Содержание

12 вольт 3 вольт конвертер для лучшего освещения Certified Products

Приятная обстановка делает жизнь достойной жизни. Действительно, невероятные 12 вольт 3 вольт конвертер на Alibaba.com могут воплотить эту мечту в реальность. Они небольшие по размеру и дизайну. Эти продукты уменьшают потребление электроэнергии для лучшего освещения и разнообразного светового излучения. Примечательно, что энергосбережение 12 вольт 3 вольт конвертер находит различное применение в нескольких отраслях, включая бытовую технику.

Высокое качество 12 вольт 3 вольт конвертер обеспечивает долгий срок службы. Эффективные трансформаторы освещения являются потребителями с низким энергопотреблением, что позволяет пользователю сэкономить деньги для других приоритетов. Кроме того, эти электротехнические изделия доступны как для домашнего использования, так и для легкой промышленности. Эти продукты с меньшим уровнем шума и дыма на Alibaba.com оснащены эффективными системами охлаждения и безопасности.

При покупке более качественных и продуктивных товаров 12 вольт 3 вольт конвертер потенциальным покупателям следует ознакомиться с несколькими пунктами контрольного списка . Рабочие характеристики определяют используемую мощность напряжения. В равной степени они должны знать рабочую частоту трансформаторов. Размер и диаметр должны быть пропорциональны рабочей нагрузке. Из-за колебаний погодных условий осторожный покупатель должен понимать преобладающие климатические условия в целях безопасности.

Соответствие 12 вольт 3 вольт конвертер зависит от характера работы. Наличие запчастей снижает стоимость ремонта. Высокие цены на трансформаторы освещения обеспечиваются надежной доставкой в режиме реального времени. Наслаждайтесь расслабляющим отдыхом, используя наиболее подходящие для окружающей среды приборы. Найдите на Alibaba.com широкий спектр надежных глобальных поставщиков и выгодные предложения.

Блок питания для видеонаблюдения 12 Вольт, 3 Ампера, 36 Ватт

Блок питания для видеонаблюдения 12 Вольт, 3 Ампера, 36 Ватт

Количество каналов:

1 канал

Мощность (Ватт):

36 Ватт

Входное напряжение (Вольт):

100 – 240 Вольт

Частота входного напряжения (Герц):

50 Герц

Выходное напряжение (Вольт):

12 (+/-5%) Вольт

Внешний диаметр разъема (мм):

5. 5мм

Внутренний диаметр разъема (мм):

2.1мм

Длина кабеля (220Вольт):

35 см.

Длина кабеля (12 Вольт):

110 см.

Гарантия:

6 месяцев

  • Мощность (Ватт)

  • Входное напряжение (Вольт)

  • Частота входного напряжения (Герц)

  • Выходное напряжение (Вольт)

  • Внешний диаметр разъема (мм)

  • Внутренний диаметр разъема (мм)

  • Длина кабеля (220Вольт)

  • Длина кабеля (12 Вольт)

  • С этим товаром покупают:

    Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

     Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.   Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
    Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт. То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт.
    Итак, начнем.

    Как из 12 вольт сделать 5 вольт с помощью резисторов

    Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор – пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.

     Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
     Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
     Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

    Как из 12 вольт сделать 5 вольт с помощью транзистора

     Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.

      Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

     Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

    Как из 12 вольт сделать 5 вольт с помощью микросхемы

     На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

    Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

    Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство.  Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

    Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

     Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

    Вот так она выглядит “вживую”.

    Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

    Подводя итог о преобразователе напряжения с 12 на 5 вольт

     Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
     Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
     Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
     Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

    Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

    Как из трех вольт сделать 12. Как получить нестандартное напряжение. Автомобильное зарядное usb

    Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

    Получаем 12 Вольт из 220

    Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

    1. Понизить напряжение без трансформатора.
    2. Использовать сетевой трансформатор 50 Гц.
    3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

    Понижение напряжения без трансформатора

    Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

    1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
    2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
    3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

    Гасящий конденсатор

    Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

    • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
    • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

    Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

    Схема изображена на рисунке ниже:

    R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

    Или усиленный вариант первой схемы:

    Номинал гасящего конденсатора рассчитывают по формуле:

    С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

    С(мкФ) = 3200*I(нагрузки)/√Uвход

    Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

    Конденсаторы должны быть такими – пленочными:

    Или такие:

    Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

    Блок питания на сетевом трансформаторе

    Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

    В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

    Uвых=Uвх*Ктр

    Ктр – коэффициент трансформации.

    Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

    Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

    Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

    12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

    Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

    Схема с линейным стабилизатором упоминалась в предыдущем пункте.

    К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

    Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

    Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

    Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

    Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

    12 Вольт из 5 Вольт или другого пониженного напряжения

    Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

    Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

    Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

    Как получить 12В из подручных средств

    Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

    Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

    Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

    Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

    Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

    Как самому собрать простой блок питания и мощный источник напряжения.
    Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


    Каждый, кто захочет сможет изготовить 12 – ти вольтовый блок самостоятельно, без особых затруднений.
    Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
    Шаг 1: Какие детали необходимы для сборки блока питания…
    Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
    -Монтажная плата.
    -Четыре диода 1N4001, или подобные. Мост диодный.
    -Стабилизатор напряжения LM7812.
    -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В – 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
    -Электролитический конденсатор емкостью 1000мкФ – 4700мкФ.
    -Конденсатор емкостью 1uF.
    -Два конденсатора емкостью 100nF.
    -Обрезки монтажного провода.
    -Радиатор, при необходимости.
    Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
    Шаг 2: Инструменты….
    Для изготовления блока необходимы инструменты для монтажа:
    -Паяльник или паяльная станция
    -Кусачки
    -Монтажный пинцет
    -Кусачки для зачистки проводов
    -Устройство для отсоса припоя.
    -Отвертка.
    И другие инструменты, которые могут оказаться полезными.
    Шаг 3: Схема и другие…


    Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
    Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
    Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
    Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

    Схема блока питания 12в 30А .
    При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
    Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
    В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
    Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
    Для охлаждения радиатора можно применить небольшой вентилятор.
    Проверка блока питания
    При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку – типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
    Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

    Блок питания 3 – 24в

    Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
    Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
    Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

    Схема блока питания на 1,5 в

    Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

    Схема регулируемого блока питания от 1,5 до 12,5 в

    Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

    Схема блока питания с фиксированным выходным напряжением

    Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

    Схема блока питания мощностью 20 Ватт с защитой

    Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
    По какой схеме: импульсный источник питания или линейный?
    Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
    Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
    Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
    Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
    Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
    На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

    Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
    Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
    Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

    Самодельный блок питания на 3.3v

    Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

    Трансформаторный блок питания на КТ808

    У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
    У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

    При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

    Блок питания на 1000в, 2000в, 3000в

    Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
    Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
    Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы – отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

    В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 – ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
    Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
    R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

    Еще по теме

    Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

    Ремонт и доработка китайского блока питания для питания адаптера.

    DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

    При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

    Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


    После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

    Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


    Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


    Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

    Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

    Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

    Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

    Вариант №1

    Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

    Вариант №2

    На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


    Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


    Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

    U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

    Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


    Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


    Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



    Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

    Вариант №3

    Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

    Итак, схему в студию!


    Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


    Итак, что на выходе?


    Почти 5.7 Вольт;-), что и требовалось доказать.

    Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


    На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

    Мини преобразователь с 1,5 В до 220 В


    Если у вас без дела завалялось сломанное зарядное устройство от сотового телефона, то из него можно сделать одну небольшую, но нужную самоделку. Это простой преобразователь напряжения с постоянного 1,5 Вольта до переменных 220 Вольт. Схема по истине элементарная и содержит всего 3 детали.

    Изготовление мини преобразователя напряжения


    Разбираем корпус зарядного устройства и вынимаем оттуда плату.

    Выпаиваем трансформатор с этой платы.

    Схема преобразователя



    Как уже говорилось – схема наипростейшая. Прежде чем ее собирать нужно тестером «прозвонить» трансформатор и узнать сопротивление каждой обмотки. Всего их должно быть три. Естественно, сопротивление обмоток вашего трансформатора может немного отличаться – это не страшно. А вот если расхождения кардинальные, то такой экземпляр может не подойти.
    Собираем преобразователь по схеме.

    В схеме используется транзистор «2SD882», его можно заменить любым низкочастотным «p-n-p» структуры средней мощности. Или на отечественный аналог КТ815, КТ817.
    Все собирается навесным монтажем без платы за 5 минут. Припаиваем провода от патрона лампочки и от батарейки.

    Устройство работает сразу при включении и в настройке не нуждается. Если генерация не началась при первом включении, поменяйте местами контакты одной из низковольтовых обмоток.
    В роли нагрузки использована светодиодная лампа на 220 В и мощностью 3 Вт.

    Частота работы преобразователя порядка 25 кГц.
    Если запитать схему от 3 Вольт, то яркость лампы увеличится и она точно будет светить на полную мощность.

    В роли нагрузки можно подключить другое зарядное устройство и заряжать мобильный телефон от батареек.

    Смотрите видео


    Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок.

    Схемы блоков питания. Сборка простого блока питания.

    Как самому собрать простой блок питания и мощный источник напряжения.
    Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
    Блок питания 12в

     

    Каждый, кто захочет сможет изготовить 12 – ти вольтовый блок самостоятельно, без особых затруднений.
    Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …
    Шаг 1: Какие детали необходимы для сборки блока питания …
    Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
    -Монтажная плата.
    -Четыре диода 1N4001, или подобные. Мост диодный.
    -Стабилизатор напряжения LM7812.
    -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В – 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
    -Электролитический конденсатор емкостью 1000мкФ – 4700мкФ.
    -Конденсатор емкостью 1uF.
    -Два конденсатора емкостью 100nF.
    -Обрезки монтажного провода.
    -Радиатор, при необходимости.
    Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
    Шаг 2: Инструменты ….
    Для изготовления блока необходимы инструменты для монтажа:
    -Паяльник или паяльная станция
    -Кусачки
    -Монтажный пинцет
    -Кусачки для зачистки проводов
    -Устройство для отсоса припоя.
    -Отвертка.
    И другие инструменты, которые могут оказаться полезными.
    Шаг 3: Схема и другие …

     

    Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
    Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
    Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
    Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

     

    Блок питания 12в 30а

    Схема блока питания 12в 30А.
    При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
    Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
    В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
    Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
    Для охлаждения радиатора можно применить небольшой вентилятор.
    Проверка блока питания
    При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку – типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
    Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

    Блок питания 3 – 24в

    Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
    Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5. 1 K.
    Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

    Схема блока питания на 1,5 в

    Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

    Схема регулируемого блока питания от 1,5 до 12,5 в

    Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

    Схема блока питания с фиксированным выходным напряжением

    Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

    Схема блока питания мощностью 20 Ватт с защитой

    Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
    По какой схеме: импульсный источник питания или линейный?
    Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
    Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
    Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
    Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
    Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
    На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

    Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
    Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
    Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

    Самодельный блок питания на 3.3v

    Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

    Трансформаторный блок питания на КТ808

    У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
    У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

    При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

    Блок питания на 1000в, 2000в, 3000в

    Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
    Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
    Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы – отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

    В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 – ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
    Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
    R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

    Еще по теме

    Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
    Трансформаторный блок питания
    Ремонт и доработка китайского блока питания для питания адаптера.
    Доработка блока питания

    Схемы блоков питания

    Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

    Повышающий DC-DC преобразователь. Принцип работы.

    Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

    Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

    Принцип работы
    Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

    Чтобы было предельно понятно покажу вначале пример для сантехников.

    Фаза 1

    Заслонка открывается и мощный поток жидкости начинает сливаться в никуда. Смысл лишь в том, чтобы этим потоком как следует разогнать турбину. Накачать ее энергией, передав энергию источника в кинетическую энергию турбины.

    Фаза 2

    Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

    Фаза 3

    Скорость турбины на излете, энергия перешла в давление в аккумуляторе. Сил продавить клапан, подпертный с той стороны набитым давлением уже не хватает. Вот вот и все встанет. Но в этот момент вновь открывается заслонка и турбина вновь разгоняется, набирает энергию из источника, превращая энергию потока в энергию вращающихся масса металла. Потребитель, тем временем, потихоньку жрет из аккумулятора.

    Фаза 4

    И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

    Назад к схемам
    Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

    Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

    Фаза 1

    Ключ замкнут. Ток от источника начинает, фактически, работать на катушку. Накачивая ее энергией.

    Фаза 2

    Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

    Фаза 3

    Ключ тем временем замыкается и катушка снова начинает нажирать энергию. В то же время нагрузка питается из конденсатора, а диод не дает току уйти из него обратно в источник.

    Фаза 4

    Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

    Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

    Uист*Iист = Uпотр*Iпотр

    Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

    Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

    Схемотехника
    Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере понижающего DC-DC преобразователя.

    Работа
    Питание через токовый шунт Rsc идет в дроссель L1 оттуда через ключ (SWC/SWE) на землю и через диод D1 на накопительный конденсатор C2. C него на нагрузку. Прям как в схеме приведенной выше. Остальные элементы для задания режима работы микросхемы.

    • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
    • DRC — коллектор составного транзистора
    • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
    • TC — вход конденсатора, задающего частоту работы.
    • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
    • Vcc — Питание схемы
    • GND — Земля

    Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

    Конденсатор С1 призван оградить питающую цепь от бросков. Потому и взят побольше. Резистор R1 у меня взят на 1.5кОм, а R2 на 13кОм, что дает нам напряжение выхода в 12 вольт. В качестве диода надо выбирать диод Шоттки. Например 1N5819. У диодов Шоттки заметно ниже падение напряженияна pn переходе, а еще ниже паразитная емкость этого перехода, что позволяет ему работать с меньшими потерями на больших частотах. Микросхема может работать на входном напряжении от 3 вольт.

    Опыт
    Для примера по быстрому развел микромодульчик, забирающий 5 вольт и выдающий 12 вольт. Схема уже приведена выше, а печатка получилась такой:

    Вытравил, спаял…

    Запитал от 5 вольт и нагрузил на 12ти вольтовую светодиодную линейку. КПД у моего преобразователя, кстати, получился так себе — не выше 50% т.к. слишком маленькая индуктивность дросселя и большая емкость конденсатора С3, но иного под рукой не оказалось.

    Вот так вот. Простая схемка, а позволяет решить ряд проблем.

    Преобразователь

    12 В в 3 В с использованием транзистора BD139 NPN

    Преобразователь 12 В в 3 В (DC-DC) – обычное предпочтение любителей электроники и энтузиастов для небольших / недорогих электронных проектов. Эти недорогие преобразователи постоянного тока в постоянный представляют собой простой, легкий и дешевый способ создания собственного тестового источника питания для проектов. Итак, в этом проекте мы собираемся построить простую схему преобразователя 12 В в 3 В с использованием стабилитрона и транзистора BD139 NPN.

    Транзистор средней мощности BD139 NPN имеет коэффициент усиления от 40 до 160, это значение определяет усилительную способность транзистора.Максимальный ток, который может протекать через вывод коллектора, составляет 1,5 А, поэтому мы не можем подключать нагрузки, потребляющие более 1,5 А, с помощью этого транзистора. Чтобы смещать транзистор, мы должны подавать ток на вывод базы, этот ток (IB) должен быть ограничен до 1/10 тока коллектора, а напряжение на выводе база-эмиттер должно быть максимум 5 В.

    Компоненты оборудования

    Для сборки этого проекта вам потребуются следующие детали

    [inaritcle_1] Принципиальная схема

    Рабочее объяснение

    Этот преобразователь постоянного тока в постоянный – дешевый и простой способ получения плавного и стабильного выходного напряжения 3 В постоянного тока.В этой схеме мы используем стабилитрон 3,6 В / 0,5 Вт в качестве регулятора напряжения. На вход поступает вход 12 В постоянного тока. Этот вход постоянного тока проходит через сглаживающий конденсатор C1 (1000 мкФ) для удаления остаточного шума. Затем сигнал постоянного тока проходит через стабилитрон, создавая регулируемое напряжение 3 В.

    Здесь транзистор BD139 увеличивает выходной ток схемы для работы сильноточных устройств. Вы также можете преобразовать 12 В в 3 В с помощью только стабилитрона и резистора, но это не даст большого тока.Стабилизированный сигнал 3 В постоянного тока проходит через сглаживающий конденсатор C3 (100 мкФ), прежде чем перейти к выходу.

    Приложения

    • Преобразователи постоянного тока в постоянный обычно используются в таких устройствах, как портативные зарядные устройства, DVD-плееры и т. Д.
    • Обычно используются в таких приложениях, как увеличение или уменьшение постоянного напряжения для различных приложений.
    • Также используется для промышленных процессов, таких как согласование нагрузки в электроэнергетике.

    Как преобразовать 12 В постоянного тока в 3 В постоянного тока? – Реабилитационная робототехника.нетто

    Как преобразовать 12 В постоянного тока в 3 В постоянного тока?

    На входе поступает 12 В постоянного тока. Этот вход постоянного тока проходит через сглаживающий конденсатор C1 (1000 мкФ) для удаления остаточного шума. Затем сигнал постоянного тока проходит через стабилитрон, создавая регулируемое напряжение 3 В. Здесь транзистор BD139 увеличивает выходной ток схемы для работы сильноточных устройств.

    Как снизить напряжение в блоке питания постоянного тока?

    Чтобы уменьшить напряжение вдвое, мы просто формируем цепь делителя напряжения между 2 резисторами равного номинала (например, 2 резистора 10 кОм).Чтобы разделить напряжение пополам, все, что вам нужно сделать, это подключить последовательно любые 2 резистора равного номинала, а затем установить перемычку между резисторами.

    Как уменьшить напряжение с 12 В до 4 В?

    Два способа снизить напряжение 12-вольтовой системы до 4-х вольт – это использовать делители напряжения или стабилитроны. Делители напряжения изготавливаются из последовательно включенных резисторов. Входное напряжение делится на выходное, что зависит от номинала используемых резисторов.

    Как уменьшить напряжение с 6 В до 3 В?

    Лучший способ получить 3 В постоянного тока от источника 6 В постоянного тока для подключения выходных клемм источника 6 В постоянного тока к понижающему преобразователю или к цепи понижающего прерывателя.. управляя рабочим циклом (альфа), вы можете изменять выходное напряжение постоянного тока… ТАКИМ ОБРАЗОМ, ВЫ МОЖЕТЕ ПОЛУЧИТЬ 3 В ПОСТОЯННОГО ТОКА ОТ ИСТОЧНИКА 6 В ПОСТОЯННОГО ТОКА ..

    Какой резистор мне нужен, чтобы понизить 12В до 5В?

    PL Поместите два резистора последовательно со вторым номиналом резистора (5/7) первого номинала резистора. Поместите резисторы между 12В и землей, и тогда вы получите 5В в точке между ними. Это очень грубый способ сделать это. Он не регулируется, поэтому выходное напряжение будет зависеть от входного напряжения.

    Как преобразовать 5 В постоянного тока в 3 постоянного тока?

    Это USB 5V на 1.Схема понижающего преобразователя 5В / 3В. Используется вместо обычной батарейки АА. В схеме используется регулятор постоянного напряжения LM317…. Как работает схема преобразователя 5В в 1,5В

    1. Vref = 1,25 В.
    2. Обычно R1 составляет 220 Ом или 240 Ом, как указано в таблице данных, но теперь это 470 Ом.
    3. Резисторы R2 100 Ом

    Как преобразовать 5 В в 3,7 В?

    По идее, подключите последовательно резистор 3,7 Ом и резистор 5–3,7 = 1,3 Ом, при этом резистор 1,3 Ом подключен к источнику питания +5 В, а резистор 3.Резистор 7 Ом, подключенный к земле (соединение – на питании 5 В). Это даст вам 3,7 В на резисторе 3,7 Ом.

    Как преобразовать 5 В в 4 В?

    От 5 В до 4 В (иш) все, что вам нужно, это простой и дешевый кремниевый диод. Вы упадете примерно на 0,7 В на диод, который, вероятно, достаточно близок? Просто убедитесь, что диод рассчитан на необходимую вам мощность.

    Как преобразовать 3 В в 5 В?

    Схема цепи бустера от 3 до 5 В Технология CMOS обеспечивает сверхнизкий ток питания и делает их идеальными для приложений с батарейным питанием от одной или нескольких ячеек.HT7750A состоит из генератора, схемы управления ЧИМ, задающего транзистора, блока опорного напряжения и высокоскоростного компаратора.

    Как сделать схему повышения напряжения?

    В повышающем преобразователе используются 2 цепи.

    1. Цепь повышения – имеет индуктор, переключатель, диод и конденсатор. Быстрое изменение тока через индуктор из-за переключателя приводит к огромному напряжению на нем.
    2. Выключатель – Я использовал таймер 555 с силовым транзистором BJT 2N6292.

    Что такое кремниевый диод?

    Диод – это электрический переключатель, обычно сделанный из полупроводникового материала, такого как кремний. Он состоит из двух выводов: положительного (анод) и отрицательного (катод). Его часто используют в качестве выпрямителя, который представляет собой устройство, преобразующее переменный ток в постоянный ток, при этом ток течет в одном направлении.

    Как уменьшить напряжение с 5В до 3В?

    Простейшая из возможных понижающих схем – резистивный делитель. Подключите выход 5 В к цепи резисторов, из которых вы снимаете свои 3.Логический вход 3 В. Цепь, состоящая из резисторов 2,2 кОм и 3,3 кОм, должна обеспечивать выходное напряжение 3 В от приложенного входа 5 В.

    Как сделать аккумулятор на 5В?

    1 порт USB Порт USB компьютера или ноутбука выдает выходное напряжение 5 В при максимальном токе 450 мА / с. Если вы подключите USB-концентратор к USB-порту, каждый порт USB-концентратора будет получать 5 вольт, но текущая емкость будет разделена. Чтобы сделать источник питания 5 В, просто возьмите штекерный USB-разъем из любого места.

    Могу ли я использовать зарядное устройство на 5 В с зарядным устройством 3.Аккумулятор 7 В?

    Как правило, литиевая батарея 3,7 В требует платы защиты от перезаряда и переразряда. Литиевая батарея с защитной платой может заряжаться напряжением 5 В (можно использовать от 4,8 В до 5,2 В). Для литиевых батарей 3,7 В напряжение отключения заряда составляет 4,2 В, а напряжение отключения разряда составляет 3,0 В.

    Сколько AA вам нужно для 5V?

    Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение.Мы можем использовать этот повышающий переход на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению.

    Какой резистор мне нужен, чтобы понизить 9В до 5В?

    Необходимые компоненты: одна батарея 9 В, резистор 100 Ом (≥22 Ом), стабилитрон 5,1 В (≥1 Вт), некоторые провода или разъемы.

    Как уменьшить напряжение с 9 В до 4,5 В?

    Re: ограничение мощности от 9 В или адаптера к плате до 4,5 В, тогда напряжение, которое вы получите в середине двух резисторов, будет составлять половину напряжения питания, около 4.5 вольт. так что ответьте между двумя резисторами, которые находятся между плюсом и минусом, и вы получите 4,5 вольт.

    Как получить 9В от 12-вольтовой батареи?

    Чтобы уменьшить цепь с 12 В до 9 В, включите в цепь последовательно два резистора. Найдите разницу между двумя напряжениями (12 В – 9 В = 3 В), чтобы определить общее необходимое сопротивление.

    Как уменьшить 9 вольт до 3 вольт?

    Чтобы уменьшить напряжение батареи 9 В до 3,3 В, используйте стабилитрон, например 1N746 или 1N4728A.Выберите подходящий, исходя из того, сколько мощности он может рассеять. 1N4728A имеет номинальную мощность 3,3 В и 1 Вт. Он может обеспечивать в среднем стабильное напряжение 3,3 В на цепь или другой компонент.

    Как уменьшить напряжение с 12В до 5В?

    Преобразователь 12В в 5В с использованием делителя напряжения: одна батарея 12В, резистор 1,8 кОм, резистор 1,3 кОм, соединительные провода. Эта схема представляет собой схему делителя напряжения. Вы можете спроектировать его для требуемого «выходного напряжения», используя следующую формулу: Здесь Vout – это выходное напряжение, снимаемое на резисторе R2.

    Как уменьшить ток без изменения напряжения?

    Первоначальный ответ: Как я могу ограничить ток, не влияя на напряжение? Вы либо уменьшаете выходное напряжение при перегрузке по току, либо уменьшаете среднее напряжение при перегрузке по току, периодически отключая выходное напряжение.

    Резисторы снижают напряжение?

    Резистор имеет способность уменьшать напряжение и ток при использовании в цепи. Основная функция резистора – ограничивать ток.Закон Ома гласит, что увеличение номинала резистора приведет к уменьшению тока. Для снижения напряжения резисторы устанавливаются в конфигурации, известной как «делитель напряжения».

    Сопротивление увеличивает напряжение?

    Напряжение увеличивается только при увеличении сопротивления, ЕСЛИ ток остается постоянным. В простой цепи ток почти наверняка НЕ ​​останется прежним при увеличении сопротивления. Ампер – это мера того, сколько электронов проходит через точку в цепи в секунду.

    Что происходит с сопротивлением при повышении напряжения?

    Следовательно, если напряжение увеличивается, ток будет увеличиваться при условии, что сопротивление цепи не изменится. Точно так же увеличение сопротивления цепи снижает ток, если напряжение не изменяется.

    Что происходит с сопротивлением, если ток увеличивается?

    Движущиеся электроны могут сталкиваться с ионами металла. Это затрудняет прохождение тока и вызывает сопротивление.Когда сопротивление в цепи увеличивается, например, за счет добавления дополнительных электрических компонентов, в результате уменьшается ток.

    Больше тока означает большее сопротивление?

    Цепь с более высоким сопротивлением пропускает меньший заряд, то есть в цепи с более высоким сопротивлением протекает меньший ток. Это возвращает нас к Георгу Ому.

    Автомобильный преобразователь постоянного / постоянного тока от 12 В до 1,5 В, 3 В, 5 В, 6 В, 7,5 В, 9 В


    Этот эффективный «понижающий преобразователь» или DC / DC преобразователь с пониженным напряжением предназначен для питания проигрывателей компакт-дисков, портативных устройств, видеоигры, портативные телевизоры, магнитофоны, GPS, ручные сканеры и радио от автомобильные розетки прикуривателя.

    Это чрезвычайно надежный, полный импульсный источник питания. Они широко используются в качестве регуляторов OEM. источники питания, когда доступно от 6 до 30 вольт, и снижение напряжения требуется.


    Щелкните здесь, чтобы увидеть версию повышенной мощности с выходами напряжения: 2В, 3В, 4В, 5В, 6В, 7В, 8В, 9В, 10В, 11В, 12В

    Цена 22 доллара за штуку

    В розницу или оптом. PST-DC292 отлично работает при напряжении 12 вольт. или 24-вольтовые автомобили, лодки и самолеты.


    Технические характеристики
    Номер модели PST-DC292 Преобразователь постоянного тока в постоянный PST-DC284
    Диапазон входного напряжения от 6 до 30 В постоянного тока (см. Таблицу ниже) от 6 В до 33 В постоянного тока
    Пиковая выходная мощность 24 Вт 24 Вт
    Пиковый выходной ток Выходной ток 2-3 А, см. Синюю диаграмму ниже 2 А макс.
    Номинальное выходное напряжение 1.5, 3, 4.5, 5.0, 6.0, 7.5, 9.0, 12.0 Вольт 1,5 В, 3 В, 4,5 В, 6 В, 7,5 В, 9 В, 12 В
    Типовое выходное напряжение См. Таблицу ниже
    Накладные расходы без нагрузки от 10 до 30 мА потребляется от аккумулятора, когда нагрузка не подключена, см. таблицу ниже
    Линейное постановление 1-2%
    Регулировка нагрузки от 2 до 5%
    КПД от 54 до 78%
    Защита от перенапряжения для автомобилей Выдерживает стандартный сброс нагрузки 80 вольт тестовое задание.
    Разрешения агентств ROHS, CE
    Изоляция Неизолированный, общая земля, шипы на положительная сторона исключена Неизолированный, общая земля, шипы на положительная сторона исключена
    Размеры 100 x 70 x 32 мм
    4 x 2.75 х 1,25 в дюймах
    Калибр и длина входного провода AWG18, 20 дюймов, 520 мм
    Калибр и длина выходного провода AWG 18, 60 дюймов, 1,5 метра
    Чертеж
    Масса 0.4 фунта, 200 г, 7 унций

    Настройка напряжения Типичный
    Напряжение
    Используется на оборудовании, требующем * Минимум
    Вход В
    Максимум
    Выход A
    КПД
    при 1 А,
    Вход 12 В
    Линия
    Регулировка при 1 А
    Нагрузка
    Регулировка
    при входе 12 В
    Без нагрузки
    Накладные расходы
    при входном напряжении 12 В
    1.5 вольт 1,83 1-2 В 6 вольт 3,0 54% 2%
    Вход 7-30 В
    5%
    Выход 0,1-2 А
    10% Выход 0,1-3 А
    10 мА
    3 В 3,3 от 2 до 3 вольт 6 вольт 2.75 60% 1%
    Вход 7-30 В
    5%
    0,1-2 А на выходе
    10 мА
    4,5 В 4,8 от 3,5 до 5,5 вольт 6 В ниже 1 А, 8 В при 2 А 2,2 А 65% 1%
    Вход 7-30 В
    3%
    0,1-2 А на выходе
    10 мА
    6 Вольт 6.3 от 4,5 до 6,5 вольт 8 В ниже 1,5 А, 9 В при 2 А 2,2 А 72% 1%
    Вход 8-30 В
    3%
    0,1-2A выход
    20 мА
    7,5 В 7,8 от 5,5 до 8 вольт 9 В ниже 1 А,
    10,3 В при 2 А
    2.1 А 78% 1,5%
    Вход 9-30 В
    3%
    0,1-2 А на выходе
    20 мА
    9 В 9,5 от 7 до 10 вольт 10 Вольт 2,1 А 73% 2%
    Вход 12-30 В
    2%
    0,1-2A выход
    20 мА
    12 В ** 12.8 от 10 до 14 вольт 14 Вольт 2 А 73% Вход 24 В 2%
    Вход 16-30 В
    4%
    0,1-2 А на выходе
    30 мА
    24 В
    вход
    * Примечание. Устройства, работающие от батарей, могут работать в широком диапазоне входные напряжения, например щелочные, варьируются от 1,5 до 1 вольт на элемент во время выписки.Это руководство учитывает это. Также большинство настенных переходники нерегулируемые. Поэтому выберите наиболее близкое к вашему номинальному напряжению и не беспокойтесь о точном определении напряжения.

    ** Хотя 12 вольт настройка требует 14 вольт, чтобы оставаться регулируемым, 13,6 вольт, подаваемых автомобилем аккумулятор, даже когда автомобиль выключен, будет подавать более 11,5 вольт, будет достаточно для большинства устройств на 12 вольт.

    Преимущества:

    Недорогой импульсный преобразователь постоянного тока в постоянный для стабилизации напряжения в автомобилях Приложения.

    Также может использоваться для обеспечения регулируемого напряжения в другие приложения, требующие от 1,5 до 12 вольт на выходе от 8 до 30 вольт на входе.

    КПД> 50-80%, в зависимости от входа, выхода и мощности.


    Обзоры


    Использование в сочетании с солнечными батареями . я используйте этот маленький преобразователь постоянного тока в постоянный для снижения напряжения 18 В от Instapark. Солнечная панель Mercury27 до 12 В для устройств, которые необходимо заряжать от 12 В, например как интеллектуальные зарядные устройства AA / AAA (например,грамм. POWEREX MAHA C9000 (супер высокий зарядное устройство с номиналом AA / AAA) или очень маленькое и недорогое (10 долларов США) ASTAK) через штекер автомобильного зарядного устройства) (заказывается отдельно для MH-C9000). В ярком солнышко, я даже смог зарядить аккумуляторы в MAHA C9000 (вход 12В 2А) и сотовый телефон (5 В 0,5 А) одновременно от солнечной панели Mercury 27 Вт (всего W = 12 x 2 + 5 x 0,5 = 26,5 Вт). Таким образом, я убедился, что эта солнечная панель мог заряжать при назначенной выходной мощности 27 Вт.

    Этот преобразователь постоянного тока может также может использоваться для зарядки других устройств с разным номинальным напряжением V (изменяется через его циферблат), который я тестировал (3 В = 3,5 В / 2,5 А, 6 В = 6,5 В / 2,5 А, 9 В = 9,5 В / 2,5 А), просто достаточно маленький, чтобы поместиться в кармане панели Mercury 27W, и заряжать устройства 12 В с помощью прилагаемых вилок (5,5 x 2,1 мм, 5,5 x 2,5 мм, и т. д.), и вы также можете получить больший ассортимент этих разъемов от PowerStream. Кроме того, вы можете заряжать несколько USB-устройств на 5 В (27 Вт / 5 В = 5.4A: например, устройство на 2,4 / 2,1 А, 2,0 А и 1,0 А (через различные тройные зарядные устройства USB (см. выше) или 2,4, 1,5 А и 1,5 А (через интеллектуальный тройной USB-порт Bolse). зарядное устройство) одновременно!) с помощью автомобильного разъема 5,5 x 2,5 мм. сокет (BixPower). Поэтому я настоятельно рекомендую этот недорогой преобразователь постоянного тока для использовать с панелью Mercury 27W.

    ПРЕДУПРЕЖДЕНИЕ: единственная критика, которую я имею DC / DC преобразователь PowerStream PST-DC292 – это набор розеток из разные размеры (например,грамм. вилка 5,5 x 2,5 / 2,1 мм) подключаются к выходному кабелю через два контакта (положительный и отрицательный полюса), и это излишне неудобно посмотрите, какая ориентация обеспечит правильную полярность розетки (положительный а не отрицательный). В этом случае используйте мультиметр для проверки розетки. полярность. Если вам часто нужно переключаться между розетками другого размера вилки, я предлагаю вам надеть вилку розетки 5,5 x 2,1 мм (самая распространенная), проверьте правильность полярности, а затем используйте VkTech 5.5 x 2,1 мм гнездо на 28 штекеров разного размера, чтобы всегда соблюдать полярность. верный.
    Эндрю Фальконар

    Преобразователь 12В в 9В – 5 лучших схем

    Ниже представлена ​​схема простых схем преобразователя 12В в 9В. Эти схемы преобразователя постоянного тока в постоянный можно использовать для преобразования всех типов источника питания 12 В в источник питания 9 В.

    Эти схемы также можно использовать для понижения или уменьшения потенциала батареи с 12 В до 9 В, чтобы использовать его с модулями микроконтроллеров или любыми ИС.Здесь в основном используются надежные линейные преобразователи мощности типа LM7809 и LM317.

    Преобразователь 9В в 5В с LM7809:

    LM7809 – это ИС стабилизатора напряжения, которая снижает и регулирует входное напряжение в электрических цепях.

    Преобразователь регулятора напряжения 12В в 9В с микросхемой LM7809 реализован, как показано на схеме ниже. Его можно использовать для слаботочных приложений, а также для тока до 2 ампер и более.

    Важно:
    Подключите входной конденсатор «Cin» и выходной конденсатор «Co» к IC 7809.Радиатор необходим, потому что падение напряжения в 3 вольта должно рассеиваться в виде тепла.

    Существует большая вероятность выхода из строя ИС, если радиатор не подключен. Разница входного и выходного напряжения здесь составляет 3 вольта, что больше рекомендуемого значения в 2,5 вольта.

    Необходимые компоненты:
    Аккумулятор 12 В / источник питания 12 В, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM7809, радиатор, провода и разъемы.

    Рабочий:

    ИС имеет множество встроенных функций, таких как тепловое отключение, защита от короткого замыкания и защита безопасной рабочей зоны.

    LM7809 – это ИС серии LM78xx, все ИС этой серии предназначены для различных фиксированных выходных напряжений. Эти типы ИС обычно используются в регулируемых цепях питания.

    LM7809 ИС линейного трансформатора. Цифры «xx » представляют значение регулируемого напряжения o / p. Микросхема 7809 выдает 9 В постоянного тока как цифра xx в последнем значении (09).

    Контакт 1 – это входной контакт . Контакт 2 – это контакт заземления .Контакт 3 – это выходной контакт .

    LM317 Преобразователь 12В в 9В:

    Преобразователь 12В в 9В постоянного тока также может быть изготовлен с универсальным линейным регулятором напряжения IC LM317. Это полезно для цепей среднего и высокого тока (от 1 до 1,5 ампер +) с подходящим радиатором.

    Обычно LM317 находится в цепях переменного питания, которые выдают регулируемое напряжение (от 1,25 В до 37 В) при изменении напряжения на контакте № 1. Здесь схема делителя напряжения, используемая с LM317, дает фиксированное значение o / p 9 В.

    Важно:
    Настаивают на добавлении входного конденсатора Cin (а ​​также o / p конденсатора Co). Радиатор необходим для охлаждения ИС от тепла, выделяемого внутри ИС.

    Напряжение i / p должно быть не менее чем на 1,5 В выше номинального выходного напряжения, чтобы эта ИС работала, как описано.

    Необходимые компоненты:
    Аккумулятор 12 В / источник питания 12 В, резистор 2,2 кОм, резистор 300 Ом, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM317, радиатор.

    Рабочий:
    LM317 – это ИС регулируемого регулятора напряжения, способная обеспечивать более чем…

    (для получения более подробной информации о регуляторе LM317 и его работе перейдите по этой ссылке)

    Преобразователь 12В в 9В с использованием резисторов в качестве делителя напряжения:

    Схема, показанная ниже, представляет собой схему для слаботочных приложений (~ 20 мА) или для измерения опорного напряжения в цепи компаратора или схемы низкого тока светодиода.

    Вы можете подключить три светодиода последовательно через вывод резистора R2, если вы используете батарею на 12 В на входе.

    Этот тип схемы не является эффективным, поэтому не рекомендуется для использования в схемах проекта.

    Необходимые компоненты:

    Одна батарея 12 В, резистор 300 Ом, резистор 1 кОм, несколько проводов.

    Это просто схема делителя напряжения. Вы можете получить выходной сигнал в соответствии с вашими потребностями по следующей формуле:

    Где Vo – это напряжение o / p.Vin – напряжение источника. Выберите любое значение резистора R1 или R2 (также зависит от импеданса нагрузки) и решите другое. Затем выберите ближайший стандарт. номинал резистора.

    Преобразователь 12В в 9В с использованием стабилитрона:

    Схема, показанная ниже, схема стабилитрона, она полезна для (1-900 мА) цепи среднего тока, например. Светодиодные индикаторы, транзисторные переключатели, Arduino и т.д.Стабилитрон 1в. На выходе вы получите около 9,1 В.

    Важно:
    Нагрузка должна быть подключена к выходному концу, чтобы предотвратить повреждение стабилитрона. Резистор серии
    10 Ом является токоограничивающим резистором, и когда на него подается большой ток, он должен пропускать этот ток через него, поэтому необходим резистор мощностью 5 Вт.

    Необходимые компоненты:
    Аккумулятор 12 В, резистор 10 Ом (≥10 Ом), стабилитрон 9,1 В (5 Вт), некоторые провода или разъемы.

    Рабочий:
    Это наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения.

    Конструкция стабилизатора напряжения стабилитрона 9 вольт от источника питания 12 вольт. Максимальная номинальная мощность…

    Подробный расчет и формулы можно найти в статье о преобразователе 9В в 5В на этом сайте.

    Простой преобразователь постоянного тока из 12 в в 9 вольт с использованием транзистора:

    Эти типы схем устарели, но все еще встречаются в некоторых периферийных устройствах.Это стабилизатор напряжения транзистор-стабилитрон в режиме EC:

    скоро появится…

    Параллельное подключение батарей – База знаний BatteryGuy.com

    Есть два способа подключения батарей: параллельно и серии . На приведенном ниже рисунке показано, как эти варианты подключения могут обеспечивать разное выходное напряжение и ампер-час.

    На рисунках мы использовали герметичные свинцово-кислотные батареи, но концепция подключения блоков верна для всех типов батарей.

    Различные конфигурации проводки дают нам разные напряжения или емкости в ампер-часах.

    В этой статье рассматриваются вопросы, связанные с параллельной проводкой (например, увеличение емкости в ампер-часах). Дополнительные сведения о последовательном подключении см. В разделе «Последовательное подключение батарей» или в нашей статье о сборке батарейных блоков.

    Параллельное подключение увеличивает емкость только в ампер-часах

    Основная концепция заключается в том, что при параллельном подключении вы складываете номиналы батарей в ампер-часах, но напряжение остается неизменным.Например:

    • Две 6-вольтовые батареи 4,5 Ач, соединенные параллельно, способны обеспечить 6 В 9 ампер-часов (4,5 Ач + 4,5 Ач).
    • четыре 1,2 В 2 000 мАч, соединенные параллельно, могут обеспечить 1,2 В 8 000 мАч (2 000 мАч x 4).

    Но что произойдет, если вы подключите батареи с разным напряжением и емкостью в ампер-часах параллельно?

    Параллельное подключение аккумуляторов разного напряжения

    Это большая запретная зона. Батарея с более высоким напряжением будет пытаться зарядить батарею с более низким напряжением, чтобы создать баланс в цепи.

    • Первичные (одноразовые) батареи – они не предназначены для зарядки, поэтому батарея с более низким напряжением может перегреться, протечь или вздуться, а в экстремальных обстоятельствах, когда напряжения сильно различаются, она может взорваться.
    • вторичные (аккумуляторные) батареи – эти честно чуть лучше. Батарея с более низким напряжением не предназначена для зарядки выше определенной точки, но батарея с более высоким напряжением все равно будет пытаться. Результатом может быть перегрев, протечка или вздутие батареи более низкого напряжения и / или перегрев батареи более высокого напряжения, поскольку она быстро разряжается.Опять же, чем больше разница в напряжении, тем больше вероятность возгорания или взрыва.

    Стоит отметить, что многие люди каждый день случайно подключают параллельно батареи разного напряжения. Например:

    • Если смешать марки даже с одинаковым обозначенным напряжением – могут возникнуть проблемы. Из-за разных производственных процессов точное напряжение аккумуляторов разных производителей может незначительно отличаться. Это означает, что батарея на 1,5 В от марки X на самом деле может быть 1.6 вольт, тогда как батарея на 1,5 вольта марки Y могла быть 1,55 вольт. Если бы они были подключены параллельно, вы вряд ли увидите фейерверк, но возникнут другие проблемы.
      • для первичных (одноразовых) батарей – более сильная батарея все равно будет пытаться зарядить более слабую, сокращая срок службы обеих.
      • для вторичных (перезаряжаемых) батарей – более сильная батарея заряжает более слабую, истощая себя и тратя энергию.
    • Если вы подключаете аккумуляторные батареи параллельно, и одна из них разряжается, а другие заряжаются – заряженные батареи будут пытаться зарядить разряженную батарею.При отсутствии сопротивления для замедления процесса зарядки заряженные устройства могут перегреться, поскольку они быстро разряжаются, а разряженная батарея может перегреться, поскольку она пытается зарядиться на уровне, намного превышающем его проектные возможности.
    • Если вы смешиваете батареи разного возраста – , старые батареи всегда будут иметь более низкое напряжение, так как все батареи со временем саморазряжаются. Даже аккумуляторные батареи не будут заряжаться до того же уровня, что и новые.

    Таким образом, важны следующие рекомендации:

    • С первичными (одноразовыми) батареями используйте только батареи той же марки и возраста (в идеале из той же упаковки).Если это невозможно, дважды проверьте напряжение каждого блока с помощью вольтметра.
    • С вторичными (аккумуляторными) батареями используйте только батареи той же марки и возраста и убедитесь, что все блоки полностью заряжены, прежде чем подключать их параллельно. Если вы не уверены в степени заряда, либо подключите их по отдельности к зарядному устройству, пока зарядное устройство не подтвердит, что они полностью заряжены, либо проверьте напряжение с помощью вольтметра.

    Параллельное подключение аккумуляторов разной емкости в ампер-часах

    Это возможно и не вызовет серьезных проблем, но важно отметить некоторые потенциальные проблемы:

    • Проверьте химический состав аккумуляторов – Герметичные свинцово-кислотные аккумуляторы, например, имеют другие точки зарядки, чем заливные свинцово-кислотные аккумуляторы.Это означает, что при одновременной подзарядке двух батарей некоторые батареи никогда не будут полностью заряжены. Результатом этого будет сульфатирование тех, которые никогда не достигнут полного заряда, что сократит их срок службы.
    • Дважды проверьте напряжения – если вы используете батареи с разной емкостью в ампер-часах, весьма вероятно, что напряжения будут другими (даже если напряжение, указанное на этикетках, совпадает). Проверьте это с помощью вольтметра, иначе у вас возникнут проблемы (см. , соединяющие батареи с различным напряжением параллельно выше).

    Именно по этим причинам рекомендуется использовать батареи той же марки, напряжения и емкости. Невыполнение этого требования (если у вас нет знаний и инструментов для проверки того, что вы делаете) может создать потенциально опасную цепь.

    Схема повышающего преобразователя постоянного тока с 3,3-5 В до 13,8 В

    Мне нравится светодиод 12 В. Но батарей у меня всего 3В. Итак, нет света.

    С помощью этой схемы я могу получить свет светодиода.

    Это схема повышающего преобразователя с 3 В на 12 В.Для преобразования источника постоянного напряжения 3,3–5 В в 12–13,8 В при максимальном токе 100 мА.

    Это тип импульсного источника питания, в котором используется KA34063 или MC34063.

    Что лучше старой схемы. Из-за низкого входного напряжения, высокая эффективность с регулируемым выходным напряжением.

    Если не представляете. Я покажу, почему вам следует использовать эту схему.

    У меня есть светодиодная лампа, показанная на рисунке 1. Она дешевая и суперяркая, лучше всего работает от 12 В.


    Рисунок 1 Светодиодная лампа для автомобиля

    А вы знаете сколько потребляет ток? Если ты не знаешь.Давай поучимся вместе со мной.

    Во-первых, мы используем амперметр для измерения тока светодиода LED , как показано на рисунке 2. У него есть принципиальная схема. На рисунке 3 показан реальный измерительный ток.


    Рисунок 2 Измерение тока светодиодной лампы 12 В

    Измерение тока светодиода 12 В

    Рисунок 3 Реальное измерение тока светодиодной лампы 12 В

    Вы увидите, что амперметр показывает ток 0,024 А или 24 мА. Итак, этот светодиод использует низкое энергопотребление (P), около 0.2 Вт.

    От:

    P = V x I
    12 В x 0,024 A = только 0,228 Вт.

    Во-вторых, если у нас никель-металлгидридная батарея AA, одна батарея выдает 1,2 В. Хотя, вы их последовательно соединяете с тремя батареями. Но в общей сложности батарея 1,2 В AA составляет 3,6 В постоянного тока.

    См. Рисунок 4.

    Таким образом, его нельзя использовать для светодиодной лампы 12 В.

    Три последовательно соединенные батарейки АА дают в сумме 3,6 В.

    Рисунок 4, поскольку 3 батареи AA 1,2 В подключены последовательно

    Как добавить напряжение

    Нам нужна схема повышающего преобразователя постоянного тока для преобразования входа 3.Выход 6 В или от 3,7 В до 12 В.

    Схема повышающего преобразователя постоянного тока, 3,7-5 В в 12 В-13,8 В

    Как Рисунок 5 Принципиальная схема повышающего преобразователя постоянного тока

    Эта схема может помочь ему, потому что:

    Специальная функция

    • Используется для питания источник питания, 3,3-5 В 750 мА до
    • Может подавать напряжение 12- 13,8 В зависит от входа источника питания
    • При использовании источника питания 5 В Постоянный ток 300 мА может применяться на выходе; напряжение составляет 12 В постоянного тока при 100 мА максимум
    • При использовании источника питания 3.3 вольта постоянного тока 660 мА может применяться на выходе; напряжение до 12 В постоянного тока при максимальном токе до 50 мА
    • Максимальный выходной ток: 100 мА
    • Нормальный Частота переключения около 43 кГц
    • Можно регулировать выходное напряжение
    • Есть питание на светодиодном дисплее

    Как это работает

    Схема будет показана на рисунке 5, операция начинается с того, что мы подаем на схему источник питания. IC1 будет действовать как повышающий преобразователь напряжения. Напряжение будет увеличиваться на выводе 1 IC1-KA34063 через диод D1 до точки OUT.Мы можем отрегулировать выходное напряжение, настроив VR1.

    Как собрать схему

    Он купил проект в виде печатной платы, поэтому его легко использовать, но вы можете купить все детали, как указано в списке ниже. Затем вы можете собирать схемы на перфорированной плате или универсальной плате для создания прототипов из стекловолокна.

    Тестирование и использование

    Как видео ниже Мы пытаемся поэкспериментировать со светодиодами, снова используя батарею 3,6 В. Светодиод будет без света.

    Затем он подключает провода или кабель питания к светодиоду, простому в использовании.
    И затем он проверяет схему

    На печатной плате; Он подключает линию питания 4, клемму цепи.
    Как показано на рисунке 6: Тестирование этой схемы повышающего преобразователя постоянного тока с использованием KA34063

    Тестирование цепи повышающего преобразователя постоянного тока с использованием KA34063
    • Примените батарею 3,6 В или мобильные батареи 3,7 В к входной клемме.
    • Подайте светодиод на выходную клемму и измерьте напряжение светодиода.
    • Отрегулируйте VR-10K до тех пор, пока мы не увидим, что напряжение составляет 12 В.
    • Измерьте ток светодиода 24 мА при напряжении 12 В
    • Измерьте ток цепи 100 мА при 3.9V

    Таким образом, у нас есть входная мощность 0,1 А x 3,9 В = 0,39 Вт
    Но мы можем использовать нагрузку (светодиод) при мощности 0,025 А x 12 В = 0,3 Вт
    Мы увидим, что использование входа низкого напряжения обеспечивает высокое напряжение выход при малой мощности с использованием.

    Приложение

    • Входной терминал служит для подключения источника постоянного тока напряжением 3,3 В, 3,7 В, 4,5 В, до 5 В.
    • Выходной терминал, мы используем его как источник постоянного тока для любых нагрузок. Это напряжение может изменяться уровнем входного напряжения и регулировкой VR1.

    Детали, которые вам понадобятся

    Резисторы 0,25 Вт
    R1—100 Ом – коричневый-черный-коричневый-золотой
    R6-R8— 1K -коричневый-черный-красный-золотой
    R2-R5— 1 Ом -коричнево-черный-золотой -золото

    Подстроечный потенциометр
    VR1—10K

    Керамический конденсатор
    C1—680 пФ 50 В

    Электролитические конденсаторы
    C2—470 мкФ 16 В
    C3—220—220 мкФ 2–470 мкФ 16 В
    C3—220—220 мкФ 2 Ду Выпрямительный диод Шоттки
    IC1 — KA34063 или MC34063, 1.5-A Пиковые регуляторы повышения / понижения / инвертирования

    FAQ

    Я получаю много вопросов от моих друзей. Это может быть полезно и для вас.

    Примечание: Я купил этот комплект и сам не проектировал эту схему. Я просто использую это перед тобой. Но я счастлив, что это хорошо работает. И я хочу видеть тебя счастливым, как я.

    Вы можете купить компоненты или комплекты здесь.

    Используем ли мы 1N4007 вместо 1N4007?
    Нет, нельзя. Потому что они разные.
    1N4007 – выпрямитель стандартный, 1А 1000В. Работает медленно.
    Но,
    А 1N5819 выпрямитель Шоттки, 1А 40В. Работает быстрее. Значит, он лучше коммутируется, чем 1N4007.
    Вы читали: выпрямитель 1N5819 заменяют на выпрямитель 1N4007 ??

    Продолжайте читать: «Схема повышающего преобразователя»

    ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

    Я всегда стараюсь сделать Electronics Learning Easy .

    Учебное пособие по зарядке аккумулятора | ChargingChargers.com


    Текущая технология зарядки аккумуляторов основана на использовании микропроцессоров (компьютерных чипов) для подзарядка с использованием 3-ступенчатой ​​(или 2-х или 4-х ступенчатой) регулируемой зарядки.Это “умные” зарядные устройства », а качественные устройства обычно не продаются в дисконтных магазинах. Стадиями или этапами зарядки свинцово-кислотных аккумуляторов являются объемная, абсорбционная и плавающая. Квалификация или уравнивание иногда считаются еще одним этапом. 2 этап блок будет иметь объемную и плавающую ступени. Важно использовать батареи производителя. рекомендации по зарядке и напряжениям, или качественный микропроцессор управляемое зарядное устройство для поддержания емкости аккумулятора и срока его службы.

    «Умные зарядные устройства» созданы с учетом современной философии зарядки. а также получать информацию от аккумулятора, чтобы обеспечить максимальный заряд с минимальное наблюдение. Для некоторых гелевых аккумуляторов и аккумуляторов AGM могут потребоваться специальные настройки. или зарядные устройства. Наши устройства выбраны по их совместимости с типами батарей, которые они указать. Гелевые батареи обычно требуют определенного профиля заряда, а гелевые батареи требуется специальное или выбираемое гелем или подходящее гелеобразное зарядное устройство.Пиковая зарядка напряжение для гелевых аккумуляторов составляет 14,1 или 14,4 вольт, что ниже, чем у влажных или AGM. Тип батареи необходим для полной зарядки. Превышение этого напряжения в гелевой батарее может вызвать пузыри в геле электролита и необратимое повреждение.

    Большинство производителей аккумуляторов рекомендуют устанавливать зарядное устройство примерно на 25% емкости аккумулятора. емкость (ah = емкость в ампер-часах). Таким образом, 100-амперная батарея потребует около 25 ампер. зарядное устройство (или меньше).Для сокращения времени зарядки можно использовать зарядные устройства большего размера, но уменьшить срок службы батареи. Меньшие зарядные устройства подходят для длительного плавания, например а 1 или «умное зарядное устройство» на 2 А можно использовать для обслуживания батареи между циклами с повышенным током использовать. Некоторые батареи указывают 10% емкости (0,1 X C) в качестве скорости заряда, а в то время как это ничего не помешает, хорошее микропроцессорное зарядное устройство соответствующей зарядки профиль должен быть в порядке до 25% ставки. Вы разговариваете с разными инженерами, даже в одна и та же компания, вы получите разные ответы.

    Трехступенчатая зарядка аккумулятора

    Этап BULK включает около 80% перезарядки, при этом ток зарядки остается постоянным (в зарядном устройстве постоянного тока), и напряжение увеличивается. Правильно размер зарядного устройства даст батарее столько тока, сколько она может принять до зарядного устройства емкость (25% емкости аккумулятора в ампер-часах), и не поднимать мокрый аккумулятор выше 125 F, или аккумулятор AGM или GEL (регулируемый клапаном) более 100 F.

    ПОГЛОЩЕНИЕ Этап (примерно оставшиеся 20%) имеет зарядное устройство. удерживая напряжение на уровне напряжения поглощения зарядного устройства (от 14,1 до 14,8 В постоянного тока). VDC, в зависимости от уставок зарядного устройства) и уменьшая ток до тех пор, пока аккумулятор не полностью заряжен. Некоторые производители зарядных устройств называют эту стадию абсорбции стадия уравнивания. Мы не согласны с таким использованием термина. Если аккумулятор не удерживают заряд, или ток не падает после ожидаемого времени перезарядки, батарея может иметь постоянную сульфатацию.

    В каскаде FLOAT напряжение заряда снижается до 13,0 В постоянного тока и 13,8 В постоянного тока и поддерживается постоянным, в то время как ток снижается до менее 1% заряда батареи емкость. Этот режим можно использовать для поддержания полностью заряженного аккумулятора на неопределенный срок.

    Время перезарядки можно приблизительно определить, разделив заменяемые ампер-часы на 90%. номинальной мощности зарядного устройства. Например, аккумулятор на 100 ампер-часов с Разряд 10% потребует замены 10 ампер.Используя зарядное устройство на 5 ампер, у нас есть 10 ампер. часов, разделенных на 90% от 5 ампер (0,9×5) ампер = расчетное время зарядки 2,22 часа. А глубоко разряженный аккумулятор отклоняется от этой формулы, требуя больше времени на каждый ампер подлежит замене.

    Рекомендации по частоте подзарядки варьируются от эксперта к эксперту. Оказывается, что глубина разряда влияет на срок службы батареи больше, чем частота подзарядки. Для например, подзарядка, когда оборудование не будет использоваться какое-то время (прием пищи перерыв или что-то еще), может поддерживать среднюю глубину разряда выше 50% для услуги день.В основном это относится к аккумуляторным батареям, где средняя глубина разряд падает ниже 50% за день, а аккумулятор можно полностью зарядить один раз в течение 24 часов.

    Выравнивание

    Выравнивание – это, по сути, управляемая перезарядка. Некоторые производители зарядных устройств назовите пиковое напряжение, которое зарядное устройство достигает в конце НАСОСНОГО режима (поглощение напряжение) выравнивающее напряжение, но технически это не так.Большая влажность (залитые) батареи иногда выигрывают от этой процедуры, особенно физически высокие батареи. Электролит в мокрой батарее со временем может расслаиваться, если не ездить на велосипеде изредка. При выравнивании напряжение поднимается выше типичного. пиковое зарядное напряжение (от 15 до 16 вольт в 12-вольтовой системе) хорошо в газовыделение этап и проводится в течение фиксированного (но ограниченного) периода. Это разжигает химию в аккумулятор целиком, «уравняв» силу электролита и сбив любой рыхлый сульфат, который может находиться на пластинах аккумулятора.

    Конструкция аккумуляторов AGM и гелевых практически исключает расслоение, и почти все производители этого типа не рекомендуют его (не советуют). Некоторые производители (в частности, Concorde) указывают процедуру, но напряжение и время не учитываются. важно, чтобы избежать повреждения аккумулятора.

    Тестирование батарей

    Тестирование батареи можно провести несколькими способами. Самый популярный включает в себя измерение удельного веса и напряжения аккумулятора.Удельный вес относится к влажным ячейкам с съемные колпачки, дающие доступ к электролиту. Для измерения удельного веса купите ареометр с температурной компенсацией в магазине автозапчастей или в магазине инструментов. К Измерьте напряжение, используйте цифровой вольтметр в настройке напряжения постоянного тока. Поверхность Перед испытанием необходимо снять заряд со только что заряженной батареи. 12 часов истечение срока после зарядки квалифицируется, или вы можете удалить поверхностный заряд с помощью нагрузки (20 ампер в течение 3 с лишним минут).

    Состояние зарядного напряжения Удельный вес 12 В 6 В 100% 12,7 6,3 1,265 75% 12,4 6,2 1,225 50% 12,2 6,1 1,190 25% 12,0 6,0 1,155 Выписан 11.9 6,0 1,120

    Нагрузочное тестирование – еще один метод тестирования батареи. Нагрузочное тестирование удаляет усилители из аккумулятор (аналогично запуску двигателя). Некоторые производители аккумуляторов маркируют свои аккумулятор с амперной нагрузкой для тестирования. Это число обычно составляет 1/2 рейтинга CCA. Например, батарея на 500 CCA будет тестировать под нагрузкой 250 ампер в течение 15 секунд. Нагрузка Тест может быть выполнен только в том случае, если аккумулятор полностью или почти полностью заряжен.Некоторые электронные Тестеры нагрузки применяют нагрузку 100 А в течение 10 секунд, а затем отображают напряжение батареи. Это число сравнивается с диаграммой на тестере на основе рейтинга CCA для определения состояние батареи.

    Сульфатация батарей начинается, когда удельный вес падает ниже 1,225 или напряжение измеряет менее 12,4 (батарея 12 В) или 6,2 (батарея 6 В). Сульфатирование может затвердевают на пластинах батареи, если оставить их достаточно долго, уменьшая и в конечном итоге разрушая способность батареи генерировать номинальные вольты и амперы.Есть устройства для удаление жесткого сульфатирования, но лучший способ – предотвратить образование путем правильного уход за аккумулятором и зарядка после цикла разрядки. Сульфатирование – основная причина значительная часть свинцово-кислотных аккумуляторов не достигает своего химического срока службы.

    Зарядка параллельно соединенных аккумуляторов

    Батареи, подключенные параллельно (положительный к положительному, отрицательный к отрицательному), видны зарядное устройство как одна большая батарея суммарная емкость всех батарей в ампер-часах.Таким образом, три 12-вольтовых батареи по 100 ампер-час (ач) в параллельно видны как одна батарея на 12 вольт 300 ач. Их можно зарядить одним плюсом и отрицательное соединение от одного зарядного устройства с рекомендуемым выходом усилителя. Они также могут быть заряжены с зарядным устройством с несколькими выходами, например, в данном случае с трехъядерным блоком, с каждой батареей получение собственного подключения при напряжении аккумуляторной батареи. Зарядная сила тока будет суммой отдельных выходных усилителей.

    Зарядная серия подключенных аккумуляторов

    Батареи, соединенные последовательно, – это отдельная история.Три 12-вольтовых батареи по 100 ампер-часов соединены в последовательную цепочку (положительный к отрицательному, положительный к отрицательному, положительный к отрицательному) сделал бы батарею 36 вольт 100 ач. Его можно заряжать через батарею с помощью 36 вольт.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *