Содержание

Как подключить трехфазное УЗО? Инструкция по подключению 3-х фазного УЗО

УЗО – это коммутационный электротехнический аппарат, служащий для совершения отключения питающей сети, в момент превышения показателей дифференциального тока.

3-х фазное УЗО предназначено для защиты человека от воздействия электрического тока при касании к токоведущим частям системы питания либо при пробое изоляции проводников. Помимо этого оно обеспечивает защиту в случае:


  • смены проводов «нуля» и «земли»;
  • перемены «фазы» и «нуля» и прикосновении к частям, которые не являются токоведущими, но оказавшимся под напряжением;
  • при обрыве «нуля» на линии, в которой установлено УЗО и касании человека.

Устройство трехфазного УЗО

Схема устройства УЗО трехфазного состоит из следующих элементов:

контактов для подключения питающей сети;

кнопки включения УЗО;

кнопки «Тест;

контактов для подключения приемника.

Инструкция по подключению 3 фазного УЗО:

  • Самым главным правилом при подключении устройства защитного отключения, да и собственно любого электротехнического оборудования, является первичное отключение напряжения питающей сети. Снятие нагрузки производится при помощи вводного автоматического выключателя;
  • Затем необходимо убедиться в отсутствии напряжения. Для этого необходимо воспользоваться тестером;
  • Далее производится установка трехфазного устройства защитного отключения на монтажную DIN-рейку. Для этого необходимо зацепить «хвост» расположенный на задней стенке УЗО за один из выступов рейки, затем потянуть его вниз и толкнуть назад.

Теперь УЗО установлено на место своей постоянной дислокации и можно приступать к подключению.

Схема подключения трехфазного УЗО

Подключение трехфазного УЗО осуществляется путем присоединения кабельных линий сети к контактам устройства:

  • при помощи отвертки соответствующего типа ослабить контактные зажимы, обозначенные 2,4,6, N и подключить к ним проводники, идущие от приемников электрической энергии;
  • после этого необходимо таким же образом подключить провода идущие от счетчика к контактам 1,3,5,N;
  • произведение действий в таком порядке регламентировано «правилом подключения от приемника к источнику электроэнергии». Оно помогает избежать ситуаций с непреднамеренной подачей напряжения на линию.

Трехфазное УЗО - назначение, устройство, как работает. Принцип работы трехфазного УЗО

УЗО – устройство защитного отключения. Это устройство знакомо многим, но почему-то не все верят в то, что УЗО действительно работает. При этом, никто еще не смог дать конкретного ответа, почему он так думает. Спешу вас заверить: устройство защитного отключения действительно работает, поэтому в целях собственной безопасности и предотвращения несчастных случаев, связанных с поражением электрическим током, такое устройство стоит установить каждому.

Схема подключения УЗО достаточно проста, и с финансовой точки зрения тоже себя оправдывает. Да и экономить на собственной безопасности неправильно. Поэтому еще раз: устройство защитного отключения НЕОБХОДИМО, если вы задумываетесь о своей безопасности и безопасности ваших домочадцев.

Электроэнергия по потребителям распространяется через однофазные либо трехфазные сети. В зависимости от количества фаз в сети, меняются и схемы подключения автоматов (автоматических выключателей) и схемы подключения УЗО.

В данной статье поговорим о подключении устройств защитного отключения именно к трехфазным сетям, рассмотрим схемы правильного подключения, а также узнаем, как работает трехфазное УЗО.

Внимание! Чтобы правильно рассчитать и выбрать аппараты защиты, необходимо соблюдать следующие пункты:

  1. 1. Знать назначение, конструкцию и принцип действия всех компонентов
  2. 2. Разбираться в параметрах и характеристиках
  3. 3. Знать нормативные документы и методику выбора

Понятно, что рядовой обыватель скорее всего с этими вещами не знаком, поэтому будет приглашать мастера. А вот мастеру уже можно задать вопросы, и если он уверенно и правильно расскажет о назначении устройства, схеме его работы, то это хороший мастер. Вот если он не сможет этого сделать – лучше вызовите другого. Большинство несчастных случаев связано именно с некомпетентностью.

Назначение трехфазного УЗО

Итак, для начала разберемся с однофазными и трехфазными сетями. Нужно знать следующее: в обычных квартирах сеть – однофазная, а вот в частных домах – нередко присутствует трехфазная сеть. УЗО, применяемое в однофазной сети, называется двухполюсным. То есть, один контакт подключается к фазе, второй – для подключения нулевого провода. Нетрудно вычислить, что в трехфазной сети будет применяться 4-х полюсное УЗО: три контакта подключаются к фазам, четвертый, соответственно, ноль

Как мы уже поняли, трехфазные УЗО применяются в трехфазных сетях. Их задача ничем не отличается от устройств, применяемых в однофазной сети: защищать от утечки тока.

Вкратце напомним принцип работы УЗО: определяет и реагирует на разницу тока, проходящего через устройство. При этом, в отличие от УЗО в однофазной сети, трехфазное УЗО можно подключить как и с нулевым проводом, так и без него. Соответственно, при подключении с нулевым проводом задействованы все четыре провода сети, а если подключать без нейтрали, то только три провода, четвертый контакт остается незадействованным.

Теперь познакомимся с номиналами защитных устройств, используемых в трехфазных сетях. Маленький нюанс: одни производители указывают величину тока утечки в миллиамперах, другие в амперах. Четырехполюсные УЗО бывают 10, 30, 100, 300, 500 миллиампер (0.01, 0.03, 0.1, 0.3, 0.5 ампер соответственно).

Важно! Если вы планируете установку УЗО для защиты человека, то номинал устройства защиты не должен превышать 30 миллиампер. Остальные номиналы используются для защиты от возгораний и сохранности потребителей, как правило, устанавливаются на входе щитка.

Обычно к частным домам подводят три фазы мощностью 15 кВт. В этом случае для обеспечения защиты человека от удара током не имеет смысла устанавливать трехфазное УЗО на входе, так как если на одной из фаз произойдет утечка тока, устройство отключит все три фазы. В этом случае имеет смысл устанавливать трехфазное УЗО для отдельных трехфазных потребителей, коими могут быть котлы, электроплиты и другое трехфазное электрооборудование.

Однако не всегда их используют для трехфазных потребителей. Трехфазное УЗО можно использовать не только в трехфазной, но и в однофазной сети и такие устройства часто можно встретить в обычном квартирном щите. Изюминка в том, что используя трехфазное устройство защитного отключения в однофазной сети грамотно распределив нагрузку можно добиться существенной экономии бюджета. У многих профессионалов они пользуются все большей популярностью. 

Но, такие манипуляции должен проводить опытный мастер, иначе, при неравномерном распределении нагрузки получится перекос между фазами (проще – аварийная ситуация). А как собрать такой щит мы рассмотрим в отдельной статье.

Устройство трехфазного УЗО

Теперь подробно поговорим об устройстве трехфазного УЗО. Как уже было сказано, в трехфазной сети имеется три фазных проводника и один нулевой.

Напряжение между любой фазой и нулем – 220 вольт, как положено, а напряжение между фазами – 380 вольт.

Основным компонентом устройства защитного отключения является дифференциальный трансформатор. Это обычный магнитопровод из ферромагнитного материала с обмоткой. Помимо дифференциального трансформатора в УЗО присутствуют следующие компоненты:

  1. 1. Корпус
  2. 2. Силовые контакты (подвижные и неподвижные)
  3. 3. Механизм независимого сцепления
  4. 4. Силовые провода
  5. 5. Реле расцепления
  6. 6. Кнопка “Тест”

Теперь узнаем, что же происходит. Через катушку ЭДС, которая является частью трансформатора устройства защитного отключения проходят все провода трехфазного питания, включая нулевой провод. Так как при нормальном потреблении прибора суммарные токи всех 4-х проводов равны нулю, ЭДС в катушке не возникает.

При возникновении утечки тока по любому из проводов, происходит разбаланс, и, как следствие, сердечник трансформатора намагничивается. Все это приводит к возникновению тока в обмотке трансформатора. Если величина этого тока превышает ток срабатывания УЗО, автоматика отключает питание.

Пояснение работы устройства

Понятное дело, что неподготовленному человеку будет сложно понять принцип работы УЗО, поэтому в качестве примера возьмем обычные батареи водяного отопления. Итак, мы имеем следующее:

  1. 1. Замкнутый контур отопления – наши провода
  2. 2. Вода – ток, протекающий по проводам.

Теперь всем понятно, что пока вода спокойно протекает по трубам, система работает без проблем. Но вдруг в одной из труб контура образовалась дыра.

Понятное дело, что часть воды будет через эту дыру утекать. Получается, в начале замкнутого контура в трубу подали, к примеру, четыре куба воды, а на выходе из контура воды стало только три куба. Так как наша система замкнута (сколько вошло – столько и должно выйти), то эта разница на входе и выходе сигнализирует о том, что в замкнутой системе возникла утечка.

 

По этому же принципу работает и УЗО. Это устройство сравнивает сколько тока ушло и сколько пришло, и если появляется разница, то устройство автоматически отключается.

В однофазной сети УЗО сравнивает токи только в двух проводах, один из которых фазный, а второй – нулевой. Время срабатывания устройства – несколько миллисекунд.

Принцип работы трехфазного УЗО при несимметричной нагрузке

Принцип работы УЗО в трехфазной сети аналогичен его работе в сети, где присутствует одна фаза. Но, если в однофазной сети всего два провода, то в трехфазной – четыре.

К сведению, обычно фазы обозначают латинскими буквами (А, B, C) а нейтраль всегда обозначают буквой N.

Теперь снова повторим: в однофазной сети ток течет в одном направлении по фазному проводу, и по нулевому проводу в другом. Значения токов при нормальной работе – одинаковые. Если вспомнить наш пример с отоплением, то 2 куба вошло и 2 куба вышло. При такой работе во вторичной обмотке трансформатора УЗО ток не возникает.

В трехфазном УЗО геометрическая сумма I1+I2+I3 = 0 (ему геометрическая? - вспомните векторы!) всех четырех проводов равна нулю (при равенстве нагрузки).

То есть, как и в однофазной сети, во вторичной обмотке трансформатора ток не возникает.

Но, как только в сети возникает утечка тока, баланс в первичной обмотке будет нарушен, и тогда во вторичной обмотке возникнет ток, который запустит механизм срабатывания УЗО.

Внимательный читатель наверняка обратил внимание на оговорку “при равенстве нагрузки”, и естественно задался вопросом: а что если нагрузка на фазы не будет одинакова? Сработает ли УЗО при возникновении утечки в таком случае?

Спешу успокоить: УЗО сработает, и вот почему. Возьмем в качестве примера следующие данные:

  1. 1. Фаза А – 10 ампер
  2. 2. Фаза В – 5 ампер
  3. 3. Фаза С – 15 ампер

Для несимметричной нагрузки должно выполняться геометрическое равенство I1+I2+I3=IN. Считаем: 10 + 5 + 15 = 30. Ток в 30 А, это ток который возвращается в сеть по нулевому проводу. То есть, баланс нашего тока равен 30 Ампер.

Во вторичной обмотке – ток равен нулю. То есть, при значении 30 Ампер во вторичной обмотке ток равен нулю и трехфазное УЗО работает в нормальном режиме.

Теперь, в случае утечки тока на одной из фаз, равенство нарушится, и баланс не будет равным 30, а значит во вторичной обмотке появится ток. Как только там появляется ток – срабатывает реле устройства, УЗО отключается.

Важно! Если вы устанавливаете УЗО на водонагреватель (бойлер), который работает от напряжения 380 вольт, то обратите внимание на то, по какой схеме в вашем бойлере подключены ТЭНы. Если используется подключение типа “треугольник”, то четырехполюсное УЗО подключается без нулевого провода. При подключении ТЭНов по типу “звезда” следует использовать все четыре провода (три фазы и нулевой провод).

Подводим итоги. Трехфазное УЗО, принцип работы которого мало отличается от использования УЗО в сетях с одной фазой, применяется очень широко, и не является слишком сложным устройством для подключения. Самое главное – будьте осторожны и внимательны.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Трехфазное УЗО: разновидности и принцип работы

Данное электротехническое оборудование применяется в промышленных условиях. Подключение трехфазного УЗО на производстве позволяет предохранить не только поражения электричеством работников, но и служит средством предупреждения пожаров (это основное его предназначение). Обеспечить безопасные условия труда поможет устройство с подходящими характеристиками.

Правильно подобранное по назначению защитное устройство, позволит избежать возникновения ряда аварийных ситуаций.

Разновидности УЗО и его принцип работы

Выпускается 2 типа защитных устройств. Это электромеханическое и электронное оборудование. По принципу действия они идентичные. Основным различием и преимуществом электромеханического прибора является:

  • работа без подачи на прибор электроэнергии;
  • простота, надежность схемы изделия.

Ток утечки при повреждении изоляции и касания оголенного участка вызывает срабатывание защиты – это принцип действия каждого типа прибора.

Устройство с электронной схемой, устанавливается с подведением питания. Основой его работы является в создании импульса на исполняющее реле при утечках.

Но при отключении питания на обслуживаемом участке цепи, прибор не сможет работать, потому что на него не подается ток. Происходят сбои в работе электронного типа узо в трехфазной сети при сильных морозах.

Поэтому используются такие приборы редко, хотя цена их ниже, чем на электромеханические устройство защиты.

Алгоритм одинаковый для работы всех видов приборов

В разных направлениях по проводникам протекают ток фазы и ноль. При этом происходит возбуждение 2 магнитных потоков в сердечнике защитного устройства. Потоки, как бы поддерживают равновесие системы, обеспечивая нулевое значение ЭДС.

При касании человеком оголенного провода, или утечке с нарушенного участка изоляции тока, соответствующему величине срабатывания устройства — прибор размыкает трехфазную цепь. Магнитный поток, возникающий в сердечнике, приводит в действие защелку группы контактов. Так работает каждое защитное устройство.

Каждое трехфазное узо оснащается кнопкой «Тест». Не реже 1 раза в месяц, необходимо проводить проверку исправности прибора. Нажимая на нее, вызываем искусственную утечку тока. Прибор должен среагировать на угрозу. При неисправности, выполняется работа по установке нового прибора.

Что такое УЗО, почему его устанавливают?

Для начинающих электриков, необходимо понимать и знать ответы на эти вопросы, перед выполнением работ:

  1. Автомат защитного отключения и Узо – это 2 разных устройства.
  2. Дифференциальный автомат abb – это автоматическая защита от пика напряжения и устройство защитного отключения в одном корпусе.
  3. Автомат защищает человека и бытовые приборы от критических нагрузок и тока КЗ.
  4. Установка устройства защиты, предохраняет здоровье человека при утечках тока.
  5. При установке гальванического трансформатора после защиты, работа в таких условиях, чревата аварией.
  6. По назначению, устройство работает как заземление, но оно не может его заменить, полностью исключив возможность нанесения ущерба при попадании молнии.
  7. Некоторые устройства, по своим особенностям, не могут работать в цепи с защитным устройством. Опытный электротехник сможет исправить эту ситуацию.
  8. Никакая защита не спасет глупого человека, прогуливавшего уроки физики, если он закоротит собою цепь. Если взяться за провода фазы и земли и ощутить на себе влияние электрического тока – в такой ситуации не сработает ни одна защитная установка. Помните, так делать нельзя!
  9. При преимуществе системы abb продолжается установка всех видов защиты. Происходит это по нескольким причинам, а именно из-за его высокой цены. Еще одна причина – при срабатывании такого устройства необходимо будет определить причину, связанную с отключением.

Главное, о чем нужно помнить – трехфазные устройства защитного отключения применяют для предотвращения пожаров на промышленных объектах. Сила тока для такого оборудования составляет 100 – 300 мА.

Схема работы трехфазного устройства без нулевого провода

Подключение узо для трехфазной сети, для предохранения от утечки тока на синхронном электродвигателе, можно проводить без ноля. При этом соединение обмоток осуществляется по схеме звезда или треугольник без нейтрали. Суммируя показатели токов на фазах, мы видим, что они не могут вызывать включения в работу УЗО, из-за своей небольшой величины.

При возникновении аварийной ситуации, когда происходит утечка на фазах, ток проходит на землю через корпус. При этом возникает движение потока через трансформатор прибора, происходит срабатывание защиты.

Величина напряжения трехфазного тока 380 В, а на однофазном приборе 220. Разница немаленькая. Возможно, ли установить трехфазное узо в однофазную сеть? Если производителем была предусмотрена такая возможность, то да.

Самое главное, чтобы была гарантированна нормальная работа цепи тестов напряжениях, величиной соответствующей принятым нормам. Особенно это правило важно исполнять при установке электронного прибора защиты.

Какой прибор лучше установить и как его подключить?

При установке дифференциального автомата abb, экономится место в щитке и на проводах при разводке. Он предохраняет сразу от нескольких неисправностей. Короткое замыкание и пиковые значения тока (работа автомата отключения сети) и недопущение пожара и поражения током при утечке.

При этом качественный дифавтомат abb, может стоить намного дороже, чем 2 отдельных, качественных прибора (автомат и УЗО).

На трехфазных приборах защиты имеются по 4 клеммы для подводящей группы и идущей к потребителям тока. Поэтому при установке он будет не менее 7 крепежных ячеек в электрическом щитке. Закрепляется прибор с помощью специальных защелок, вставляемых в пазы электрощита.

На подводящие верхние клеммы закрепляем приходящие к щиту кабели. От нижних отводим проводку к оборудованию. Провода в клеммах закрепляются с помощью поджимных винтов. Самое главное — подсоединять провода так чтобы не перепутать фазу и ноль. Это может привести к тяжелым последствиям.

Проверив правильность монтажа, можно произвести пробное включение сети.

Схема подключения узо достаточно проста. С этой работой справится новичок, но лучше использовать при выполнении работ несколькими нашими советами.

Для того чтобы правильно работала система защиты, сразу за защитным автоматом, необходимо подключить УЗО.

Следует всегда помнить о том, что устройство защитного отключения никогда не сможет заменить заземления и наоборот. При этом никакой автомат, служащий для предохранения от токов КЗ, никогда не заменит УЗО и не предохранит человека от последствий утечек тока.

Устройство, со значением свыше 30мА не сможет защитить человека от поражения электротоком. Такой прибор устанавливают для предохранения здания от пожара при утечках тока.

Выбирают защиту согласно следующим характеристикам:

  • Выбор определяется по особенностям прибора. Следует напомнить, что лучшим вариантом является электромеханический тип прибора.
  • Подбор, производят согласно мощности прибора, учитывается время прекращения подачи энергии.
  • Определенный нагрузочный ток требует установки различных устройств.
  • Определитесь, готовы ли вы платить за возможности, которые и не нужны. А еще подумайте – стоит ли переплачивать за имя фирмы производителя.

Большинство все брендовой продукции выпускается на территории Китая. Иногда, заводы производители известной марки, не догадываются о том, что его продукция выпускается на рынок. А весь остальной ассортимент производится в районах мира, с низким уровнем жизни. Но даже здесь можно попасть на некачественный товар.

Провод заземления не должен отходить к заземляющему контуру, за установленным устройством защитного отключения. Он не может располагаться в зоне ответственности УЗО. Поэтому он включается в электрическую цепь обязательно перед защитой.

Следите за правильностью подключения проводов, согласно электрической схеме. Как правило, она находится на одной из поверхностей сторон прибора.

Выполнив все эти требования и правила, вы получаете надежную и безотказную защиту от утечек электрического тока.

Принцип работы трехфазного УЗО

Приветствую Вас, уважаемые читатели сайта elektrik-sam.info.

В одной из предыдущих статей я подробно рассматривал, для чего применяется устройство защитного отключения и как оно работает. Подробно смотрите статью Устройство и принцип работы однофазного УЗО. 

В этой статье речь пойдет об устройстве и принципе работы трехфазного УЗО.

Трёхфазные УЗО работают по такому же принципу, как и однофазные. Внутри они содержат трансформатор тока, первичная обмотка которого образована четырьмя проводами: тремя фазными LA LB LC и нулевым N.

В однофазных УЗО первичная обмотка состоит из двух проводов – фазного и нулевого.

При отсутствии утечки геометрическая сумма токов первичных обмоток трансформатора тока равна нулю, т.е.

IА+IВ+IС+IN=0,

суммарный магнитный поток тоже будет равен нулю, поэтому ток во вторичной обмотке трансформатора тока (обмотке управления) отсутствует.

Предположим, что в фазе LB произошла утечка тока на заземленный корпус электрооборудования.

Геометрическая сумма токов в первичных обмотках не равна нулю (сумма токов в трех фазных проводах не равна току в нулевом проводе). Суммарный магнитный поток, наводимый этими токами в сердечнике трансформатора тока, будет отличен от нуля.

Он будет наводить во вторичной обмотке  управления трансформатора тока ток, который приведет к срабатыванию электромагнитного реле.

Реле, воздействуя на механизм расцепителя УЗО, отключит цепь нагрузки от питающей сети.

Таким образом, принцип работы трехфазного УЗО аналогичен принципу действия однофазного, с небольшими отличиями.

Подробно Принцип работы трехфазного УЗО смотрите в видео


Рекомендую также прочитать:

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Устройство УЗО и принцип действия.

Конструкция УЗО.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

назначение, критерии выбора и особенности установки

На чтение 6 мин Просмотров 274 Опубликовано Обновлено

В связи с массовым использованием электрических приборов в быту и на производстве появляется потребность в защите человека от поражения током. Трехфазное УЗО – специальное устройство, реализующее данную функцию. Указанный агрегат необходимо подключать, используя особые схемы, что будет гарантировать эффективность его работы.

Назначение и принцип действия

Трехфазное устройство защитного отключения (УЗО)

3-фазное УЗО предназначено для выравнивания тока, который проходит через фазный и нулевой провод. При отсутствии аварийных ситуаций указанные величины равны. Стабильная работа электрических приборов возможна, поскольку встречные потоки в обмотках компенсируют друг друга. При возникновении аварийных ситуаций устройство защиты производит отключение питания электроприборов. Это наблюдают при нарушении изоляции проводов, что провоцирует утечку заряженных частиц. В результате токи, проходящие по нейтрали и фазному проводу, будут иметь разные значения.

В каждом доме может случиться ситуация, когда электрический ток пробивает на корпус стиральной машины или водонагревателя. Когда потенциал станет перетекать на пол, среагирует 3-х фазный УЗО и отключит питание приборов. Поэтому при использовании данного защитного автомата, можно быть уверенным в своей безопасности.

Подключение УЗО актуально для мощных электроприборов в кухне и в ванной. На их металлическом корпусе собирается конденсат, что в комплексе образует потенциальный проводник электричества.

Хорошо, когда защитное отключение присутствует на розетках, светильниках и маломощных бытовых приборах. При возникновении аварийных ситуаций указанные потребители несут не меньшую опасность для человека.

Критерии выбора трехфазного УЗО

Принцип работы всех УЗО в трехфазной сети одинаковый, но данные устройства отличаются конструкцией и эксплуатационными характеристиками. Поэтому при покупке конкретной модели необходимо учитывать много нюансов.

Чувствительность

Главный эксплуатационный параметр УЗО 3 фазы, отображающий период времени, через который сработает защита. Оптимально, когда чувствительность устройства составляет 0,025 с. За это время электрический ток не успеет вызвать остановку сердца у человека.

УЗО может работать с дополнительным источником питания или без него. В первом случае он непосредственно принимает участие в процессе размыкания электрической цепи. Наличие данного механизма повышает стоимость прибора, но и увеличивает его чувствительность.

При отсутствии дополнительного источника питания УЗО срабатывает, реагируя на дифференциал магнитного поля.

Дифференциал тока

Маркировка УЗО

УЗО, предназначенные на 3 фазы, способны регулировать значение дифференциального тока, при котором оно срабатывает. При отсутствии данной функции приборы стандартно реагируют на 5 мА. Такой показатель тока явно указывает на присутствие аварийной ситуации и на потребность в отключении подачи электричества.

Количество клемм

Для трехфазной сети обязательно покупать 4-полюсные УЗО. Они оснащаются 8 клеммами для подсоединения входных и выходных кабелей. Три пары предназначены для подключения рабочей фазы, одна – нуля.

Количество ампер

Чтобы устройство защитного отключения функционировало при любом токе, необходимо выбирать модель, где число ампер существенно выше, чем у автомата.

На рынке присутствуют универсальные модели. Они предоставляют возможность подключения нескольких сетей одновременно. Несмотря на такое преимущество, подобные агрегаты имеют много недостатков. Они менее чувствительны, характеризуются сложной схемой подключения, стоят дороже. Такие модели подойдут для предприятий, но не для частного использования.

Подготовка к подключению

Правильно выполненные подготовительные и монтажные работы обеспечат стабильное функционирование УЗО.

Схемы подключения к трехфазной сети

Схема подключения УЗО к трехфазной сети

При установке УЗО используют следующие рабочие схемы:

  • Полное отключение электроцепи. Один агрегат имеет возможность обесточить всех потребителей электроэнергии при возникновении аварийной ситуации.
  • Частичное отключение приборов. При появлении аварийных ситуаций обесточиваются только некоторые потребители.

Первая схема подключения используется в многоквартирных домах. Монтаж устройства осуществляется около счетчика электроэнергии. Если УЗО сработает, обесточивается целый дом.

При использовании второй схемы защитный механизм устанавливают на отрезке электрической проводки, идущей к конкретной комнате. Поскольку все приборы последовательно подключены к цепи, при срабатывании УЗО только «проблемный» потребитель отключится, а другие продолжат свое функционирование.

Второй вариант схемы может реализовываться иным способом. Точкой монтажа УЗО становится начало последовательного подключения к разводке, что позволяет реализовать селективное срабатывание агрегата на определенные группы потребителей. Также защитный механизм можно установить непосредственно перед выходным устройством.

Необходимость наличия заземления

Подключение УЗО с заземлением и без него

Старые электросети относятся к системе tn-c, где отсутствует нулевой проводник для включения заземления. В этом случае защиту необходимо предусмотреть отдельно для дома или оборудования, что обеспечивает безопасный отвод токов. При отсутствии заземления ставить 4-х полюсный УЗО запрещено.

Правильная схема подключения к электрической сети предусматривает соблюдение следующих правил:

  • Заземляющая жила соединяется только с выходным кабелем. Подключение напрямую УЗО недопустимо.
  • При наличии однофазной сети нельзя использовать четырехполюсное устройство.
  • Подключение к сети типа Б3 запрещено.

Заземляющая жила является отдельным элементом. Отсутствие дополнительных клемм в УЗО на ее подключение только свидетельствует об этом.

Подсоединение устройства защитного отключения

Выполнить монтаж УЗО несложно, владея базовой информацией о работе электрооборудования. К каждому устройству производитель прилагает технический паспорт. В нем указываются рекомендуемые схемы подключения, которые нужно использовать во время установки.

Поиск нулевой фазы

Использование контрольной лампы для поиска нулевой фазы

Определить нулевую фазу очень просто опытным путем. Нужно взять два провода и подсоединить их к концам патрона лампочки. Ее загорание наблюдают, если она подключена к фазе. В остальных случаях ничего не произойдет.

Подключение лампочки к двум фазам одновременно разрешается осуществлять на короткий промежуток времени. Замыкать такую цепь также можно лишь на небольшой период. Иначе существует высокая вероятность срабатывания автоматического выключателя.

Подключение фазы

Если удалось найти ноль, необходимо сразу выполнить его присоединение к соответствующим клеммам. Оставшиеся три провода являются рабочими фазами. Они подсоединяются любым удобным способом, что никак не влияет на функционирование УЗО.

После завершения монтажа необходимо проверить работоспособность системы. Для этого запускается тестер, который входит в стандартную комплектацию прибора.

Подсоединение выходных устройств

Подключение нескольких розеток к одному УЗО происходит только параллельным способом. Чтобы осуществить это, каждую жилу разделяют на нужное количество проводов. Если не придерживаться такой схемы монтажа, прибор не сможет полноценно работать и срабатывать при возникновении аварийных ситуаций.

Ошибки при выполнении монтажа УЗО

Пример неправильного подключения УЗО

Чтобы обеспечить стабильную и безопасную работу электросети, необходимо избегать следующих ошибок:

  • Входные клеммы УЗО подключаются к сети после специального автомата. Прямое присоединение категорически запрещено.
  • Необходимо правильно подключить и не перепутать нулевые и фазные контакты. Для облегчения этой задачи на корпусе устройств присутствуют специальные обозначения.
  • При отсутствии заземляющего проводника категорически запрещено заменять его проводом, накинутым на водопроводную трубу или радиатор.
  • При покупке устройств обращают внимание на их основные рабочие характеристики, величины токов. Если линия рассчитана на 50 А, прибор должен иметь минимум 63 А.

При выполнении монтажа крайне важно соблюдать правила электробезопасности. Перед началом установки УЗО обесточивают сеть. Перед запуском устройства проверяют правильность монтажа элементов системы.

Как подключить УЗО в трехфазной сети правильно

3-х фазное УЗО, как правило, имеет 4 полюса и занимает ширину 4 стандартных модулей на din-рейке. Обычно такие устройства не используются в квартирах. В основном они находят свое применение на дачах, в частных домах или гаражах. Этот аппарат устанавливается в распределительном щитке. В его функции входит защита проводки от воспламенения или замыкания. Порог срабатывания аппарата рассчитан на большие токи. В практике он используется и при подключении электродвигателя.

Как подключить УЗО в трехфазной сети: нюансы

Перед началом установки устройства важно ознакомиться с цветовым обозначением проводов. Согласно ПУЭ, маркировка бывает такой, как показано на картинке ниже.

УЗО может подключаться, в зависимости от схемы, с использованием 3-х или 4-х полюсов. Первый вариант применяется в основном при подсоединении электродвигателя. В крайне редких случаях возможно использование и 2-х полюсов. Оборудование, которое будет впоследствии устанавливаться может быть 3-х фазным или однофазным. Для этого случая реализуются различные схемы подключения.

Как правильно подключить трехфазное УЗО по «треугольнику»

Вначале разберем, как подключить УЗО 3-фазное с использованием 3-х полюсов. Выше упоминалось, что такая схема применяется при установке электродвигателей. Этот тип подключения дает полный контроль утечек тока на корпус. Как показано ниже, нейтральная клемма оказывается незадействованной. В схеме «треугольник» используются только фазные провода. Принцип работы трехфазного УЗО ничем не отличается от однофазного.

Как правильно подключить УЗО на 3 фазы с 4-мя полюсами 

Второй вариант подключения устройства применяется в жилых или нежилых помещениях с напряжением 380 В. Также может использоваться и для защиты некоторых электродвигателей. Неплохо в данном случае зарекомендовал себя Legrand DX3-E УЗО 4P 25A 30MA.

Отличие схемы подключения трехфазного УЗО от однофазного заключается в численности подключаемых и отходящих проводов. Чтобы произвести монтаж и правильно подсоединить проводники к нужным клеммам особых знаний не требуется, но все же необходимы элементарные навыки в этой сфере (умение отличить фазу от нейтрали). Нулевой подключается к специально предназначенной для него клемме, которая обычно располагается чуть выше рычага взведения.

Провода, выходящие из противоположных клемм, подсоединяются к распределительной системе. Каждая фаза в сочетании с нулевым проводом, может обеспечивать группу однофазных потребителей (220 В). В такой сети нужно предусмотреть монтаж соответствующих УЗО. В этом случае будет логичен вопрос: как подключить 3 УЗО на 3 фазы. Ниже приведена схема, которая реализует данную задумку. Обычно они устанавливаются в местах повышенной влажности или в комнатах с большим числом электроприборов.

Монтаж трехфазного УЗО проводится в щитке на дин-рейке, после счетчика. Один такой аппарат способен контролировать ток в трех однофазных сетях. Одно важное напоминание: эксплуатация устройства возможна только в системах TN-S. В такой схеме проводки предусматривается нулевой защитный и рабочий проводник. Как правило, отечественные электросети функционируют по системе TN-C, где нет PE. Перед тем как купить УЗО, важно знать, что подключение четырехполюсного аппарата по такой схеме категорически запрещено. В этом случае ПУЭ разрешает использовать трехфазное устройство защиты, если предусмотрено заземление дома. Для этого, нужно обустроить контур «земли», который позволит перейти на систему TN-C-S. Надеемся, что наша статья помогла вам решить вопрос относительно того, как подключить трехфазное УЗО.

Всем желающим приобрести электротовары предлагаем ознакомиться с продукцией, представленной в нашем Интернет-магазине. Здесь цена на УЗО IEK в Москве одна из самых привлекательных.

Как подключить УЗО (I фаза, III фазы)

Опубликовано 26.02.2016 | Электрическая проводка

Поделиться статьей:

Для предотвращения возгорания проводки, защиты от непрямого/прямого касания к токопроводящим элементам служит УЗО. В отличие от предохранителей, этот коммутационный прибор срабатывает даже при малом токе, однако ни в коем случае не заменяет автомат, монтируется в цепь дополнительно после него, прибора учета электроэнергии.

Установка УЗО в однофазную сеть

Для незначительно разветвленной проводки внутри небольшой квартиры с новыми кабелями УЗО обычно устанавливают после счетчика по схеме:

  • фаза к групповому автомату
  • нуль к соответствующей шине

Основным достоинством является монтаж прибора в электрощит. Одно УЗО обходится значительно дешевле, автоматы подключаются к фазе «гребенкой», все нули после прибора сведены в общую шину. Недостаток заключен в обесточивании квартиры при сработке, наличии ложных отключений, долгих поисках причины.

Более универсальна следующая схема:

  • разбивка потребителей на группы
  • монтаж отдельного УЗО для каждой из них

Внимание: Нулевые проводники после отдельных УЗО запрещено объединять, чтобы избежать ложных отключений.

Подключение УЗО в трехфазную сеть

Для 3-х фазной цепи применяется 4-х полюсный УЗО с клеммами N нуль, А, В, С фазы, расположение которых отличается в приборах разных производителей. В любом случае схема монтажа указана на корпусе + в техпаспорте. Эти приборы рассчитаны на большие токи (100 – 300 мА), защищают электропроводку в квартире от возгорания, а не человека от прикосновения.

Поэтому на отходящих однофазных линиях монтируются 2-хполюсные УЗО, монтаж которых рассмотрен выше. Они реагируют на токи 10 – 30 мА, служат для сохранения здоровья пользователей. Каждое УЗО в обязательном порядке защищается автоматом, нейтрали выводятся на отдельную колодку. Для проверки правильного подключения на каждом приборе имеется клавиша теста, создающая искусственную утечку тока.

Ошибки подключения

При установке коммутационного прибора домашним мастером сказывается отсутствие практики, специального образования. Чаще всего встречаются ошибки подключения УЗО:

  • в цепи, к которой подключается прибор, N-проводник соединен с РЕ либо открытыми частями электроустановки – в перемычке постоянно присутствует дифференциальный ток, вызывающий частые ложные срабатывания
  • от нескольких УЗО «нули» перепутаны – при тестировании ошибок не возникает, однако срабатывают сразу два прибора, если в любую цепь включается потребитель
  • в цепях защиты разных УЗО запараллелены нейтрали – в отсутствие нагрузки схема рабочая, при включении нагрузки на любом участке происходит сработка сразу двух коммутаторов
  • электроприбор подключен перед УЗО к проводнику N – постоянное срабатывание прибора
  • нагрузка подключена к N нейтрали второго УЗО – срабатывание любого прибора в случайной последовательности
  • монтаж четырехполосного УЗО в однофазную цепь – при тестировании прибор может не срабатывать в зависимости от схемы внутренних соединений
  • снизу подключен ноль, сверху фаза – чаще всего ситуация встречается в щитках, сработка происходит при подключении нагрузки ввиду одинакового направления токов

Внимание: Значение номинального тока УЗО следует брать выше на ступень в сравнении с автоматическим выключателем. В противном случае при длительном прохождении повышенного тока резко снижается ресурс, надежность коммутационного устройства.

Таким образом, рассмотрены варианты подключения УЗО в существующие одно-, трехфазные сети, акцентировано внимание на возможных ошибках монтажа. Это поможет повысить эксплуатационный срок, надежность приборов защиты.

Метки:

Прямая визуализация зоны узо через эмиссию красителя, вызванную агрегацией, для синтеза высокомонодисперсных полимерных наночастиц

Полимерные наночастицы (НЧ) привлекли значительное внимание для использования в оптоэлектронных устройствах и биомедицинских приложениях. Среди их физико-химических свойств размер НЧ считается одним из наиболее важных параметров. Взяв в качестве примера инкапсуляцию гидрофобных молекул лекарственного средства или красителя в биосовместимые полимеры, метод замещения растворителя (также известный как нанопреципитация) предлагает хороший контроль над процессом смешивания для синтеза наночастиц с размерами от 25 до 300 нм.Однако при нанопреципитации образуются крупные агрегаты, превышающие определенную долю растворителя и концентрацию полимера, что приводит к синтезу высокополидисперсных частиц с неконтролируемыми размерами. Таким образом, для систематического и контролируемого синтеза монодисперсных наночастиц мы построили узо-зоны двух полимеров, PLGA и DSPE-mPEG, новым и простым способом, используя уникальные свойства красителей с эмиссией, вызванной агрегацией (AIE). , которые показывают разную флуоресценцию в разных состояниях.Кроме того, мы разработали новый процесс, улучшенный метод вытеснения растворителя (ESDM), для производства высокомонодисперсных наночастиц со сверхнизкими значениями PDI (от 0,05 до 0,1) и размерами от 25 до 200 нм за счет увеличения смешиваемости между антирастворитель и растворитель с предварительным смешиванием растворителя (тетрагидрофурана) с антирастворителем (водой).

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент... Что-то пошло не так. Попробуй еще раз?

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Наблюдайте за «эффектом узо» под микроскопом

Если вы когда-либо готовили абсент, поливая водой кубик сахара, подвешенный над ликером, вы, вероятно, замечали нечто, называемое «эффектом узо»."Это молочная эмульсия (причудливый способ обозначить смесь двух обычно несмешиваемых веществ), которая получается в результате добавления воды в ликеры с анисовым вкусом, такие как абсент, самбука или узо, популярный в Греции напиток перед ужином.

Благодаря уникальным свойствам эмульгированного узо и других ликеров, приправленных анисом, группа исследователей из отдела физики жидкостей Университета Твенте в Нидерландах решила изучить, как они испаряются. Результаты их исследования можно увидеть в приведенном выше видео и в недавней статье, опубликованной в журнале The Proceedings of National Academy of Sciences .

Согласно теории группы, существует четыре основных фазы жизненного цикла испаряющейся капли узо, состоящей из воды, этанола и анисового масла. На первом этапе капля остается прозрачной, а этанол испаряется. На втором этапе микрокапли анисового масла начинают быстро смешиваться с остальной частью капли - это и есть эффект узо в действии. На третьем этапе весь этанол испарился, и вы можете увидеть каплю воды, сидящую на кольце анисового масла. Наконец, вода испаряется, и остается небольшая капля анисового масла.

Испарение чистых жидкостей и жидкостей с дисперсными частицами широко изучается в последние два десятилетия, хотя исследования, проводимые Университетом Твенте, являются уникальными в этой области. Это связано с тем, что в нем используются три разные жидкости, которые имеют разную летучесть и взаимную растворимость (температура, необходимая для смешивания двух жидкостей). Проще говоря, способ испарения капли узо намного сложнее, чем простая смесь двух жидкостей. Кроме того, у нас возникает ощущение, что исследователи хотели задокументировать это, потому что это выглядит круто… что так и есть.

Работа голландской команды является важным вкладом в научное понимание испарения жидкостей, которое может быть использовано в различных областях, от медицинской диагностики до печати светодиодных ламп.

«Эффект Узо»: после спонтанного эмульгирования транс-анетола в воде с помощью ЯМР

Реферат

Некоторые аперитивы, такие как Пастис или Узо, представляют собой этанольные экстракты семян аниса. При разбавлении водой эти аперитивы, которые в основном состоят из воды, этанола и транс -анетола, мгновенно становятся мутными.Это явление является результатом спонтанного эмульгирования, иногда называемого «эффектом Узо». Используя дейтерированный этанол и воду, можно проследить процесс агрегации с помощью ЯМР, используя эксперименты DOSY и TOCSY. Анализ этих результатов позволяет нам предложить механизм процесса агрегации, с помощью которого транс -анетол первоначально образует небольшие агрегаты, видимые с помощью ЯМР, которые затем сливаются с образованием небольших капель микронного размера, которые «ЯМР невидимы».

Резюме

Некоторые аперитивы, связанные с пастисом или узо, без дополнительных ингредиентов в étoilé.Lorsqu'on disout ces apéritifs dans l'eau, major composés d'eau, d'éthanol et de trans -anéthole, le mélange prend immédiatement une consistance laiteuse. Этот феномен есть результат спонтанного создания эмульсии, основанный на небольшом количестве воды и богатое решение: «l'effet Ouzo». En utilisant de l'éthanol D6 et D 2 O, возможно, de suivre le mécanisme d'agrégation par RMN, en utilisant des expériences de type DOSY et EXSY. L'analyse des expériences permet de proposer un mécanisme d'agrégation par lequel le trans -anéthol s'auto-associerait для бывших мелких агрегаций, видимых в RMN, авангард объединения для бывших микропусковых тележек и больших хвостов (de l ' ordre du micromètre), невидимый en RMN.

Ключевые слова

Trans -anethole

«Эффект Узо»

Агрегация

DOSY

EXSY

Mots-clés

trans -anéthole

«

0003 agr

EXSY

Рекомендуемые статьиЦитирующие статьи (0)

Просмотр аннотации

Copyright © 2007 Académie des Sciences. Опубликовано Elsevier Masson SAS. Все права защищены.

Рекомендуемые статьи

Цитирующие статьи

Простое изготовление однородных наноразмерных капель перфторуглерода в качестве ультразвуковых контрастных агентов

  • Akbari S, Pirbodaghi T, Kamm RD, Hammond PT (2017) Универсальное микрофлюидное устройство для высокопроизводительного производства микрочастиц и клеток микрокапсулирование.Лабораторный чип 17: 2067–2075

    Артикул Google Scholar

  • Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK (2013) Использование полимерного эффекта узо для получения наночастиц на основе полисахаридов. Langmuir 29: 8845–8855

    Статья Google Scholar

  • Астафьева К. и др. (2015) Нанокапли перфторуглерода, стабилизированные фторированными поверхностно-активными веществами: характеристика и возможности использования в качестве тераностических агентов.J Mater Chem B 3: 2892–2907

    Статья Google Scholar

  • Beck-Broichsitter M, Nicolas J, Couvreur P (2015) Выбор растворителя вызывает заметные сдвиги «области Узо» для наночастиц поли (лактид- co -гликолид), полученных путем наносаждения. Наноразмер 7: 9215–9221

    Артикул Google Scholar

  • Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Состав наноэмульсии с использованием спонтанного эмульгирования: оптимизация растворителя, масла и поверхностно-активного вещества.Int J Pharmaceut 280: 241–251

    Статья Google Scholar

  • Диас-Лопес Р., Цапис Н., Фаттал Э (2010a) Жидкие перфторуглероды в качестве контрастных веществ для ультразвукового исследования и 19F-МРТ. Pharmaceut Res 27: 1

    Статья Google Scholar

  • Диас-Лопес Р. и др. (2010b) Эффективность ПЭГилированных нанокапсул перфтороктилбромида в качестве контрастного агента для ультразвука.Биоматериалы 31: 1723–1731

    Артикул Google Scholar

  • Ganachaud F, Katz JL (2005) Наночастицы и нанокапсулы, созданные с использованием эффекта узо: спонтанное эмульгирование как альтернатива ультразвуковым устройствам и устройствам с высоким сдвигом. ChemPhysChem 6: 209–216

    Статья Google Scholar

  • Haase MF, Stebe KJ, Lee D (2015) Непрерывное производство иерархических и асимметричных бижелевых микрочастиц, волокон и мембран путем разделения фаз, вызванного переносом растворителя (STRIPS).Adv Mater 27: 7065–7071

    Статья Google Scholar

  • Hettiarachchi K, Talu E, Longo ML, Dayton PA, Lee AP (2007) Создание микропузырьков на кристалле как практическая технология для производства контрастных веществ для ультразвуковой визуализации. Lab Chip 7: 463–468

    Артикул Google Scholar

  • Ян А., Ставис С. М., Хонг Дж. С., Вриланд В. Н., ДеВо Д. Л., Гайтан М. (2010) Микрожидкостное перемешивание и формирование наноразмерных липидных везикул.ACS Nano 4: 2077–2087

    Артикул Google Scholar

  • Jeong W-C et al (2012) Контролируемое образование капель субмикронной эмульсии с помощью высокостабильного режима подачи через наконечник в микрофлюидных устройствах. Lab Chip 12: 1446–1453

    Артикул Google Scholar

  • Канеда М.М., Карутерс С., Ланза Г.М., Виклайн С.А. (2009) Наноэмульсии перфторуглеродов для количественной молекулярной визуализации и таргетной терапии.Ann Biomed Eng 37: 1922–1933

    Статья Google Scholar

  • Karnik R et al (2008) Микрожидкостная платформа для управляемого синтеза полимерных наночастиц. Nano Lett 8: 2906–2912

    Статья Google Scholar

  • Клоссек М.Л., Туро Д., Земб Т., Кунц В. (2012) Структура и растворимость в поверхностно-активных веществах. Микроэмульсии ChemPhysChem 13: 4116–4119

    Статья Google Scholar

  • Королева М.Ю., Юртов Е.В. (2012) Наноэмульсии: свойства, способы получения и перспективы применения.Russ Chem Rev 81: 21–43

    Статья Google Scholar

  • Котта С., Хан А.В., Прамод К., Ансари С.Х., Шарма Р.К., Али Дж. (2012) Изучение пероральных наноэмульсий для повышения биодоступности плохо растворимых в воде лекарств. Мнение эксперта Drug Deliv 9: 585–598

    Статья Google Scholar

  • Крипфганс О.Д., Фабиилли М.Л., Карсон П.Л., Фаулкс Дж.Б. (2004) Об акустическом испарении капель микрометрового размера.J Acoust Soc Am 116: 272–281

    Статья Google Scholar

  • Leese PT, Noveck RJ, Shorr JS, Woods CM, Flaim KE, Keipert PE (2000) Рандомизированные исследования безопасности эмульсии перфлуброна для внутривенного введения. I. Влияние на коагуляционную функцию у здоровых добровольцев. Anesth Anal 91: 804–811

    Статья Google Scholar

  • Lepeltier E, Bourgaux C, Couvreur P (2014) Нанопреципитация и «эффект Узо»: применение к устройствам для доставки лекарств.Adv Drug Deliv Rev 71: 86–97

    Статья Google Scholar

  • Li DS, Yoon SJ, Pelivanov I, Frenz M, O’Donnell M, Pozzo LD (2017) Перфторуглеродные наноэмульсии с полипирроловым покрытием в качестве звуко-фотоакустического контраста. Agent Nano Lett 17: 6184–6194

    Статья Google Scholar

  • Лим Дж. М. и др. (2014) Синтез наночастиц сверхвысокой производительности с однородным распределением по размерам с использованием коаксиального турбулентного струйного смесителя.ACS Nano 8: 6056–6065

    Артикул Google Scholar

  • Lowe K (1999) Перфторированные кровезаменители и искусственные переносчики кислорода. Blood Rev 13: 171–184

    Статья Google Scholar

  • Lu Z, Schaarsberg MHK, Zhu X, Yeo LY, Lohse D, Zhang X (2017) Универсальная нанокапля разветвляется от ограничения эффекта Узо. Proc Natl Acad Sci 114: 10332–10337

    Статья Google Scholar

  • Ма М. и др. (2014) Наноэмульсия лекарство – перфторуглерод с ультратонким покрытием из диоксида кремния для синергетического эффекта химиотерапии и абляции с помощью сфокусированного ультразвука высокой интенсивности.Adv Mater 26: 7378–7385

    Статья Google Scholar

  • Martz TD, Sheeran PS, Bardin D, Lee AP, Dayton PA (2011) Прецизионное производство капель перфторуглерода с фазовым переходом с использованием микрофлюидики. Ультразвук Med Biol 37: 1952–1957

    Статья Google Scholar

  • Martz TD, Bardin D, Sheeran PS, Lee AP, Dayton PA (2012) Микрожидкостное генерирование акустически активных нанокапелек.Small 8: 1876–1879

    Статья Google Scholar

  • Ngo FC et al (2000) Оценка жидких перфторуглеродных наночастиц в качестве контрастного агента для пула крови с использованием энергетической доплеровской гармонической визуализации. In: Ultrasonics Symposium, 2000 IEEE, IEEE, pp 1931–1934

  • Perera RH, Hernandez C, Zhou H, Kota P, Burke A, Exner AA (2015) Ультразвуковая визуализация за пределами сосудистой сети с помощью контрастных агентов нового поколения. Междисциплинарные обзоры Wiley.Nanomed Nanobiotechnol 7: 593–608

    Статья Google Scholar

  • Rapoport N, Gao Z, Kennedy A (2007) Многофункциональные наночастицы для сочетания ультразвуковой визуализации опухолей и таргетной химиотерапии. J Natl Cancer Inst 99: 1095–1106

    Статья Google Scholar

  • Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam K-H (2009a) Генерация микропузырьков в наноэмульсиях с фазовым сдвигом, используемых в качестве носителей противораковых лекарств.Bubble Sci Eng Technol 1: 31–39

    Статья Google Scholar

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H (2009b) Контролируемая и таргетная химиотерапия опухолей с помощью активируемых ультразвуком наноэмульсий / микропузырьков. J Control Rel 138: 268–276

    Статья Google Scholar

  • Rapoport N et al (2011) Опосредованная ультразвуком визуализация опухолей и нанотерапия с использованием содержащих лекарственные препараты, стабилизированных блок-сополимером перфторуглеродных наноэмульсий.J Control Rel 153: 4–15

    Артикул Google Scholar

  • Резник Н., Уильямс Р., Бернс П. Н. (2011) Исследование испаренных капель субмикронного перфторуглерода в качестве контрастного агента для ультразвука. Ультразвук Med Biol 37: 1271–1279

    Статья Google Scholar

  • Saberi AH, Fang Y, McClements DJ (2013) Изготовление наноэмульсий, обогащенных витамином E: факторы, влияющие на размер частиц с использованием спонтанного эмульгирования.J Colloid Interface Sci 391: 95–102

    Статья Google Scholar

  • Сегерс Т., де Ронд Л., де Йонг Н., Борден М., Верслуис М. (2016) Стабильность микропузырьков, покрытых монодисперсными фосфолипидами, образованных путем фокусировки потока при высокой производительности. Langmuir 32: 3937–3944

    Статья Google Scholar

  • Сео М., Мацуура Н. (2014) Прямое включение липофильных наночастиц в монодисперсные нанокапли перфторуглерода путем растворения растворителя из микрокапель прекурсора, генерируемых микрожидкостями.Langmuir 30: 12465–12473

    Статья Google Scholar

  • Сео М., Уильямс Р., Мацуура Н. (2015) Уменьшение размера микропузырьков, наполненных сорастворителем, с образованием акустически чувствительных монодисперсных перфторуглеродных нанокапелек. Лабораторный чип 15: 3581–3590

    Артикул Google Scholar

  • Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA (2012) Дизайн активируемых ультразвуком наночастиц с использованием перфторуглеродов с низкой температурой кипения.Биоматериалы 33: 3262–3269

    Артикул Google Scholar

  • Shim J-u et al (2013) Сверхбыстрая генерация фемтолитровых микрожидкостных капель для иммуноанализов с подсчетом отдельных молекул. 7: 5955–5964

  • Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M (2014) Испарение акустической капли инициируется супергармонической фокусировкой. Proc Natl Acad Sci 111: 1697–1702

    Статья Google Scholar

  • Shui L, van den Berg A, Eijkel JC (2011) Масштабируемое образование монодисперсных капель аттолитера с использованием многофазной нано-микрофлюидики.Microfluid Nanofluid 11: 87–92

    Артикул Google Scholar

  • Ситникова Н.Л., Сприк Р., Вегдам Г., Эйзер Э. (2005) Механизм устойчивости образования спонтанно образовавшихся транс-анетол-водно-спиртовых эмульсий. Langmuir 21: 7083–7089

    Статья Google Scholar

  • Stroock AD, Dertinger SK, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Хаотический смеситель для микроканалов.Science 295: 647–651

    Статья Google Scholar

  • Talu E, Lozano MM, Powell RL, Dayton PA, Longo ML (2006) Долгосрочная стабильность за счет липидного покрытия монодисперсных микропузырьков, образованных устройством фокусировки потока. Langmuir 22: 9487–9490

    Статья Google Scholar

  • Tan H, Diddens C, Lv P, Kuerten JG, Zhang X, Lohse D (2016) Зарождение микрокапель, вызванное испарением, и четыре фазы жизни испаряющейся капли Узо.Proc Natl Acad Sci 113: 8642–8647

    Статья Google Scholar

  • Витале С.А., Кац Дж.Л. (2003) Дисперсии жидких капель, образованные гомогенным зародышеобразованием жидкость-жидкость: «Эффект узо». Langmuir 19: 4105–4110

    Статья Google Scholar

  • Xu X et al (2017) Микрожидкостное производство наноразмерных капель перфторуглерода в качестве жидких контрастных агентов для ультразвуковой визуализации.Lab Chip

  • Yan X et al (2014) Простая, но точная разработка функциональных нанокапсул с помощью нанопреципитации. Angew Chem Int Ed 53: 6910–6913

    Статья Google Scholar

  • Zhang Q, Liu X, Liu D, Gai H (2014) Образование сверхмалых капель за счет испарения летучих компонентов. Лабораторный чип 14: 1395–1400

    Артикул Google Scholar

  • Zhang X, Lu Z, Tan H, Bao L, He Y, Sun C, Lohse D (2015) Формирование поверхностных нанокапель в условиях контролируемого потока Proc Natl Acad Sci 112: 9253–9257

    Article Google Scholar

  • изображений - доисторическая археология Эгейского моря

    Урок 8: изображения - доисторическая археология Эгейского моря перейти к содержанию

    Расширенные функции этого веб-сайта требуют, чтобы вы включили JavaScript в своем браузере.Спасибо!

    Культуры «Лефканди I» и Тиринфа раннего элладского периода IIB и раннего элладского периода III

    Зигурьес. EH III Керамика. Резная чашка на пьедестале. Лерна III-IV. Вид на круговую границу кучевых облаков (передний план), перекрывающую толстые стены дома из плиток EH II, со стороны S Лерна IV. EH III Керамика. Фаза 1: характерные формы Лерна IV. EH III Керамика. Фаза 2: Характерные формы.Лерна IV. EH III Керамика. Фаза 3: Характерные формы. Лерна. Топографическая карта участка. Лерна IV. EH III Архитектура. План фазы 1 участка E кургана. Лерна IV. EH III Архитектура. План этапа 2 участка E кургана. Лерна IV. EH III Архитектура. План этапа 3 участка E кургана. Лерна IV, Фаза 2. EH III Керамика. Церемониальный сосуд для питья L.1505 и чашки узо.Фивы. EH IIB Архитектура. Апсидальные длинные дома: планы Лерна IV, Фаза 2. EH III Керамика. Церемониальный сосуд для питья L.1505. Лерна IV, Фаза 2. EH III Керамика. Церемониальный сосуд для питья L.1510. Лерна IV, Фаза 2. EH III Керамика. Церемониальный кувшин для питья L.771: Рисунок Лерна IV, Фаза 2. EH III Керамика. Церемониальный сосуд для питья L.771: Фотография Лерна IV, фаза 3. EH III Керамика.Кувшин Трои III-IV с крылатой ручкой Тип: L.22: Чертеж Лерна IV, фаза 3. EH III Керамика. Кувшин Трои III-IV с крылатой ручкой Тип: L.22: Фотография Лерна IV, фаза 3. EH III Керамика. Тонкая кружка с серым воронением L.861. Лерна IV, фаза 3. EH III Керамика. Прекрасный Серый вороненый Kantharos L.1168. Лерна IV, фазы 1-2. EH III Керамика. Чашки для узо Dark-on-Light. Лерна IV, фазы 2-3. EH III Керамика.Цельнокрашенная и полированная чаша для окуней. Лерна IV. EH III Терракота. Лерна IV, Фаза 2. EH III Керамика. Dark-on-Light Чаша для бас-гитары на пьедестале L.629. Лерна IV, Фаза 2. EH III Керамика. Узкая горловина Dark-on-Light L.641. Лерна IV, фаза 1. EH III Керамика. Узкая горлышко Dark-on-Light L.156 + 1461: Реконструкция акварели Лерна IV, фазы 1 и 2. EH III Керамика. Цельнокрашеные и полированные кружки L.239 и L.1453. Лерна IV, Фаза 2. EH III Керамика. Тонкая чаша для окуней L.213 с воронением серого цвета. Лерна IV, фаза 3. EH III Керамика. Кувшин солидно расписанный и немелированный L.594. Лерна IV, фаза 2 или 3. Керамика EH III. Средняя крупная полированная чашка на пьедестале L.42. Лерна IV, фаза 2 или 3. Керамика EH III. Грубая Чашка на пьедестале L.147. Лерна IV, фаза 3. EH III Керамика. Грубая Чаша на пьедестале L.1513. Лерна IV, фаза 3. EH III Керамика. Грубая Чаша на пьедестале L.1514. Лерна III-V. EH II, EH III и MH Сколотый камень. Типы инструментов. Лерна IV, Фаза 2. EH III Керамика. Церемониальный сосуд для питья "темный на-свет" L.1506. Лерна IV, фаза 2 или 3. Керамика EH III. Цельнокрашенная и немелированная Чаша с горизонтальной ручкой L.485. Лерна IV, фаза 1. EH III Керамика. Светло-на-темном кувшин с петлей L.494. Лерна IV, фаза 3. EH III Керамика. Полностью окрашенный и полированный Kantharos L.1219. Лерна IV, фаза 3. EH III Керамика. Полностью окрашенный и полированный, рифленый Kantharos L.1323. Лерна IV, фаза 1 или 2. EH III Керамика. Узкая горлышко темного на светлом L.141. Лерна IV, фаза 1. EH III Керамика. Кастрюля с крупной ручкой с ободком L.828. Лерна IV, Фаза 2. EH III Керамика. Аскос Л. Тонкий Полированный Не Серый.630. Лерна IV, фаза 3. EH III Керамика. Цельнокрашенная и полированная, рифленая басовая чаша L.851. Лерна IV, фаза 1. EH III Керамика. Цельнокрашенная и полированная чаша для бас-гитары L.1552. Лерна IV. EH III Сколотый камень. Черт и обсидиановые точки. Лерна IV, фаза 3. EH III Керамика. Кастрюля с крупной надрезанной ручкой на ободе P1196. Лерна IV, фаза 3. EH III Керамика. Кастрюля средней крупности с полированным ободом, ручка с прорезанным ободом L.1228. Лерна IV, фаза 3. EH III Керамика. Кастрюля с тонкой полированной ручкой, не серого цвета, с прорезанной ручкой L.784. Лерна IV, фаза 3. EH III Керамика. Кастрюля без ручки среднего размера с полированным покрытием L.34. Лерна IV, фаза 3. EH III Керамика. Кастрюля с крупной ручкой на плечах L.186. Лерна IV, фаза 3. EH III Керамика. Кружка с ручкой через плечо Dark-on-Light L.539. Лерна IV. EH III Сколотый камень.Зубчатые серповые элементы Chert и Obsidian. Лерна IV. Сколотый камень. Элементы черта и обсидианового серпа. Лерна IV. EH III Архитектура. Этапы поселения Е кургана: планы. Лерна IV. EH III Архитектура. Курган над Домом Плиток: план.

    Материалы урока

    Узо эффект

    Эффект узо (также эффект луша и спонтанное эмульгирование) представляет собой молочную (лоуш) микроэмульсию масла в воде, которая образуется при добавлении воды в узо и другие ликеры и спиртные напитки со вкусом аниса, такие как пастис, раки, арак и т. Д. самбука, абсент и перно.Поскольку такие микроэмульсии образуются при минимальном перемешивании и очень стабильны [1], эффект узо может иметь коммерческое применение.

    Наблюдение и объяснение

    Эффект узо возникает, когда сильногидрофобное эфирное масло, такое как транс-анетол, растворяется в смешивающемся с водой растворителе, таком как этанол, и концентрация этанола снижается путем добавления небольшого количества воды.

    В несмешивающихся с водой растворителях эмульсии масло-в-воде нестабильны, поскольку капли масла сливаются до тех пор, пока не будет достигнуто полное разделение фаз на макроскопических уровнях.Хорошо известно, что добавление небольшого количества поверхностно-активного вещества или применение высоких скоростей сдвига (сильное перемешивание) может стабилизировать капли масла.

    В обогащенной водой смеси узо слипание капель резко замедляется без механического перемешивания, диспергирующих агентов или поверхностно-активных веществ. Он образует стабильную гомогенную жидкую дисперсию за счет зародышеобразования жидкость-жидкость. [2] Размер капель, измеренный методом малоуглового рассеяния нейтронов, составляет порядка микрометра.[3]

    Используя динамическое рассеяние света, Ситникова и др. [1] показали, что капли масла в эмульсии растут при созревании Оствальда, и что капли не сливаются. Скорость созревания по Оствальду снижается с увеличением концентрации этанола до тех пор, пока капли не стабилизируются в размере со средним диаметром 3 микрометра.

    Исходя из термодинамических соображений, касающихся многокомпонентной смеси, эмульсия получает свою стабильность за счет захвата между бинодалями и спинодалями на фазовой диаграмме.[3] Однако микроскопические механизмы, ответственные за наблюдаемое замедление скорости созревания по Оствальду при увеличении концентрации этанола, не до конца понятны.

    Приложения

    Микроэмульсии имеют множество коммерческих применений. Большой ассортимент готовых пищевых продуктов, моющих средств и средств по уходу за телом имеет форму эмульсий, которые должны быть стабильными в течение длительного периода времени. Эффект узо рассматривается как потенциальный механизм для создания микроэмульсий без поверхностно-активных веществ без необходимости использования методов стабилизации с высоким усилием сдвига, которые являются дорогостоящими в крупномасштабных производственных процессах.Было высказано предположение [4], что синтез различных дисперсий, таких как псевдолатексы, силиконовые эмульсии и биоразлагаемые полимерные нанокапсулы, был синтезирован в результате эффекта узо.


    Также

    Интерфейс и коллоидная наука
    Миниэмульсия
    Ликеры со вкусом аниса в списке ликеров
    Спинодал

    Список литературы

    Ситникова Наталья Л.; Рудольф Сприк; Джерард Вегдам и Эрика Эйзер (2005). «Спонтанно образующиеся эмульсии транс-анетол / вода / спирт: механизм образования и стабильность» (PDF). Ленгмюр 21 (16): 7083–7089. DOI: 10.1021 / la046816l. PMID 16042427. Проверено 29 января 2007.
    Витале, Стивен А .; Джозеф Л. Кац (май 2003 г.). «Дисперсии жидких капель, образованные гомогенной жидко-жидкой нуклеацией: эффект Узо». Ленгмюр (Американское химическое общество) 19 (10): 4105–4110. DOI: 10.1021 / la026842o.
    Грилло, Изабель (сентябрь 2003 г.)."Исследование малоуглового рассеяния нейтронов всемирно известной эмульсии: Le Pastis" (PDF). Коллоиды и поверхности A, физико-химические и технические аспекты 225 (1-3): 153–160. DOI: 10.1016 / S0927-7757 (03) 00331-5. Проверено 29 января 2007.
    Ганашо, Франсуа; Джозеф Л. Кац (2005). «Наночастицы и нанокапсулы, созданные с использованием эффекта Узо: спонтанное эмульгирование как альтернатива ультразвуковым устройствам и устройствам с высоким сдвигом». ChemPhysChem 6 (2): 209–216.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *