током, существует опасность, если индуцированное напряжение достаточно, чтобы пропустить ток в 1 миллиампер через 500-омное устройство. резистор.(Резистор на 500 Ом представляет сопротивление работника. Ток в 1 миллиампер – это порог восприятия.) Наконец, если работодатель защищает работников от травм из-за непроизвольных реакций от удара электрическим током, но продолжительность удара электрическим током составляет неограничен (то есть, когда ток короткого замыкания на рабочем месте будет недостаточным для отключения устройств, защищающих цепь), опасность существует, если результирующий ток будет более 6 миллиампер (признанный порог отпускания для рабочих 4 ).

2. Допустимые методы заземления для работодателей, не выполняющих инженерное определение . Методы заземления, представленные в этом разделе этого приложения, гарантируют, что разница в электрическом потенциале будет как можно меньше и, следовательно, соответствует § 1910.269 (n) (3) без инженерного определения разности потенциалов. Эти методы основаны на двух принципах: (i) метод заземления должен гарантировать, что цепь размыкается в кратчайшие доступные промежутки времени, и (ii) метод заземления должен гарантировать, что разность потенциалов между токопроводящими объектами в рабочей зоне сотрудника будет минимальной. возможный.

Пункт (n) (3) § 1910.269 не требует, чтобы методы заземления соответствовали критериям, воплощенным в этих принципах. Вместо этого параграф требует, чтобы защитные площадки были «размещены в таких местах и ​​организованы таким образом, чтобы работодатель мог продемонстрировать, что они предотвратят воздействие на каждого работника опасной разницы в электрическом потенциале». Однако, если практика заземления работодателя не соответствует этим двум принципам, работодатель должен будет выполнить инженерный анализ, чтобы продемонстрировать, что требуется согласно § 1910.269 ​​(п) (3).

и. Обеспечение того, чтобы цепь разомкнулась в кратчайшие сроки . Как правило, чем выше ток повреждения, тем короче время отключения для того же типа повреждения. Следовательно, чтобы обеспечить максимально быстрое время отключения, метод заземления должен максимизировать ток короткого замыкания с подключением к земле с низким импедансом. Работодатель достигает этой цели, заземляя проводники цепи на лучшее заземление, доступное на рабочем месте. Таким образом, работодатель должен заземлить нейтральный провод заземленной системы, если таковой имеется.Заземленная нейтраль системы имеет прямое соединение с землей системы у источника, что приводит к чрезвычайно низкому сопротивлению относительно земли. На подстанции работодатель может вместо этого заземлить сеть подстанции, которая также имеет чрезвычайно низкий импеданс относительно заземления системы и, как правило, подключается к заземленной нейтрали системы, если таковая имеется. Заземление удаленной системы, такое как заземление опор и опор, имеет более высокий импеданс относительно заземления системы, чем заземленные нейтрали системы и заземляющие сети подстанции; однако работодатель может использовать удаленное заземление, когда заземления с более низким сопротивлением недоступны.При отсутствии заземленной нейтрали системы, сети подстанции и удаленного заземления работодатель может использовать временное заземленное заземление на рабочем месте.

Кроме того, если сотрудники работают в трехфазной системе, метод заземления должен закоротить все три фазы. Короткое замыкание всех фаз обеспечит более быстрое отключение и снизит ток через кабель заземления, соединяющий обесточенную линию с землей, тем самым снизив напряжение на этом кабеле. Короткое замыкание не должно происходить на рабочем месте; тем не менее, работодатель должен рассматривать любой провод, который не заземлен на рабочем месте, как находящийся под напряжением, потому что незаземленные проводники будут находиться под напряжением при повреждении во время повреждения.

ii. Обеспечение минимальной разницы потенциалов между токопроводящими объектами в рабочей зоне сотрудника . Чтобы добиться как можно более низкого напряжения на любых двух проводящих объектах в рабочей зоне, работодатель должен соединить все токопроводящие объекты в рабочей зоне. В этом разделе этого приложения обсуждается, как создать зону, которая минимизирует разницу в электрическом потенциале между проводящими объектами в рабочей зоне.

Работодатель должен использовать соединительные кабели для соединения проводящих объектов, за исключением металлических объектов, соединенных посредством контакта металла с металлом.Работодатель должен обеспечить герметичность контактов металл-металл и отсутствие загрязнений, таких как окисление, которые могут увеличить полное сопротивление в соединении. Например, болтовое соединение между металлическими решетчатыми элементами башни приемлемо, если соединение является плотным и не подвержено коррозии и другим загрязнениям. На рисунке 4 показано, как создать эквипотенциальную зону для металлических решетчатых башен.

Деревянные опоры являются токопроводящими предметами. Столбы могут поглощать влагу и проводить электричество, особенно при распределении и передаче напряжения.Следовательно, работодатель должен либо: (1) предоставить токопроводящую платформу, прикрепленную к заземляющему кабелю, на которой стоит рабочий, либо (2) использовать кластерные стержни для крепления деревянных столбов к заземляющему кабелю. Работодатель должен убедиться, что работники устанавливают перекладину под ногами рабочего и рядом с ним. Внутренняя часть деревянной опоры является более проводящей, чем внешняя оболочка, поэтому важно, чтобы кластерный стержень находился в проводящем контакте с металлическим штырем или гвоздем, проникающим в древесину на глубину, превышающую или равную глубине лазания рабочего. баги будут пробивать древесину.Например, работодатель может установить кластерную шину на оголенный провод заземления опоры, прикрепленный к опоре гвоздями или скобами, проникающими на необходимую глубину. В качестве альтернативы, работодатель может временно прибить токопроводящую ленту к столбу и прикрепить ленту к кластерной штанге. На рисунке 5 показано, как создать зону уравнивания потенциалов для деревянных опор.

Банкноты:

  1. Работодатели должны заземлять воздушные провода заземления, которые находятся в пределах досягаемости работника.
  2. Кабель заземления должен быть как можно короче; поэтому точки крепления между заземляющим кабелем и вышкой могут отличаться от показанных на рисунке.

Рисунок 4 – Зона уравнивания потенциалов для башни с металлической решеткой

Рисунок 5 – Эквипотенциальное заземление деревянных опор

Рисунок перепечатан с разрешения Hubbell Power Systems, Inc. (Hubbell)

OSHA пересмотрела цифру по сравнению с оригиналом Хаббелла.

Для подземных систем работодатели обычно устанавливают заземления в точках отключения подземных кабелей. Эти точки заземления обычно удалены от люка или подземного хранилища, где сотрудники будут работать с кабелем.Рабочие, контактирующие с кабелем, заземленным в удаленном месте, могут столкнуться с опасной разницей потенциалов, если кабель окажется под напряжением или если произойдет сбой в другом, но находящемся поблизости кабеле, находящемся под напряжением. Ток короткого замыкания вызывает градиенты потенциала в земле, и между землей, на которой стоит рабочий, и землей, на которой заземлен кабель, будет существовать разность потенциалов. Следовательно, чтобы создать эквипотенциальную зону для рабочего, работодатель должен предоставить средства подключения обесточенного кабеля к заземлению на рабочем месте, поставив работника на токопроводящий коврик, прикрепленный к обесточенному кабелю.Если кабель разрезан, работодатель должен установить перемычку поперек отверстия в кабеле или установить по одной перемычке с каждой стороны отверстия, чтобы гарантировать, что отдельные концы кабеля имеют одинаковый потенциал. Работодатель должен защищать работника от любых опасных перепадов потенциала в любое время, когда нет связи между матом и кабелем (например, до того, как работник установит скрепления).

3. Прочие соображения, связанные с безопасностью . Чтобы система заземления была безопасной и эффективной, работодатель также должен учитывать следующие факторы: 5

и. Обслуживание заземляющего оборудования . Очень важно, чтобы работодатель правильно обслуживал заземляющее оборудование. Коррозия в соединениях между заземляющими кабелями и зажимами и на поверхности зажима может увеличить сопротивление кабеля, тем самым увеличивая разность потенциалов. Кроме того, поверхность, к которой крепится зажим, такая как проводник или опорный элемент, должна быть чистой и не иметь следов коррозии и окисления, чтобы гарантировать соединение с низким сопротивлением. Кабели не должны иметь повреждений, которые могут снизить их допустимую нагрузку по току, чтобы они могли выдерживать полный ток короткого замыкания без сбоев.Каждый зажим должен иметь плотное соединение с кабелем, чтобы обеспечить низкое сопротивление и гарантировать, что зажим не отделится от кабеля во время повреждения.

ii. Длина и движение кабеля заземления . Электромагнитные силы на заземляющих кабелях во время короткого замыкания возрастают с увеличением длины кабеля. Эти силы могут привести к резкому перемещению кабеля во время повреждения и могут быть достаточно высокими, чтобы повредить кабель или зажимы и вызвать выход кабеля из строя. Кроме того, летящие кабели могут травмировать рабочих.Следовательно, длина кабеля должна быть как можно короче, а заземляющие кабели, которые могут пропускать высокий ток повреждения, должны находиться в местах, где кабели не будут травмировать рабочих во время повреждения.


5 В этом приложении обсуждаются только факторы, относящиеся к обеспечению эквипотенциальной зоны для сотрудников. Работодатель должен учитывать другие факторы при выборе системы заземления, способной проводить максимальный ток короткого замыкания, который может протекать в точке заземления в течение времени, необходимого для устранения замыкания, в соответствии с требованиями § 1910.269 ​​(п) (4) (я). IEEE Std 1048-2003 содержит рекомендации по выбору и установке заземляющего оборудования, которое соответствует § 1910.269 (n) (4) (i).

Страница информации о контуре заземления

Трехфазное распределение

Наиболее распространенный способ распределения высокой мощности по зданию – трехфазный. система. Эта трехфазная система имеет преимущества, заключающиеся в том, что она экономит медную проводку. и очень подходит для привода мощных электродвигателей. Проводка спроектирован таким образом, чтобы отбор мощности от каждой фазы быть примерно равным.Это делается путем подключения всех мощных нагрузок к все три фазы и распределяя все меньшие нагрузки в конечном итоге на эти три фазы.

Трехфазное питание имеет три «горячих» провода, выход на 120 градусов. фазы друг с другом. Обычно они используются для больших двигателей. потому что он более «эффективен», обеспечивает немного больший пусковой крутящий момент, и потому, что моторы проще и, следовательно, дешевле. Трехфазная проводка обычно используется в распределении электроэнергии, потому что мощность может быть с немного меньшим количеством меди, чем с однофазным распределение (особенно, когда нагрузка хорошо сбалансирована).

Питание идет от энергокомпании через 4 тока. несущие провода: 3 фазных провода и нулевой провод. Если ток точно согласован во всех фазах, в нулевом проводе нет тока. Нейтральный провод подключается к заземлению здания в центральной электросети. распределительная панель, где находится основная шина заземления здания.

От главного центрального распределительного щита идет 5 проводов. к субпанелям. 4 токоведущих провода – это 3 фазных провода и нейтраль. провода.Защитное заземление – это отдельный провод, который также идет к центральному шина заземления как нейтральный провод. Разница нейтрали и безопасности заземленные провода – это то, что нейтральный провод пропускает ток при нормальной работе (разница токов, взятых из каждой фазы), но защитное заземление не пропускать ток при нормальной работе. Это разделение гарантирует, что в при нормальной работе весь защитный заземляющий провод находится под потенциалом заземления здания. Эта 5-проводная система проводки в основном хороша и используется в большинстве здания и места, где могут возникнуть проблемы с контурами заземления.

Все распределения трехфазного напряжения внутри здания должен выполняться с использованием 5-проводной системы, чтобы избежать заземления. проблемы разницы. Распределение однофазной мощности следует выполнять по 3-х проводной системе. Провода защитного заземления должны быть связаны между собой звездным или древовидным образом.

Трехфазное распределение в Европе

Трехфазное распределение очень распространено в больших домах. (офисы, магазины, фабрики и т. д.), где потребляется много электроэнергии и большие моторы, вполне вероятно, присутствуют.В Финляндии и во многих других странах 3-фазное распределение (230 В между фазой и землей) и 400 В от фазы к фазе) очень часто встречается даже в дома меньшего размера (типичный дом в Финляндии имеет трехфазное основное питание 3x25A).

Трехфазное питание, которое чаще всего используется в постоянно подключенных электрических сетях. оборудование, такое как электрические печи и большие двигатели. В обычном жилом в домах обычно нет розеток для трехфазного питания. В местах, где требуется электрооборудование, потребляющее больше мощности, чем то, что доступно от одной сетевой розетки, обычно Доступны 3-фазные разъемы.Примеры таких мест: стройплощадки, заводы, места где крупный электроинструмент используются и развлекательные заведения (для большой системы громкой связи и освещения). Наиболее распространенная трехфазная розетка, которую вы можете увидеть, – это трехфазная розетка на 16 ампер, 400 В (напряжение между фазами) розетка, в которой используется круглый красный разъем CEE 17. Другие популярные модели этот же круглый красный разъем подходит для 32A, 63A и 125A.

Трехфазное распределение в США

Скорее всего, вы столкнетесь с трехфазной цепью, которая показывает 110 вольт между любым током и землей и 208 вольт между любые две горячие.Эти 3-фазные распределения обычно используются в место, где есть большие двигатели или иным образом большой расход электричества. Примеры таких мест – фабрики, большие магазины, большие офисные дома и подобные здания.

Получение трехфазного питания в вашем доме в США может быть до смешного дорого или невозможно. Жилые дома обычно подключаются с использованием “нормальной проводки 220/110”, где есть два провода под напряжением 110 В (180 градусов по фазе друг с другом) и у них общий нейтральный провод.Обычные электрические розетки – это провода между одним проводом под напряжением 110 В и общим нулевым проводом. Некоторые сильноточные нагрузки (кондиционер и т. Д.) Подключены между двумя фазными проводами, чтобы они получали полное напряжение 220 В.

Розетки с заземлением

Хотя изначально вы можете предположить, что трехконтактные шнуры по своей сути лучше, из-за их способности вводить несколько заземлений в аудиосистему, на самом деле они служат для дальнейшего усложнения проблем с заземлением. Трехконтактные заземленные розетки лучше для электробезопасности.Розетки с заземлением они также хороши при распределении электроэнергии. и аудио проводка хорошо спроектирована и сконструирована.

Трехпроводная система, которую видит пользователь, на самом деле основана на трех фазовое распределение, в котором используется 5-проводная система. В 5-проводной системе есть 3 провода под напряжением, 1 нейтральный провод и 1 заземляющий провод. В В обычной 3-проводной розетке используется только один из 3-х проводов под напряжением.

Типичная офисная настенная розетка имеет три электрических соединения, которые «горячий», «нейтральный» и «заземляющий» провода.Вся оргтехника требует работают только горячий и нейтральный провода. Третий или заземляющий провод соединены с открытыми металлическими частями оборудования. В рамках здания заземлены все электрические розетки. подключены друг к другу и подключены к водопроводу. Этот гарантирует, что все электрическое оборудование с открытыми металлическими частями имеет эти части, электрически связанные друг с другом и с открытыми металлическими приспособлениями в здании, например, водопроводная арматура.

Горячий и нейтральный провода взаимозаменяемы, насколько это возможно. обеспокоенный.Оба являются силовыми проводами. Один из силовых провода заземлены в целях безопасности.

Заземленное оборудование

Заземленное оборудование, подключенное к сетевому напряжению, имеет три провода, идущие к оборудованию: фаза, нейтраль и земля. Провод под напряжением – это один из фазных проводов от 3-х фазной распределительной сети. системы. Нейтральный и заземляющий провода такие же, как в трехфазном распределении. системы. Нагрузка оборудования подключается между токоведущим и нулевым проводами. как на картинке ниже:

Здесь два верхних провода – это фаза и нейтраль.Нет большая разница, какой из них живой, а какой нейтральный потому что современное оборудование устроено так, что это не имеет значения. В некоторых странах разъем питания разработан таким образом, чтобы вы всегда знали какой провод имеет напряжение, а какой – нейтраль. В некоторых странах (например Финляндия) силовой разъем спроектирован так, что его можно поставить к разъему двумя способами.

Третий провод (самый нижний) – провод заземления. Провод заземления идет к металлическому корпусу оборудования и служит для обеспечения безопасности пользователя.Когда металлический корпус плотно соединен с землей через заземляющий провод, затем, если в оборудовании что-то не так (например, сломанный изолятор или утечка воды внутри оборудования) вы просто вместо того, чтобы подавать на корпус смертельное напряжение, взорвите предохранитель.

Система заземления тщательно разработана, чтобы обеспечить безопасность пользователю. Это включает в себя цветовую кодировку, обозначающую безопасность провод заземления никогда не смешивается с другим проводом (в настоящее время провод защитного заземления должен быть всегда желто-зеленого цвета в Европе).Электрические разъемы должны быть спроектированы таким образом, чтобы защитное заземление подключается раньше других контактов и отключается последним. При подключении провод заземления к соединителям провод к нему должен быть немного длиннее, чем то, что идет на другие контакты, поэтому, если кабель ослабнет, он последний, который теряет связь,

Разъемы, используемые в заземленном оборудовании

Сетевой разъем для США
Шнур питания, используемый в большинстве современного электронного оборудования, имеет трехконтактный штекер (NEMA 5-15).Разъем имеет место для двух плоских контактов питания. для токоведущих и нулевых проводов, а третий круглый контакт заземлен. В настоящее время настенная розетка Typican в США представляет собой заземленную розетку на 15 А. Правильно установленная розетка всегда должна располагаться вертикально относительно заземляющего штыря. под двумя параллельными пазами для лезвий.

Существует также версия сетевого разъема на 20 А, который используется в Некоторое тяжелое оборудование, для которого недостаточно 15 А при напряжении 120 В.

Многие новостройки в США оборудованы «изолированной землей». сосуды.Обычно они узнаваемы, потому что они яркие оранжевый и на лице отмечен треугольник. В основном эти розетки имеют отдельный «зеленый провод» заземления оборудования, а провод идет обратно прямо к панели автоматического выключателя, не подвергаясь подключен к чему-либо еще. Изолированные розетки заземления устанавливаются в надежда на то, что в здании генерируется электрический шум или другие части оборудования, не помешают работе деликатного компьютера к ним подключено оборудование.

Черный (горячий) провод идет к латунному или медному винту, который подсоединен к правому (меньшему) слоту. Белый (нейтральный) провод идет к серебряному или хромированному винту, который подсоединен к левому (большему) слоту.Оголенный провод (земля) идет к зеленому винту отдельного пути заземления. Эти подключения всегда должны выполняться квалифицированным электриком!

Разъем IEC

Разъем IEC – это стандартный международный сетевой разъем, используемый в оборудовании. например, компьютеры, принтеры, факсы и многое другое заземленное оборудование, которое есть съемный шнур питания. Один и тот же разъем используется как в 120 В, так и в Оборудование 230 В. Разъем может выдерживать напряжение до 250 В и ток. до 10А.

ЩУКО

Финляндия, Швеция, Германия и многие другие страны Европы используют сетевой разъем SCHUKO (CEE 7/7) в заземленном оборудовании.Разъем имеет два контакта для проведения токоведущих и нулевых проводов (ток до 16 А).

Заземление чаще всего выполняется с помощью небольших металлических деталей. по бокам на разъеме (вы можете увидеть один возле темпа где уходит проволока и еще одна с противоположной стороны). Там это также отверстие для отдельного заземляющего штыря, используемого в некоторых странах.

Сетевой разъем с заземлением для Великобритании

Возможно, самая распространенная электрическая розетка в мире представляет собой трехконтактный сетевой разъем британского типа (BS 1363).Этот разъем используется в Великобритании, Ирландии и большинстве стран мира. страны, которые когда-то были частью Британской империи. Это делает этот сетевой разъем может быть той вилкой, которая используется в большинстве стран.

Этот разъем разработан таким образом, что его можно установить только в стене. с одной стороны, так что закон знает, какой штифт какой. Толталли-металл штырь (вверху на картинке) – штифт заземления. Те булавки, у которых есть часть из них оскорблены живые и нейтральные контакты. Особенностью проводки, используемой в Великобритании, является наличие предохранителя. находится внутри сетевой вилки.Размер этого предохранителя предназначен для защиты провод оборудования от перегрева при коротком замыкании (размер предохранителя определяется размером провода оборудования), потому что главный предохранитель, который питает многие электрические розетки, обычно довольно большие (до 30А). Максимальный ток, который может быть снят с одного розетка 13А.

Незаземленное оборудование

Многие мелкие домашние электронные устройства и световое оборудование предназначены для использование внутри дома не используйте заземление. Это оборудование построено используя двойную изоляцию или изолирующий кожух, чтобы исключить опасность Таким образом предотвращается поражение электрическим током.Незаземленное подключение к источнику питания нужны только живые и нулевые провода.

Разъемы, используемые в незаземленном оборудовании

Самый распространенный разъем в мелкой электронике в Европе – это так называемый разъем EURO и стандартизирован в EN 50 075. Этот разъем разработан таким образом, чтобы его можно было использовать в большинстве регионов Европы. Сетевые разъемы EURO обычно выдерживают только 2,5 ампер тока. Обычно разъем представляет собой формованный штекер, который постоянно подключен. к кабелю и вилке можно купить только с кабелем, входящим в комплект.

Сетевой штекер, используемый в США

Вилка Ungrounde довольно часто используется при слабом освещении и бытовая электроника, такая как телевизоры, видеомагнитофоны и т. д.

В настоящее время многие устройства с двумя контактами имеют один контакт шире, чем Другие. Это для того, чтобы устройство могло положиться (не гарантировано!) на одном конкретном проводе нейтральный, а другой горячий. Это особенно выгодно в осветительных приборах, где оболочка должна быть нейтральной (предохранительной) или другими устройствами, которые хотят иметь приблизительный ориентир на землю (например, некоторые радиостанции).

Устанавливается много телевизионных и стереокомпонентов, а также бытовая техника. с поляризованными вилками, которые имеют более широкую лопатку для нейтрального провода сетевого шнура. В некоторых устройствах «байпасный конденсатор» подключается между белым (нейтральный) провод и заземление шасси оборудования. Конденсатор предлагает относительно низкий импеданс на высоких частотах (например, генерируется радиостанциями и CB. радио) тем самым обеспечивая им “короткий путь” к земле, чтобы для устранения этого типа помех и предлагает высокий импеданс на низкие частоты (через него проходит не так много сетевого тока, поэтому не представляет значительной опасности поражения электрическим током).Нейтральный провод не очень хорошо заземлен на радиочастотах, поэтому это соединение может вызвать больше проблем, чем решить. Иногда конденсатор связи от нейтрали до корпуса может быть до 0,1 мкФ, а если нейтраль и под напряжением по какой-то причине поменяны местами, вы можете получить более 4 мА тока, протекающего на чемодан для оборудования. Такая компоновка, при которой фазный и нейтральный провода по-другому обращаются внутри оборудования не рекомендовано международными правила техники безопасности в течение долгого времени, но это разрешено практикой в ​​США.

Если вы определите, что у вас есть горячее шасси с системой, подключенной таким образом, решение состоит в том, чтобы просто переверните вилку (если можете). Переворачивание вилки может иногда решают проблемы с помехами. В некоторых случаях в бестрансформаторных потребительских приемниках, где Корпус был подключен к нейтральной стороне поляризованной вилки переменного тока через 0,1 мкф конденсатор. Так как в сети нейтраль заземлена, создать небольшой потенциал между корпусом усилителя и (расширенной) сетью земля. Если поблизости от того же цепи, потенциал может возрасти, если проводимость ухудшилась по разным причинам.

Томи Энгдал <[email protected]>

Нужно ли мне подключить нейтраль и заземлить трехфазный автотрансформатор HPS?

Нужно ли мне подключить нейтраль и заземлить трехфазный автотрансформатор HPS?

Если приложению требуется нейтраль (включая 3-фазные 4-проводные системы), автотрансформатор необходимо заказывать с дополнительными клеммами нейтрали (суффикс «3L0U»).

Эта опция предоставляет заказчику общую точку подключения нейтрали (H0 / X0), которая на заводе подключается к средней точке конфигурации обмотки Y.

При выборе этой опции, нейтральный кабель как линии, так и стороны нагрузки должен быть подключен к соответствующим клеммам нейтрали, чтобы обеспечить правильную работу автотрансформатора.

HPS не рекомендует заземлять точку H0 / X0 трансформатора на месте.

Когда выбирается автотрансформатор без соединений нейтрали, обычно нейтраль заземляется на вторичной обмотке трансформатора-источника и должным образом привязана ко всей установке и проводится через конечную нагрузку после автотрансформатора.

При установке автотрансформатора с подключением нейтрали могут возникнуть проблемы, когда точка X0 автотрансформатора заземлена локально. В таких случаях может возникнуть ситуация с несколькими заземлениями, что противоречит электрическим нормам Северной Америки.

В приведенном выше случае, как правило, вторичная обмотка переднего трансформатора заземляется в точке X0 вторичной обмотки Y (GND1), в то время как заземление точки X0 автотрансформатора создает вторичное заземление (GND2).Поскольку два заземления обычно находятся в двух разных местах, вероятно, далеко друг от друга, они будут иметь разные потенциалы заземления.

Эта ситуация может создать ряд проблем, в том числе:

Если две земли имеют разные потенциалы, если центральная точка автотрансформатора (X0) используется в качестве нейтрали, линейные напряжения по сравнению с этой локальной нейтралью будут несимметричными. Степень дисбаланса будет зависеть от степени разности потенциалов между двумя землями (GND1 и GND2).Этот дисбаланс может вызвать проблемы с оборудованием, подключенным к автотрансформатору.

Заземление X0 автотрансформатора заставит центральную точку Y всегда находиться под определенным потенциалом, определяемым местной землей. Однако напряжения на линиях, поступающих в автотрансформатор, относятся к точке заземления вышестоящего трансформатора. Вероятный сценарий состоит в том, что два заземления будут иметь разные потенциалы, что приведет к конфликту контрольных точек на автотрансформаторе.Автотрансформатор и электрическая система попытаются разрешить конфликт и уравновесить две точки заземления. Единственный способ, которым это может произойти, – это протекание заземляющего тока между двумя заземлениями. В зависимости от того, насколько велика разница в потенциале напряжения между двумя заземлениями, а также в зависимости от сопротивления заземления, через центральные точки звезды может протекать значительный ток. В дополнение к этому факту, что полное сопротивление автотрансформатора обычно низкое, через автотрансформатор может быть достаточно тока, чтобы сжечь одну или несколько катушек автотрансформатора.

Последствия и возникающие проблемы, возникающие из-за неправильного заземления, могут быть непредсказуемыми и проявляться по-разному во времени. Потенциалы заземления могут сильно различаться в зависимости от условий окружающей среды. После установки автотрансформатора и заземления в центральной точке звезды (X0) проблемы могут не появиться на начальном этапе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *