Содержание

Автомат 3-полюсный 16А 4,5кА (хар-ка C) EASY 9 Schneider Electric EZ9F34316 – цена, фото, отзывы

Серия Easy 9
Тип монтажа DIN-рейка
Ед. измерения шт
Ширина, мм 54
Глубина, мм 74
Высота, мм 82
Масса, кг 0.34
Исполнение Стационарный
Предельная отключающая способность, кA 4.5
Номинальное напряжение, В 400
Кол-во модулей, DIN 3
Частота, Гц 50
Способ задания уставки расцепителя По типу (A/B/C/D…)
Климат. исполнение УХЛ4
Тип монтажной рейки 35х7. 5
Макс. сечение подключаемого кабеля, мм2 16
Электронный расцепитель Нет
Электродинамическая стойкость Icm, кА 6.75
Наименование, тип Easy9 ВА
Коэффициент гарантированного несрабатывания, o.e. 0,8
Взрывозащита Без взрывозащитыозащита
Кратности тока для времени, tm нет
Модульный Да
Дифф. расцепитель Нет
Время срабатывания расцепителя в зоне КЗ tm, c 0,01
Электромагнитный расцепитель Да
Способ задания уставки мгновенного расцепителя По кратности (Ki)
Маркировка по взрывозащите Нет

Можно ли переделать трехполюсные автоматы в однополюсные

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я опытным путем проверю, можно ли переделать модульные трехполюсные или двухполюсные автоматические выключатели в однополюсные путем удаления перемычки на рычажках их управления.

Объясню суть.

Предположим мне нужно установить в щитке три однополюсных автомата с номинальным током 16 (А), но вот хоть убей, а в наличии их не оказалось. Зато рядом под рукой имеется трехполюсный автомат и тоже с необходимым номинальным током на 16 (А).

Ну вот и замечательно, казалось бы. Осталось убрать перемычку между рычажками управления и готово!

Вот, например, трехполюсный автомат ВА47-29 С16 от IEK.

У этого автомата металлическая перемычка (шток) между рычажками очень легко убирается.

Надавливаем шилом, скрепкой или подобным предметом с одной стороны на перемычку.

И вынимаем ее.

Готово. Перемычка на автомате убрана.

Теперь можно включать каждый полюс по отдельности.

Кстати, не у всех автоматов перемычка также легко убирается. У некоторых она выполнена в виде общей накладки на все рычажки. Убрать такую накладку можно путем открытия защелок или вовсе, аккуратно перепилить ее ножовкой по металлу.

А теперь давайте проверим работоспособность такого «переделанного» автомата на том же примере — ВА47-29 от IEK.

Сначала с помощью мультиметра проверим состояние контактов при включенных и отключенных положениях на всех полюсах.

Нареканий к контактам нет, и казалось бы, к чему вообще написана эта статья. А вот к чему?!

Давайте попробуем прогрузить током какой-нибудь один полюс автомата до срабатывания его расцепителя. Не важно, какой это будет расцепитель — тепловой или электромагнитный.

Для прогрузки я воспользуюсь, уже знакомым для Вас, испытательным прибором РЕТОМ-21.

Вот схема для проверки расцепителей автоматов с помощью РЕТОМ-21.

Более подробно про подключение и настройку РЕТОМ-21 я рассказывал в статье про проверку расцепителей у автоматов промышленного назначения на примере ВА57-31.

Наконечники силового кабеля оказались больше, чем зажимы автомата, поэтому пришлось воспользоваться переходными гибкими перемычками КП-01, которые шли в комплекте с РЕТОМ-21.

На первый полюс (1-2) подключаем соединительные провода от испытательного устройства РЕТОМ-21 и включаем сразу все три полюса автомата.

Чтобы долго не ждать срабатывания автомата, прогрузим его 4-кратным током от номинального, т.е. 64 (А). Согласно время-токовой характеристики «С», при этом токе тепловой расцепитель должен сработать за время примерно от 1,7 до 18 (сек.).

Тепловой расцепитель проверяемого полюса (1-2) отключился за время 4,389 (сек.).

Все отлично, время срабатывания теплового расцепителя соответствует заводским данным, но!!! Он отключил попутно еще два соседних полюса.

Как так? Почему? Ведь мы же прогружали только первый полюс, а перемычка между рычажками была снята.

Проверим и остальные полюсы.

На второй полюс (3-4) подключаем соединительные провода от испытательного устройства РЕТОМ-21, включаем все три полюса автомата и прогружаем его током 64 (А).

Тепловой расцепитель проверяемого полюса (3-4) отключился за время 4,682 (сек.), что вполне удовлетворяет требованиям завода-производителя.

Но ситуация опять повторилась — при срабатывании теплового расцепителя в среднем полюсе (3-4) попутно отключились и его соседние полюса.

Аналогичным образом, повторилась ситуация и при прогрузке третьего полюса (5-6).

Почему же так происходит?!

А вот почему! Полюса между собой механически соединяются с помощью толкателя (вилки или скобки), поэтому фокус с убранной перемычкой на рычажках управления у нас и не получился. В любом случае при срабатывании расцепителя в одном из полюсов, будут отключаться и соседние.

Рассверлим заклепанные втулки в корпусе автомата и разберем его, чтобы посмотреть на механическую связь полюсов.

Вилка-толкатель между первым и вторым полюсами.

Вилка-толкатель между вторым и третьим полюсами.

При срабатывании расцепителя в одном из полюсов вилка-толкатель воздействует на отключающий механизм соседних полюсов. Вот и весь секрет.

На одном из форумов читал про случай, когда в этажном щите одной новостройки вместо вводных однополюсных автоматов для трех квартир установили один трехполюсный, удалив при этом перемычку на рычажках управления. Вот фотография этого случая.

Таким образом, при срабатывании теплового или электромагнитного расцепителей в одном из полюсов (одной из квартир), на площадке отключатся за компанию и две соседние квартиры. А на первый взгляд все работает исправно и без нареканий, и можно включать или отключать каждую квартиру по отдельности.

Данный эксперимент с таким же успехом относится и к разделению двухполюсных автоматов.

И уже по традиции, в завершении смотрите видео версию статьи:

Внимание! По многочисленным просьбам читателей сайта провел обратный эксперимент по объединению однополюсных автоматов в двухполюсные и трехполюсные.

P.S. На этом все, спасибо за внимание. Необходимо прекратить подобные ошибочные действия по разделению трехполюсных и двухполюсных автоматических выключателей, поэтому прошу Вас по максимуму поделиться и распространить информацию этой статьи.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


области применения, особенности установкаа, популярные бренды

Необходимость установки автоматических выключателей в распределительном щите на вводе электроэнергии в квартиру понятна каждому. Но в подобных случаях используются устройства, подключаемые на одну фазу и часто имеющие невысокий номинальный ток. Подключение напряжения 380 В требует иного оборудования, с более высокой мощностью. Сегодня речь пойдет о том, что такое 3-х полюсный автоматический выключатель, какие виды подобных устройств бывают и как они подключаются.

Особенности подключения АВ на 3 полюса и его принцип действия

Через подобные автоматы не всегда подключается оборудование, требующее высокого напряжения. Часто в распределительном щите производится разводка, после чего каждая фаза идет на отдельную группу освещения или питания бытовых электроприборов. Однако в случае необходимости установки АВ в качестве вводного следует отдать предпочтение защитному устройству с четырьмя контактами. Оно разрывает вместе с питанием нулевую жилу. В случае пробоя она тоже может оказаться под напряжением.

Автоматический 3-х полюсный выключатель предназначен для одновременной отсечки всех трех фаз в случае возникновения перегрузки или короткого замыкания в силовой сети. Токовые характеристики устройства будут зависеть от количества и мощности приборов, подключенных через подобное оборудование. Для частных домов не требуется высоких показателей по этому параметру, чего нельзя сказать о промышленном применении АВ. В подобных случаях применяются 3-х полюсные автоматические выключатели 100А и выше.

Популярные производители оборудования защиты силовых сетей

Сегодня на прилавках магазинов электротехники ассортимент таких устройств довольно обширен. Это же касается и фирм-производителей, выпускающих подобную продукцию. Наибольшим спросом пользуются 3-х полюсные автоматические выключатели ABB, Schneider Electric, Tech Controllers. Существует и множество других брендов, однако популярность их среди населения России ниже.

Что касается марок, название которых вообще ни о чем не говорит, приобретать их не стоит, даже если цена довольно привлекательна. Не нужно рисковать при установке защитного оборудования, ведь итог может обойтись значительно дороже. Лучше приобрести более дорогой и брендовый 3-х полюсной автоматический выключатель и быть спокойным за состояние домашней силовой сети.

Что можно добавить к сказанному

Защитная автоматика должна обеспечивать полную безопасность. Перегружена ли сеть, отгорел и замкнул провод – задача АВ вовремя снять напряжение во избежание более серьезных последствий. Особенно это актуально в сетях с высоким напряжением. Это значит, что приобретая качественный 3-х полюсной автоматический выключатель, человек дарит спокойствие близким. К тому же он избавляет себя от необходимости постоянно следить за количеством включенных в розетки бытовых приборов.

Трехфазный асинхронный двигатель: типы, работа и применение

Трехфазный асинхронный двигатель – Конструкция, работа и типы трехфазных асинхронных двигателей

Двигатель используется для преобразования электрической формы энергии в механическую. По типу питания двигатели подразделяются на двигатели переменного тока и двигатели постоянного тока.

В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с их работой и применением.

Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для производства механической энергии в промышленности.Почти 80% двигателей составляют трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Таким образом, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.

Что такое трехфазный асинхронный двигатель?

Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный ток питания создает электромагнитное поле в обмотке статора, что приводит к возникновению крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.

Конструкция трехфазного асинхронного двигателя

Конструкция асинхронного двигателя очень проста и надежна. Он состоит в основном из двух частей;

Статор

Как следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;

  • Рама статора
  • Сердечник статора
  • Обмотка статора
Рама статора

Корпус статора — это внешняя часть двигателя.Функция рамы статора заключается в обеспечении поддержки сердечника статора и обмотки статора.

Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.

Рама отливается для небольших машин и изготавливается для больших машин. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия/алюминиевых сплавов или нержавеющей стали.

Сердечник статора

Сердечник статора предназначен для переноса переменного магнитного потока, который создает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник прокатывается штамповками из высококачественной стали толщиной от 0,3 до 0,6 мм.

Эти штамповки изолированы друг от друга лаком. Все штамповки штампуют вместе по форме сердечника статора и закрепляют его с корпусом статора.

Внутренний слой сердечника статора имеет несколько пазов.

Обмотка статора

Обмотка статора помещается в статорные пазы, имеющиеся внутри сердечника статора. В качестве обмотки статора размещена трехфазная обмотка.И трехфазное питание подается на обмотку статора.

Количество полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет выше. Полюса всегда парные. Поэтому общее количество полюсов всегда четное число. Отношение между синхронной скоростью и числом полюсов показано в приведенном ниже уравнении

.

N S = 120 f / P

Где;

  • f
    = Частота питания
  • P = Общее количество полюсов
  • N с = синхронная скорость

В качестве конца обмотки, подключенного к клеммной коробке.Следовательно, в клеммной коробке имеется шесть клемм (по две на каждую фазу).

В зависимости от применения и типа методов пуска двигателей, обмотка статора соединяется звездой или треугольником, и это выполняется путем соединения клемм в клеммной коробке.

Ротор

Как следует из названия, ротор представляет собой вращающуюся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с фазовой обмоткой (ротор с обмоткой) / асинхронный двигатель с контактными кольцами

Конструкция статора одинакова для обоих типов асинхронных двигателей. Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.

Типы трехфазных асинхронных двигателей

Трехфазные двигатели классифицируются в основном на две категории в зависимости от обмотки ротора (обмотка катушки якоря), т. е. с короткозамкнутым ротором и контактным кольцом (двигатель с фазным ротором).

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или фазным ротором

По теме: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение

Асинхронный двигатель с короткозамкнутым ротором

Форма этого ротора напоминает форму клетки белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.

Конструкция этого типа ротора очень проста и прочна. Таким образом, почти 80% асинхронных двигателей представляют собой асинхронные двигатели с короткозамкнутым ротором.

Ротор состоит из цилиндрического многослойного сердечника и имеет пазы по внешней периферии. Прорези не параллельны, а скошены под некоторым углом. Это помогает предотвратить магнитную блокировку между зубьями статора и ротора. Это приводит к плавной работе и уменьшает гудящий шум.Увеличивается длина проводника ротора, за счет этого увеличивается сопротивление ротора.

Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Стержни ротора изготовлены из алюминия, латуни или меди.

Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полный замкнутый путь в цепи ротора. Стержни ротора приварены или закреплены с торцевыми кольцами для обеспечения механической поддержки.

Короткое замыкание стержней ротора.Поэтому нельзя добавлять внешнее сопротивление в цепь ротора.

В этом типе ротора контактные кольца и щетки не используются. Следовательно, конструкция этого типа двигателя проще и надежнее.

Асинхронный двигатель с контактным кольцом или фазным ротором

Асинхронные двигатели с контактными кольцами также известны как двигатели с фазным ротором . Ротор состоит из многослойного цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.

В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора равно числу полюсов обмотки статора. Обмотка ротора может быть соединена звездой или треугольником.

Концевые выводы обмоток ротора соединены с контактными кольцами. Таким образом, этот двигатель известен как асинхронный двигатель с контактными кольцами.

Внешнее сопротивление легко соединяется с цепью ротора через токосъемное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.

Электрическая схема трехфазного асинхронного двигателя с контактными кольцами и внешним сопротивлением показана на рисунке ниже.

Внешнее сопротивление используется только для запуска. Если он останется подключенным во время работы, это увеличит потери в меди ротора.

Высокое сопротивление ротора хорошо подходит для пусковых условий. Таким образом, внешнее сопротивление связано с цепью ротора в начальном состоянии.

Когда двигатель работает со скоростью, близкой к фактической скорости, токосъемные кольца замыкаются металлическим кольцом.При таком расположении щетки и внешнее сопротивление удаляются из цепи ротора.

Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложнее по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.

Техническое обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В остальном асинхронный двигатель с короткозамкнутым ротором более предпочтителен, чем асинхронный двигатель с контактными кольцами.

Принцип работы трехфазного асинхронного двигателя

Обмотки статора перекрывают друг друга под углом 120˚ (электрически). Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (ВМП).

Скорость вращающегося магнитного поля известна как синхронная скорость (N S ).

Согласно закону Фарадея ЭДС, индуцируемая в проводнике из-за скорости изменения потока (dΦ/dt).Цепь ротора отсекает магнитное поле статора и ЭДС, индуцируемую в стержне или обмотке ротора.

Цепь ротора является замкнутым контуром. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.

Теперь мы знаем, что проводник с током индуцирует магнитное поле. Итак, ток ротора индуцирует второе магнитное поле.

Относительное движение между потоком статора и потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения.Ротор пытается поймать поток статора и начинает вращаться.

Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцируемого статором.

Здесь ток ротора создается за счет индуктивности. Поэтому этот двигатель известен как асинхронный двигатель.

Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не ловит.Следовательно, скорость ротора немного меньше скорости синхронной скорости.

Синхронная скорость зависит от количества полюсов и частоты сети. Разница между фактической скоростью вращения ротора и синхронной скоростью называется скольжением.

Почему скольжение асинхронного двигателя никогда не равно нулю?

Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю. Для асинхронного двигателя это условие никогда не наступит.

Потому что, когда скольжение равно нулю, обе скорости равны и нет относительного движения. Следовательно, в цепи ротора не возникает ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.

Асинхронный двигатель широко используется в промышленности. Потому что преимуществ у него больше, чем недостатков.

Преимущества и недостатки асинхронных двигателей

Преимущества

Преимущества асинхронного двигателя перечислены ниже,

  • Конструкция двигателя очень проста и надежна.
  • Работа асинхронного двигателя очень проста.
  • Может работать в любых условиях окружающей среды.
  • КПД двигателя очень высокий.
  • Обслуживание асинхронного двигателя меньше по сравнению с другими двигателями.
  • Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник источника. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
  • Асинхронный двигатель является двигателем с автоматическим запуском. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для пуска.
  • Стоимость этого двигателя намного меньше по сравнению с другими двигателями.
  • Срок службы этого двигателя очень высок.
  • Реакция якоря меньше.

Запись по теме: Прямой онлайн-пускатель — схема подключения пускателя DOL для двигателей

Недостатки

Недостатки двигателя перечислены ниже;

  • При легкой нагрузке коэффициент мощности очень низкий. И потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность в условиях легкой нагрузки.
  • Пусковой момент данного двигателя (асинхронного двигателя с короткозамкнутым ротором) не менее.
  • Асинхронный двигатель с постоянной скоростью. Для приложений, где требуется переменная скорость, этот двигатель не используется.
  • Управление скоростью этого двигателя затруднено.
  • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

Применение трехфазных асинхронных двигателей

Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются как в жилых, так и в промышленных целях, особенно там, где не требуется регулирование скорости двигателей, таких как:

  • Насосы и погружные насосы
  • Пресс-машина
  • Токарный станок
  • Шлифовальный станок
  • Конвейер
  • Мукомольные заводы
  • Компрессор
  • И другие устройства с низкой механической мощностью

Двигатели с контактными кольцами используются в приложениях с большой нагрузкой, где требуется высокий начальный крутящий момент, например:

  • Сталелитейные заводы
  • Лифт
  • Крановая машина
  • Подъемник
  • Линейные валы
  • и другие тяжелые механические мастерские и т. д.

Похожие сообщения:

Как определить число полюсов асинхронного двигателя?

Есть много гораздо более интересных вопросов, связанных с числом полюсов асинхронных двигателей, например. д.:
1. Увеличивает ли асинхронный двигатель, питаемый от сети (скажем, 50 Гц), свой крутящий момент в «р» раз с ростом числа полюсов «р», так как его скорость уменьшается в «р» время (как в редуктор)?
2. Пусть у нас есть асинхронный двигатель с p=2 и питаем его от сети 50 Гц. Затем пересоединяем витки обмотки, чтобы расположить p=4 и питать, если растет сетка 100 Гц. Характеристики этих двух моторов разные или одинаковые? Обратите внимание, за исключением частоты и соединений между катушками, все осталось прежним.

Зависит от требуемой скорости. n (об/мин) = (60 x f ) / N , где:- f = частота и N = количество пар полюсов. 60 предназначен для преобразования оборотов в секунду в обороты в минуту, поскольку частота измеряется в циклах в секунду. Пары полюсов существуют потому, что любой стержень должен быть построен в парах верх и низ / левый и правый, поэтому за один цикл он переместится на половину расстояния.

Если вы используете 50 Гц и имеете двухполюсный двигатель, 60 x 50/1 = 3000 об/мин. Асинхронный двигатель будет работать с немного меньшей скоростью из-за «скольжения», что придает двигателю крутящий момент. Например, 5,5 кВт, 400 В, 2-полюсный двигатель будет работать со скоростью примерно 2880 об/мин.

Для четырехполюсной машины 60 x 50 / 2 = 1500 об/мин, поэтому двигатель того же размера на 5,5 кВт, 400 В, но с 4 полюсами будет иметь номинальную скорость 1500 об/мин, но будет работать со скоростью около 1455 об/мин.

При выборе трехфазного двигателя количество полюсов выбирается для достижения требуемой скорости вращения. Вот две таблицы, одна для источника питания 50 Гц, а другая для источника питания 60 Гц:

Формула: n = 60 x f / p , где n = синхронная скорость; f = частота сети и p = количество пар полюсов на фазу.Фактическая рабочая скорость представляет собой синхронную скорость минус скорость скольжения.

Для трехфазного питания 50 Гц:

2 полюса или 1 пара полюсов = 3000 об/мин (минус скорость скольжения = около 2750 об/мин или 6-7% n )
4 полюса или 2 пары полюсов = 1500 об/мин
6 полюсов или 3 пары полюсов = 1000
8 полюсов или 4 пары полюсов = 750 об/мин
10 полюсов или 5 пар полюсов = 600 об/мин
12 полюсов или 6 пар полюсов = 500 об/мин
16 полюсов или 8 пар полюсов = 375 об/мин

Для трехфазного питания 60 Гц:

2 полюса или 1 пара полюсов = 3600 об/мин (минус скорость скольжения = около 2750 об/мин или 6-7% n )
4 полюса или 2 пары полюсов = 1800 об/мин
6 полюсов или 3 пары полюсов = 1200
8 полюсов или 4 пары полюсов = 900 об/мин
10 полюсов или 5 пар полюсов = 720 об/мин
12 полюсов или 6 пар полюсов = 600 об/мин
16 полюсов или 8 пар полюсов = 450 об/мин

Чтобы определить количество полюсов, вы можете прочитать табличку технических данных напрямую или рассчитать его на основе числа оборотов в минуту, указанного на табличке технических данных, или вы можете подсчитать количество катушек и разделить на 3 (полюса на фазу) или на 6 (пары полюсов на фазу). ).Когда мощность асинхронного двигателя постоянна, крутящий момент увеличивается пропорционально уменьшению скорости.

С появлением частотно-регулируемого привода (VFD) вы можете иметь любую частоту / номинальное напряжение, какое пожелаете. Я часто вижу таблички с такими вещами, как 575 В переменного тока, 42,5 Гц и т. Д. Когда производятся эти «специальные» машины, я обычно вижу 6-полюсные машины, но это может быть просто предпочтение производителя.

синхронных двигателей | Двигатели переменного тока

Однофазные синхронные двигатели

Однофазные синхронные двигатели

доступны в небольших размерах для приложений, требующих точной синхронизации, таких как хронометраж (часы) и магнитофоны.Хотя кварцевые часы с батарейным питанием широко доступны, часы с питанием от сети переменного тока имеют лучшую долгосрочную точность – в течение нескольких месяцев.

Это связано с тем, что операторы электростанций намеренно поддерживают долговременную точность частоты системы распределения переменного тока. Если он отстанет на несколько циклов, они восполнят потерянные циклы переменного тока, так что часы не потеряют время.

Большие и малые синхронные двигатели

Более 10 лошадиных сил (10 кВт) более высокий КПД и ведущий коэффициент мощности делают большие синхронные двигатели полезными в промышленности.Большие синхронные двигатели на несколько процентов более эффективны, чем более распространенные асинхронные двигатели, хотя синхронный двигатель более сложен.

Так как двигатели и генераторы похожи по конструкции, должна быть возможность использовать генератор в качестве двигателя и, наоборот, использовать двигатель в качестве генератора.

Асинхронный двигатель похож на генератор переменного тока с вращающимся полем. На рисунке ниже показаны небольшие генераторы переменного тока с вращающимся полем постоянного магнита. На приведенном ниже рисунке могут быть либо два параллельно включенных и синхронизированных генератора переменного тока, приводимых в действие механическими источниками энергии, либо генератор переменного тока, приводящий в движение синхронный двигатель. Или это могут быть два мотора, если будет подключен внешний источник питания.

Дело в том, что в любом случае роторы должны работать на одной номинальной частоте и находиться в фазе друг с другом. То есть они должны быть синхронизированы . Процедура синхронизации двух генераторов состоит в том, чтобы (1) разомкнуть выключатель, (2) запустить оба генератора с одинаковой частотой вращения, (3) опережать или замедлять фазу одного генератора до тех пор, пока оба выхода переменного тока не совпадут по фазе, (4) замкнуть переключатель до того, как они сдвинутся по фазе.

После синхронизации генераторы будут заблокированы друг относительно друга, что потребует значительного крутящего момента, чтобы отделить один блок (рассинхронизированный) от другого.

 

Синхронный двигатель, работающий синхронно с генератором

 

Учет крутящего момента синхронных двигателей

Если к ротору одного из вышеперечисленных вращающихся генераторов приложен больший крутящий момент в направлении вращения, угол ротора будет опережать (в отличие от (3)) по отношению к магнитному полю в катушках статора, все еще синхронизируясь и ротор будет подавать энергию в линию переменного тока, как генератор переменного тока.

Ротор также будет сдвинут относительно ротора другого генератора. Если к одному из вышеперечисленных устройств применяется такая нагрузка, как тормоз, угол ротора будет отставать от поля статора, как в (3), извлекая энергию из линии переменного тока, как двигатель.

Если применяется чрезмерный крутящий момент или сопротивление, ротор превысит максимальный угол крутящего момента , опережая или отставая настолько, что синхронизация будет потеряна. Крутящий момент развивается только при сохранении синхронизации двигателя.

Увеличение скорости синхронных двигателей

В случае небольшого синхронного двигателя вместо генератора нет необходимости выполнять сложную процедуру синхронизации генераторов. Однако синхронный двигатель не запускается самостоятельно, и его необходимо довести до приблизительной электрической скорости генератора, прежде чем он заблокируется (синхронизируется) со скоростью вращения генератора.

После набора скорости синхронный двигатель будет поддерживать синхронность с источником питания переменного тока и развивать крутящий момент.

 

Синусоидальный синхронный двигатель

 

Предполагая, что скорость двигателя достигает синхронной, когда синусоида меняется на положительную на рисунке выше (1), нижняя северная катушка толкает северный полюс ротора, а верхняя южная катушка притягивает северный полюс ротора. Аналогичным образом южный полюс ротора отталкивается верхней южной катушкой и притягивается к нижней северной катушке.

К тому времени, когда синусоида достигает пика в точке (2), крутящий момент, удерживающий северный полюс ротора, достигает максимума.Этот крутящий момент уменьшается по мере того, как синусоида уменьшается до 0 В постоянного тока в точке (3) при минимальном крутящем моменте.

Когда синусоида меняется на отрицательную между (3 и 4), нижняя южная катушка толкает южный полюс ротора, притягивая при этом северный полюс ротора. Аналогичным образом северный полюс ротора отталкивается верхней северной катушкой и притягивается к нижней южной катушке. В (4) синусоида достигает отрицательного пика с удерживающим моментом снова на максимуме. Когда синусоида меняется с отрицательной на 0 В постоянного тока на положительную, процесс повторяется для нового цикла синусоиды.

Обратите внимание: на приведенном выше рисунке показано положение ротора при отсутствии нагрузки (α=0°). На практике нагрузка на ротор приводит к тому, что ротор отстает от положения, показанного углом α. Этот угол увеличивается с нагрузкой до тех пор, пока максимальный крутящий момент двигателя не будет достигнут при α=90°.

Синхронизация и крутящий момент теряются за пределами этого угла. Ток в катушках однофазного синхронного двигателя пульсирует при изменении полярности.

Если скорость ротора с постоянными магнитами близка к частоте этого чередования, он синхронизируется с этим чередованием.Поскольку поле катушки пульсирует и не вращается, необходимо довести скорость ротора с постоянными магнитами до нужной скорости с помощью вспомогательного двигателя. Это небольшой асинхронный двигатель, подобный тем, что описаны в следующем разделе.

 

Добавление полюсов поля снижает скорость

 

2-полюсный (пара полюсов север-юг) генератор переменного тока будет генерировать синусоидальный сигнал частотой 60 Гц при вращении со скоростью 3600 об/мин (оборотов в минуту). 3600 об/мин соответствует 60 оборотам в секунду.Аналогичный двухполюсный синхронный двигатель с постоянными магнитами также будет вращаться со скоростью 3600 об/мин.

Двигатель с более низкой скоростью может быть сконструирован путем добавления большего количества пар полюсов. 4-полюсный двигатель будет вращаться со скоростью 1800 об/мин, 12-полюсный — со скоростью 600 об/мин. Показанный стиль конструкции (рисунок выше) приведен для иллюстрации. Синхронные двигатели с многополюсным статором с более высоким КПД и большим крутящим моментом фактически имеют несколько полюсов в роторе.

 

Однообмоточный 12-полюсный синхронный двигатель

 

Вместо того, чтобы наматывать 12 катушек для 12-полюсного двигателя, намотайте одну катушку с двенадцатью встречно расположенными стальными полюсами, как показано на рисунке выше. Хотя полярность катушки меняется из-за приложенного переменного тока, предположим, что верхняя часть временно находится на севере, а нижняя — на юге.

Полюсные наконечники направляют южный поток снизу и снаружи катушки вверх. Эти 6 южных чередуются с 6 южными выступами, отогнутыми вверх от вершины стального полюсного наконечника катушки. Таким образом, стержень ротора с постоянным магнитом столкнется с 6-полюсными парами, соответствующими 6 циклам переменного тока за один физический оборот стержневого магнита.

Скорость вращения будет составлять 1/6 от электрической скорости переменного тока.Скорость ротора будет составлять 1/6 скорости вращения 2-полюсного синхронного двигателя. Пример: 60 Гц будет вращать 2-полюсный двигатель со скоростью 3600 об/мин или 600 об/мин для 12-полюсного двигателя.

 

Перепечатано с разрешения Westclox History на сайте www.clockHistory.com

 

Статор (рисунок выше) показывает 12-полюсный синхронный двигатель Westclox. Конструкция аналогична предыдущей фигуре с одной катушкой. Конструкция с одной катушкой экономична для двигателей с низким крутящим моментом.Этот двигатель со скоростью вращения 600 об/мин приводит в движение редукторы, двигающие стрелки часов.

В: Если бы двигатель Westclox работал со скоростью 600 об/мин от источника питания с частотой 50 Гц, сколько полюсов потребовалось бы?

A: 10-полюсный двигатель будет иметь 5 пар полюсов N-S. Он будет вращаться со скоростью 50/5 = 10 оборотов в секунду или 600 об/мин (10 с-1 х 60 с/мин).

 

Перепечатано с разрешения Westclox History на сайте www.clockHistory.com

 

Ротор (рис. выше) состоит из стержня с постоянными магнитами и стальной чашки асинхронного двигателя.Стержень синхронного двигателя, вращающийся внутри лепестков полюса, сохраняет точное время. Чашка асинхронного двигателя снаружи стержневого магнита устанавливается снаружи и над выступами для самостоятельного запуска. Одно время выпускались несамозапускающиеся двигатели без асинхронного двигателя.

Трехфазные синхронные двигатели

Трехфазный синхронный двигатель, как показано на рисунке ниже, создает электрически вращающееся поле в статоре. Такие двигатели не запускаются самостоятельно, если они запускаются от источника питания с фиксированной частотой, такой как 50 или 60 Гц, как в промышленных условиях.

Кроме того, ротор является не постоянным магнитом для двигателей мощностью в несколько лошадиных сил (несколько киловатт), используемых в промышленности, а электромагнитом. Большие промышленные синхронные двигатели более эффективны, чем асинхронные двигатели. Они используются, когда требуется постоянная скорость. Имея опережающий коэффициент мощности, они могут скорректировать линию переменного тока на отстающий коэффициент мощности.

Три фазы возбуждения статора векторно складываются для создания единого результирующего магнитного поля, которое вращается f/2n раз в секунду, где f — частота сети питания, 50 или 60 Гц для промышленных двигателей, работающих от сети питания. Количество полюсов равно n. Для частоты вращения ротора в об/мин умножьте на 60.

 

 S = f120/n, где: S = частота вращения ротора в об/мин f = частота сети переменного тока n = количество полюсов на фазу 

 

3-фазный 4-полюсный (на каждую фазу) синхронный двигатель будет вращаться со скоростью 1800 об/мин при мощности 60 Гц или 1500 об/мин при мощности 50 Гц. Если катушки запитываются по одной в последовательности φ-1, φ-2, φ-3, то ротор должен поочередно указывать на соответствующие полюса.

Поскольку синусоидальные волны на самом деле перекрываются, результирующее поле будет вращаться не ступенчато, а плавно.Например, когда синусоидальные волны φ-1 и φ-2 совпадают, пик поля будет направлен между этими полюсами. Показанный стержневой магнитный ротор подходит только для небольших двигателей.

Ротор с несколькими магнитными полюсами (внизу справа) используется в любом эффективном двигателе, приводящем в движение значительную нагрузку. Это будут электромагниты с токосъемными кольцами в больших промышленных двигателях. Крупные промышленные синхронные двигатели запускаются автоматически с помощью встроенных в якорь проводников с короткозамкнутым ротором, действующих как асинхронный двигатель.

На электромагнитный якорь подается питание только после того, как ротор будет доведен до скорости, близкой к синхронной.

 

Трехфазный 4-полюсный синхронный двигатель

 

Малые многофазные синхронные двигатели

Небольшие многофазные синхронные двигатели можно запускать путем линейного увеличения частоты привода от нуля до конечной рабочей частоты. Многофазные управляющие сигналы генерируются электронными схемами и будут прямоугольными во всех приложениях, кроме самых требовательных.

Такие двигатели известны как бесщеточные двигатели постоянного тока. Истинные синхронные двигатели управляются синусоидальными сигналами. Можно использовать двух- или трехфазный привод, поставив соответствующее количество обмоток в статоре. Выше показано только 3 фазы.

 

Электронный синхронный двигатель

 

На блок-схеме показана электроника привода, связанная с синхронным двигателем низкого напряжения (12 В пост. тока). Эти двигатели имеют встроенный в двигатель датчик положения , который выдает сигнал низкого уровня с частотой, пропорциональной скорости вращения двигателя.

Датчик положения может быть таким же простым, как полупроводниковые датчики магнитного поля, такие как устройства на эффекте Холла , обеспечивающие синхронизацию коммутации (направление тока якоря) с электроникой привода. Датчик положения может быть угловым датчиком с высоким разрешением, например резольвером, индуктосином (магнитным энкодером) или оптическим энкодером.

Если требуется постоянная и точная скорость вращения, (как для дисковода) могут быть включены тахометр и фазовая автоподстройка частоты (рисунок ниже).Этот сигнал тахометра, последовательность импульсов, пропорциональная скорости двигателя, подается обратно в контур фазовой автоподстройки частоты, который сравнивает частоту и фазу тахометра со стабильным источником опорной частоты, таким как кварцевый генератор.

 

Контур фазовой автоподстройки частоты управляет скоростью синхронного двигателя

 

Бесщеточный двигатель постоянного тока

Двигатель, приводимый в действие прямоугольными волнами тока, обеспечиваемый простыми датчиками на эффекте Холла, известен как бесщеточный двигатель постоянного тока .Этот тип двигателя имеет большее изменение пульсаций крутящего момента в зависимости от оборота вала, чем двигатель с синусоидальным приводом. Для многих приложений это не проблема. Хотя в этом разделе нас в первую очередь интересуют синхронные двигатели.

 

Пульсирующий крутящий момент двигателя и механический аналог

 

Пульсирующий крутящий момент или заедание вызвано магнитным притяжением полюсов ротора к полюсным наконечникам статора. (Рисунок выше) Обратите внимание, что катушки статора отсутствуют.Ротор PM можно вращать вручную, но он будет испытывать притяжение к полюсным наконечникам, когда находится рядом с ними.

Это аналогично механической ситуации. Будет ли пульсация крутящего момента проблемой для двигателя, используемого в магнитофоне? Да, мы не хотим, чтобы двигатель попеременно ускорялся и замедлялся, когда он перемещает аудиоленту мимо головки воспроизведения ленты. Будет ли пульсация крутящего момента проблемой для двигателя вентилятора? №

 

Обмотки, распределенные по ремню, создают более синусоидальное поле

 

Если двигатель приводится в действие синусоидальными волнами тока, синхронными с противо-ЭДС двигателя, он классифицируется как синхронный двигатель переменного тока, независимо от того, генерируются ли формы сигналов привода электронными средствами.Синхронный двигатель будет генерировать синусоидальную обратную ЭДС , если магнитное поле статора имеет синусоидальное распределение.

Это будет более синусоидально, если полюсные обмотки будут распределены в ремне по многим пазам, а не сосредоточены на одном большом полюсе (как показано на большинстве наших упрощенных иллюстраций). Такая компоновка подавляет многие нечетные гармоники поля статора.

Пазы, имеющие меньшее количество витков на краю фазной обмотки, могут делить пространство с другими фазами.Намоточные ремни могут иметь альтернативную концентрическую форму, как показано на рисунке ниже.

 

Концентрические ремни

 

Для двухфазного двигателя, приводимого в движение синусоидой, крутящий момент остается постоянным на протяжении всего оборота по тригонометрическому тождеству:

 

 sin2θ + cos2θ = 1 

 

Генерация и синхронизация сигнала привода требуют более точной индикации положения ротора, чем обеспечивают датчики Холла, используемые в бесщеточных двигателях постоянного тока.Резольвер или оптический или магнитный энкодер обеспечивают разрешение от сотен до тысяч частей (импульсов) на оборот.

Резольвер выдает аналоговые сигналы углового положения в виде сигналов, пропорциональных синусу и косинусу угла вала. Энкодеры обеспечивают цифровую индикацию углового положения в последовательном или параллельном формате.

Привод синусоидальной волны на самом деле может быть от ШИМ, широтно-импульсного модулятора , высокоэффективного метода аппроксимации синусоидальной волны цифровой формой волны.Для каждой фазы требуется электроника привода для этой формы волны, сдвинутая по фазе на соответствующую величину для каждой фазы.

 

ШИМ приближается к синусоиде

 

Преимущества синхронного двигателя

КПД синхронного двигателя выше, чем у асинхронных двигателей. Синхронный двигатель также может быть меньше, особенно если в роторе используются постоянные магниты высокой энергии. Появление современной твердотельной электроники позволяет управлять этими двигателями с переменной скоростью.

Асинхронные двигатели в основном используются в железнодорожной тяге. Однако небольшой синхронный двигатель, устанавливаемый внутри ведущего колеса, делает его привлекательным для таких применений. Версия этого двигателя с высокотемпературным сверхпроводником весит от одной пятой до одной трети веса двигателя с медной обмоткой.

Самый большой экспериментальный сверхпроводниковый синхронный двигатель, способный привести в движение корабль класса морского эсминца. Во всех этих применениях электропривод с регулируемой скоростью необходим.Привод с регулируемой скоростью также должен снижать напряжение привода на низкой скорости из-за уменьшения индуктивного сопротивления на более низкой частоте.

Для развития максимального крутящего момента ротор должен отставать от направления поля статора на 90°. Более того, он теряет синхронизацию. Гораздо меньше приводит к снижению крутящего момента. Таким образом, положение ротора должно быть точно известно. А положение ротора по отношению к полю статора необходимо рассчитывать и контролировать.

Этот тип управления известен как векторное фазовое управление .Он реализован с помощью быстрого микропроцессора, управляющего широтно-импульсным модулятором фаз статора. Статор синхронного двигателя такой же, как у более популярного асинхронного двигателя.

В результате электронное управление скоростью промышленного класса, используемое с асинхронными двигателями, также применимо к большим промышленным синхронным двигателям. Если ротор и статор обычного вращающегося синхронного двигателя развернуть, получится синхронный линейный двигатель.

Этот тип двигателя применяется для точного высокоскоростного линейного позиционирования.

 

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Трехфазный асинхронный двигатель: конструкция и принцип работы

Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в промышленности. Они работают по принципу электромагнитной индукции.

Из-за схожести принципа работы трансформатора он также известен как вращающийся трансформатор .

Они работают практически с постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты и, следовательно, эти двигатели не легко адаптируются к управлению скоростью .

Мы обычно предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

Давайте разберемся с конструкцией трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

Конструкция трехфазного асинхронного двигателя

Как и любой электродвигатель, трехфазный асинхронный двигатель имеет статор и ротор .Статор имеет трехфазную обмотку (называемую обмоткой статора), а ротор несет короткозамкнутую обмотку (называемую обмоткой ротора).

От трехфазной сети питается только обмотка статора. Обмотка ротора получает свое напряжение и мощность от обмотки статора с внешним питанием через электромагнитную индукцию и, следовательно, название.

Трехфазный асинхронный двигатель состоит из двух основных частей

  1. Статор
  2. Ротор

Ротор отделен от статора небольшим воздушным зазором , который варьируется от 0. 4 мм до 4 мм, в зависимости от мощности двигателя.

1. Статор трехфазного асинхронного двигателя

Статор состоит из стальной рамы, в которую заключен полый цилиндрический сердечник, состоящий из тонких пластин кремнистой стали для уменьшения гистерезисных потерь и потерь на вихревые токи.

На внутренней периферии пластин имеется ряд равномерно расположенных пазов. Изолированные жилы соединены в симметричную трехфазную схему, соединенную звездой или треугольником.

Внешний корпус и статор трехфазного асинхронного двигателя

Обмотка трехфазного статора намотана на определенное число полюсов в соответствии с требованием скорости.Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины. Это вращающееся поле индуцирует токи в роторе за счет электромагнитной индукции.

2. Ротор трехфазного асинхронного двигателя

Ротор, установленный на валу, представляет собой полый многослойный сердечник с прорезями на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

  1. Беличья клетка, тип
  2. Ротор с обмоткой Тип

Принцип работы Трехфазный асинхронный двигатель

Для объяснения принципа работы трехфазного асинхронного двигателя рассмотрим часть трехфазного асинхронного двигателя, как показано на рисунке.

Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

Когда трехфазная обмотка статора асинхронного двигателя питается от трехфазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N s ).

Часть вращающегося магнитного поля в трехфазном асинхронном двигателе

Синхронная скорость,

N с = 120 в/п

Где,

f = частота

P = Количество полюсов

(Подробнее о вращающемся магнитном поле см. в разделе Создание вращающегося магнитного поля).

Это вращающееся поле проходит через воздушный зазор и разрезает неподвижные проводники ротора.

ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора закорочена, в проводниках ротора начинают протекать токи.

Токонесущие проводники ротора помещаются в магнитное поле, создаваемое статором. Следовательно, на проводники ротора действует механическая сила .Сумма механических сил, действующих на все проводники ротора, создает крутящий момент , который стремится двигать ротор в том же направлении, что и вращающееся поле.

Тот факт, что ротор вынужден следовать за полем статора (т. е. ротор движется в направлении поля статора), можно объяснить законом Ленца .

Согласно закону Ленца, направление токов ротора будет таким, что они будут противодействовать причине их возникновения.

Итак, причиной появления токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает двигаться в том же направлении, что и поле статора, и пытается его поймать. Так начинает работать трехфазный асинхронный двигатель.

Проскальзывание асинхронного двигателя

Выше мы видели, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

На практике ротор никогда не может достичь скорости потока статора. Если бы это было так, не было бы относительной скорости между полем статора и проводниками ротора, не было бы индуцированных токов ротора и, следовательно, не было бы крутящего момента для привода ротора.

Трение и ветер немедленно заставят ротор замедлиться. Следовательно, скорость вращения ротора (N) всегда меньше скорости вращения поля статора (N s ). Эта разница в скорости зависит от нагрузки на двигатель.

Разница между синхронной скоростью N s вращающегося поля статора и фактической скоростью N ротора называется скольжением в трехфазном асинхронном двигателе .

Скольжение обычно выражается в процентах от синхронной скорости i.д.,

Скольжение, с = (N с – N)/N с × 100 %

Величину N s – N иногда называют скоростью скольжения .

Когда ротор неподвижен (т. е. N = 0), скольжение s = 1 или 100 %.

В асинхронном двигателе изменение скольжения от холостого хода до полной нагрузки едва ли составляет 0,1% до 3% , так что, по существу, это двигатель с постоянной скоростью .

Видео: Работа трехфазного асинхронного двигателя

Видео от Learnengineering показывает работу трехфазных асинхронных двигателей в анимированной форме.

Обмотка трехфазных двигателей переменного тока | Программное обеспечение серии Generator

 
Обмотка трехфазного двигателя переменного тока
В учебном пособии «Обмотка двигателя переменного тока» представлены основы обмоток двигателей переменного тока, а также обмотки однофазных двигателей. В этом учебном пособии представлены обмотки трехфазных двигателей переменного тока.
Базовая конструкция обмотки трехфазного двигателя переменного тока

Хорошо известно, что как электродвижущая сила, индуцируемая в трехфазном двигателе переменного тока, так и вращающееся магнитное поле, генерируемое в трехфазном генераторе переменного тока, исходят от важной части двигателя или генератора, то есть от обмоток.
Основные требования к обмоткам трехфазных двигателей переменного тока:
Форма волны потенциала, создаваемая трехфазным двигателем переменного тока, и магнитное поле трехфазного двигателя переменного тока должны быть близки к синусоиде и достигать требуемой амплитуды.
Потенциальное или магнитное поле, создаваемое трехфазными обмотками, должно быть симметричным, а сопротивление и реактивное сопротивление каждой обмотки должны быть сбалансированы.
Медные потери обмотки малы и равны количеству меди.
Его изоляция должна быть надежной, требуется высокая механическая прочность, рассеивание тепла и простота изготовления.
Конкретные обмотки трехфазного двигателя переменного тока в основном основаны на следующих данных:

P Пары магнитных полюсов      
Для двигателя с P парами магнитных полюсов количество магнитных полюсов равно 2p. Например, двигатели с одной парой магнитных полюсов создают вращающееся магнитное поле со скоростью 3000 об/мин при трехфазном переменном токе частотой 50 Гц, а двигатели с двумя парами магнитных полюсов создают вращающееся магнитное поле со скоростью 1500 об/мин.
Полюс τ   
Ширина каждого полюса (измеряется по количеству пазов),
τ=Z/2p      Z – общее количество пазов статора,
Диапазон фаз q    
Ширина каждой фазы под каждым столбом (измеряется по количеству пазов),
q = Z / 2pm   m – количество фаз
Например, для трехфазного двигателя с общим количеством пазов 24 и двумя парами магнитных полюсов шаг полюсов равен 6, а фазовый диапазон равен 2.
Применение фазового деления для проектирования обмоток является основным методом, который является простым и легким. Основные шаги:
1. Сначала определите количество фаз двигателя, количество полюсов двигателя и форму обмотки
2. Нарисуйте круговую диаграмму со всеми слотами
3. Подсчитайте количество слотов в каждом полюсе и фазе 90 888. 4. Рассчитать шаг полюсов и шаг
5.Фаза разделения
6. Соедините концы, чтобы сформировать катушку
. 7. Соедините катушки, чтобы сформировать обмотку
. Для других сложных обмоток нужны какие-то другие методы. Ниже приведен пример анализа двух трехфазных двигателей методом разделения фазового диапазона.

Обмотки трехфазного двигателя переменного тока
2-полюсная 6-пазовая однослойная трехфазная обмотка

Самым простым является трехфазная обмотка с 2 полюсами и 6 пазами, которая является самым основным режимом обмотки в учебном пособии «Принципиальная модель трехфазного двигателя переменного тока». Его шаг полюсов равен 3, а ширина фазовой полосы равна 1.

Установите слоты 1, 2 и 3 для N полюсов, а слоты 4, 5 и 6 для S полюсов (полюса здесь не являются северным и южным полюсами конкретного магнитного поля), и есть 3 фазы ленты под каждым полюсом, пазы под каждой фазовой полосой соединяются как одна катушка, и направления намотки каждой соседней фазовой полосы меняются местами. См. рисунок 1, светло-голубая катушка представляет собой одиночную обмотку фазы U, зеленая катушка представляет собой одну обмотку фазы V, а красная катушка представляет собой обмотку одной фазы W.

Рисунок 1 — 2-полюсная 6-слотовая однослойная цепочка с расширенной обмоткой
2 полюса и 12 пазов однослойная цепь трехфазная обмотка

Использование ядра 6-слотового двигателя слишком низкое и используется только для объяснения принципа. 12 пазов применим как минимум для трехфазного двигателя. Далее описывается однослойная цепная обмотка с 2 полюсами и 12 пазами трехфазного двигателя.

Простой расчет показывает, что шаг полюсов равен 6, а ширина фазового диапазона равна 2. На рис. 2 представлена ​​круговая диаграмма трехфазного двигателя с 2 полюсами, 12 слотами, 2 полюсами и 12 слотами, где от 1 до 6 слотов указаны как N полюсов. и от 7 до 12 слотов в качестве S-полюсов.

Имеется 3 полосы фаз U, V и W под полюсами N и S, соедините слоты в той же полосе фаз под каждым полюсом N и полюсом S в катушку. Прорези 1 и 8 состоят из катушки, прорезь 1 — это первый конец, прорези 2 и 7 состоят из катушки, прорезь 2 — это первый конец, и две катушки соединены встык, образуя обмотку U-фазы, так что эффективная стороны одной и той же обмотки имеют одинаковую полярность.Направления намотки одинаковы (направление тока одинаково), а направления намотки под противоположными магнитными полюсами противоположны. Один и тот же способ подключения к обмотке V-фазы и обмотке W-фазы. я

Катушки соседних фазных полос намотаны в противоположных направлениях, см. рисунок 2.

Токопроводящие провода каждой фазной обмотки должны быть разделены электрическим углом 120°. Для 2-полюсного двигателя электрический угол такой же, как и механический, оба они равны 120°.Выберите 2 слота в качестве конца U1, выберите 10 слотов в качестве конца V1 и выберите 6 слотов в качестве конца W1; тогда 8 слотов предназначены для конца U2, 4 слота для конца V2 и 12 слотов для конца W2.

Рисунок 2 — 2 полюса и 12 пазов, однослойная цепная обмотка
На рис. 3 показан увеличенный чертеж однослойной обмотки цепи с 2 полюсами и 12 пазами. На рисунке светло-голубая катушка — это обмотка фазы U, зеленая катушка — обмотка фазы V, а красная катушка — обмотка фазы W.
Рис. 3. Разработка однослойной цепной обмотки с 2 полюсами и 12 слотами

В учебном пособии “Модель трехфазного двигателя переменного тока” есть стереограмма 2-полюсных 12-пазовых однослойных цепных обмоток и схематическая диаграмма нисходящего процесса намотки с анимацией.

Некоторые расширительные чертежи трехфазных обмоток будут представлены позже без анализа.

2-полюсная 12-пазовая однослойная концентрическая трехфазная обмотка
Рисунок 4 — 2-полюсная 12-пазовая однослойная концентрическая трехфазная обмотка
2-полюсная 18-пазовая однослойная с перекрестной трехфазной обмоткой
Рисунок 5 — 2-полюсная 18-пазовая однослойная перекрестная трехфазная обмотка
2-полюсный 18-пазовый однослойный с концентрической поперечной обмоткой
Рисунок 6 — 2-полюсная 18-слотовая однослойная концентрическая поперечная обмотка
2-полюсный 12-слотовый двухслойный пакет с обмоткой вокруг трехфазной обмотки
Для упрощения сложной графики витки в двухслойной обмотке представлены одной рамкой.
Рисунок 7 — 2-полюсная 12-слотовая двухслойная обмотка вокруг трехфазной обмотки
2-полюсная 18-слотовая двухслойная обмотка вокруг трехфазной обмотки
Рисунок 8 — 2-полюсная 18-слотовая двухслойная обмотка вокруг трехфазной обмотки
4-полюсная 24-слотовая двухслойная обмотка вокруг трехфазной обмотки

 

Рисунок 9 — 4-полюсная двухслойная обмотка с 24 слотами вокруг трехфазной обмотки  
Соединение обмоток трехфазного двигателя переменного тока
Трехфазный двигатель переменного тока обычно вводит шесть концов, включая первую и конечную клемму трех обмоток, в распределительную коробку корпуса и подключается к шести клеммам. Они соединяются друг с другом в распределительной коробке и подключаются к внешнему трехфазному источнику питания. Звезда и треугольник являются основным способом соединения.
Соединение звездой
Соединение звездой также называется соединением Y, а левая диаграмма на рисунке 10 представляет собой соединение звездой трех обмоток со спиральной катушкой, представляющей обмотку. На рисунке справа показана клеммная колодка в распределительной коробке.На плате есть 6 клемм, W2, U2, V2, U1, V1, W1, соедините W2, U2 и V2 закорачивающими контактами (точка соединения называется нейтральной линией N), U1, V1 и W1 соответственно подключены к трехфазное электроснабжение внешних А, В и С.
Рис. 10. Трехфазное соединение обмотки звездой
Треугольное соединение
Треугольное соединение также называется Δ-соединением. Левая схема рисунка 11 представляет собой треугольное соединение трех обмоток. На правой схеме показана клеммная колодка в распределительной коробке. На плате есть шесть клемм: W2, U2, V2, U1, V1 и W1. Соедините W2 и U1 перемычками и используйте их в качестве входной клеммы питания фазы A; соедините U2 и V1 перемычками и используйте в качестве входной клеммы питания фазы B; используйте перемычки V2 и W1, подключенные и используемые в качестве внешнего входа питания фазы C.
Рис. 11. Треугольное соединение трехфазной обмотки

Конкретный метод подключения должен соответствовать методу подключения, указанному на заводской табличке двигателя.

Большинство трехфазных двигателей переменного тока используют треугольное соединение, но некоторые названия двигателей помечены как «напряжение 380 В/220 В» и «соединение Y/Δ», что указывает на то, что соединение Y применяется для линейного напряжения источника питания. 380В; при линейном напряжении источника питания 220В выбрано Δ-соединение.

Трехфазный асинхронный двигатель большой мощности имеет большой пусковой ток. Чтобы избежать чрезмерного воздействия на энергосистему, используется пуск «Y-Δ», Y-соединение при запуске, пусковой ток будет небольшим, так как скорость двигателя близка к номинальной скорости.Затем перейти на Δ-соединение.

Трехфазные двигатели переменного тока обычно выводятся из машины через соединение звездой.

 

Каков принцип работы трехфазного асинхронного двигателя?

Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок. Двигатели переменного тока работают на частоте А.C. питания, и они подразделяются на синхронные, однофазные и трехфазные асинхронные двигатели и двигатели специального назначения. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что они не требуют пускового устройства.

Трехфазный асинхронный двигатель получил свое название из-за того, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

Принцип работы трехфазного асинхронного двигателя основан на создании вращающегося магнитного поля (r.мф).

Производство вращающегося магнитного поля

Статор асинхронного двигателя состоит из ряда перекрывающихся обмоток, смещенных на электрический угол 120°. Когда первичная обмотка или статор подключены к 3-фазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

Направление вращения двигателя зависит от чередования фаз питающих линий и порядка подключения этих линий к статору.Таким образом, перепутав подключение любых двух первичных клемм к источнику питания, направление вращения изменится на противоположное.

Количество полюсов и частота приложенного напряжения определяют синхронную скорость вращения в статоре двигателя. Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, термин, обозначающий скорость, с которой будет вращаться поле, создаваемое первичными токами, определяется следующим выражением.

Синхронная скорость вращения = (120 x частота питания) / число полюсов на статоре

Производство магнитного потока

Вращающееся магнитное поле в статоре является первой частью операции.Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны нести некоторый ток. В асинхронных двигателях этот ток исходит от проводников ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает проводящие стержни ротора и индуцирует электродвижущую силу (ЭДС).

Обмотки ротора асинхронного двигателя либо замыкаются через внешнее сопротивление, либо замыкаются накоротко. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к крутящему движению или крутящему моменту в роторе.

Как следствие, скорость ротора не будет достигать синхронной скорости среднеквадратичной частоты в статоре. Если бы скорости совпадали, ЭДС не было бы. индуцируется в роторе, ток не будет течь, и, следовательно, не будет создаваться крутящий момент. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется скольжением.

Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

В результате получается мотор:
  • Самозапуск
  • Взрывозащищенный (из-за отсутствия контактных колец или коллекторов и щеток, которые могут вызывать искрение)
  • Прочная конструкция
  • Недорогой
  • Легче в обслуживании

Электрические асинхронные двигатели — синхронная скорость

Синхронная скорость электрического асинхронного двигателя определяется

  • источником питания частотой и
  • числом полюсов в обмотке двигателя.

Синхронная скорость можно рассчитать как:

N = F (2 / p) 60 (1)

где

N = скорость вращения вала (REV / MIN, RPM)

F = Частота электропитания (Гц, циклы / сек, 1 / с)

P = Количество полюсов

Примечание – An асинхронный двигатель никогда не достигнет своей синхронной скорости.Если бы это было так, то ротор казался бы неподвижным по отношению к вращающемуся полю статора, поскольку он вращался бы с той же скоростью. При отсутствии относительного движения между полем статора и ротора в двигателе не будет индуцироваться напряжение. Поэтому скорость асинхронного двигателя ограничивается скоростью ниже синхронной скорости, а разница между синхронной скоростью и фактической скоростью называется скольжением.

Пример – Синхронная скорость электродвигателя с двумя полюсами

На двигатель с двумя полюсами подается питание с частотой 50 Гц (1/с) . Скорость вращения можно рассчитать как

n = (50 1/с) (2 / 2) (60 с/мин)  

   = 3000 об/мин (1/мин)

8 Скорость вращения на разных частотах и ​​количестве полюсов

    8
      5
девяносто одна тысяча триста сорок-девять 91 352 450
скорость вращения вала – N – (REV / MIN, RPM) Частота
– F – (HZ)
Количество полюса – р –
2 4 6 8 10 12
10 600 300 200 150 120 100
20
1200 1200 400 400 300 300 240 200
30 1800 900 600 360 300
40 2400 1200 800 600 480 400
50 1) 3000 1500 1000 750 600 500
60 2) 3600 1800 1200 900 720 600
70 4200 2100 1400 1050 840 700
80 4800 2400 1600 1200 960 800
90 5400 2700 1800 1350 1080 900
100 6000 3000 2000 1500 1200 1000
  1. Двигатели, рассчитанные на 50 Гц, наиболее распространены за пределами U.

Добавить комментарий

Ваш адрес email не будет опубликован.